

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071cbu6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	Flash memory endurance and data retention
Table 48.	EMS characteristics
Table 49.	EMI characteristics
Table 50.	ESD absolute maximum ratings
Table 51.	Electrical sensitivities
Table 52.	I/O current injection susceptibility
Table 53.	I/O static characteristics
Table 54.	Output voltage characteristics
Table 55.	I/O AC characteristics
Table 56.	NRST pin characteristics
Table 57.	ADC characteristics
Table 58.	R_{AIN} max for f_{ADC} = 14 MHz
Table 59.	ADC accuracy
Table 60.	DAC characteristics
Table 61.	Comparator characteristics
Table 62.	TS characteristics
Table 63.	V _{BAT} monitoring characteristics
Table 64.	TIMx characteristics
Table 65.	IWDG min/max timeout period at 40 kHz (LSI)
Table 66.	WWDG min/max timeout value at 48 MHz (PCLK)
Table 67.	I ² C analog filter characteristics
Table 68.	SPI characteristics
Table 69.	I ² S characteristics
Table 70.	UFBGA100 package mechanical data97
Table 71.	UFBGA100 recommended PCB design rules
Table 72.	LQPF100 package mechanical data100
Table 73.	LQFP64 package mechanical data103
Table 74.	WLCSP49 package mechanical data
Table 75.	LQFP48 package mechanical data110
Table 76.	UFQFPN48 package mechanical data 113
Table 77.	Package thermal characteristics
Table 78.	Ordering information scheme
Table 79.	Document revision history

Perip	oheral	STM32	F071Cx	STM32F071RB	STM32	F071Vx		
Flash mem	nory (Kbyte)	64	128	128	64	128		
SRAM	(Kbyte)			16				
	Advanced control			1 (16-bit)				
Timers	General purpose			5 (16-bit) 1 (32-bit)				
	Basic			2 (16-bit)				
	SPI [I ² S] ⁽¹⁾			2 [2]				
Comm.	l ² C			2				
interfaces	USART			4				
	CEC			1				
12-bi (number o	t ADC f channels)	1 1 (10 ext. + 3 int.) (16 ext. + 3 int.)						
12-bi (number o	t DAC f channels)	1 (2)						
Analog co	omparator			2				
GP	PIOs	3	7	51	8	7		
Capacitiv char	re sensing nnels	1	7	18	2	4		
Max. CPU	frequency			48 MHz				
Operatin	ig voltage			2.0 to 3.6 V				
Operating t	temperature	ļ	Ambient opera Junction t	ating temperature: -40°C to 85°C emperature: -40°C to 105°C / -4	C / -40°C to 105 40°C to 125°C	ĩ°C		
Pack	ages	LQF UFQF WLC	P48 PN48 SP49	LQFP64	LQFP100 UFBGA100			

Table 2. STM32F071x8/xB family device features and peripheral counts

1. The SPI interface can be used either in SPI mode or in I^2S audio mode.

3 Functional overview

Figure 1 shows the general block diagram of the STM32F071x8/xB devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F071x8/xB devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 64 to 128 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15, or PA9/PA10 or I^2C on pins PB6/PB7.

DocID025451 Rev 6

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.14.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

3.15 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

DocID025451 Rev 6

Symbol	Parameter Conditions Mi		Min	Max	Unit					
t _{VDD}	V _{DD} rise time rate		0	8						
	V _{DD} fall time rate	-	20	8						
+	V _{DDA} rise time rate		0	8	μ5/ ν					
^I VDDA	V _{DDA} fall time rate	-	20	8						

 Table 25. Operating conditions at power-up / power-down

6.3.3 Embedded reset and power control block characteristics

The parameters given in *Table 26* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

 Table 26. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{POR/PDR} ⁽¹⁾	Power on/power down	Falling edge ⁽²⁾	1.80	1.88	1.96 ⁽³⁾	V
	reset threshold	Rising edge	1.84 ⁽³⁾	1.92	2.00	V
V _{PDRhyst}	PDR hysteresis	-	-	40	-	mV
t _{RSTTEMPO} ⁽⁴⁾	Reset temporization	-	1.50	2.50	4.50	ms

1. The PDR detector monitors V_{DD} and also V_{DDA} (if kept enabled in the option bytes). The POR detector monitors only $V_{DD}.$

2. The product behavior is guaranteed by design down to the minimum $V_{\text{POR/PDR}}$ value.

3. Data based on characterization results, not tested in production.

4. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	D\/D throshold 0	Rising edge	2.1	2.18	2.26	V
V PVD0		Falling edge	2	2.08	2.16	V
V	D\/D threehold 1	Rising edge	2.19	2.28	2.37	V
♥ PVD1		Falling edge	2.09	2.18	2.27	V
V _{PVD2}	D\/D threehold 2	Rising edge	2.28	2.38	2.48	V
		Falling edge	2.18	2.28	2.38	V
V	D\/D threehold 2	Rising edge	2.38	2.48	2.58	V
VPVD3		Falling edge	2.28	2.38	2.48	V
V	D\/D threehold 4	Rising edge	2.47	2.58	2.69	V
VPVD4		Falling edge	2.37	2.48	2.59	V
M	D\/D threehold 5	Rising edge	2.57	2.68	2.79	V
V _{PVD5}		Falling edge	2.47	2.58	2.69	V

 Table 27. Programmable voltage detector characteristics

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in to *Table 31* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

	ter			A	ll periphe	rals ena	bled	All peripherals disabled				
lodm'	ameto	Conditions	f _{HCLK}		N	lax @ T ₄	(1)		м	Unit		
Sy	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	24.3	26.9	27.2	27.9	13.1	14.8	14.9	15.5	
ode, nemory	HSE bypass, PLL on	48 MHz	24.1	26.8	27.0	27.7	13.0	14.6	14.8	15.4		
		32 MHz	16.0	18.3	18.6	19.2	8.76	9.56	9.73	10.6		
	n n ash r		24 MHz	12.3	13.7	14.3	14.7	7.36	7.94	8.37	8.81	
	n Rl	HSE bypass,	8 MHz	4.52	5.25	5.28	5.61	2.89	3.17	3.26	3.34	
I _{DD}	ent i I fror	PLL off	1 MHz	1.25	1.39	1.58	1.87	0.93	1.06	1.15	1.34	mA
	curr uting		48 MHz	24.1	27.1	27.6	27.8	12.9	14.7	14.9	15.5	
	ply xect	HSI clock, PLL on	32 MHz	16.1	18.2	18.9	19.3	8.82	9.69	9.83	10.7	
Sur code e	_	24 MHz	12.4	14.0	14.4	14.8	7.31	7.92	8.34	8.75		
	HSI clock, PLL off	8 MHz	4.52	5.25	5.35	5.61	2.87	3.16	3.25	3.33		

	_	Conditions		V _{DDA} = 2.4 V					V _{DDA} = 3.6 V				
Symbol	Para- meter		f _{HCLK}	Tun	М	Max @ T _A ⁽²⁾			м	Unit			
				ЧИ	25 °C	85 °C	105 °C	96.	25 °C	85 °C	105 °C	1	
		HSI48	48 MHz	311	326	334	343	322	337	345	354		
	Supply current in Run or Sleep mode.	HSE	48 MHz	152	170 ⁽³⁾	178	182 ⁽³⁾	165	184 ⁽³⁾	196	200 ⁽³⁾		
		Supply bypass, prrent in Run or Sleep HSE mode, bypass, code PLL on	32 MHz	105	121	126	128	113	129	136	138		
			24 MHz	81.9	95.9	99.5	101	88.7	102	107	108		
			8 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5		
I _{DDA}	code executing		1 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5	μA	
	from	from	48 MHz	223	244	255	260	245	265	279	284		
	memory	HSI clock, PLL on	32 MHz	176	195	203	206	193	212	221	224		
	or RAM		24 MHz	154	171	178	181	168	185	192	195		
		HSI clock, PLL off	8 MHz	74.2	83.4	86.4	87.3	83.4	92.5	95.3	96.6		

Table 30. Typical and maximum current consumption from the $\mathrm{V}_{\mathrm{DDA}}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

						Тур @	V _{BAT}						
Symbol	bol Param	eter	Conditions	1.65 V	1.8 V	2.4 V	2.7 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_VBAT}	RTC domaii	RTC domain supply current	LSE & RTC ON; "Xtal mode": lower driving capability; LSEDRV[1:0] = '00'	0.5	0.6	0.7	0.8	1.1	1.2	1.3	1.7	2.3	
	^{/BAT} supply curren		LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.8	0.9	1.1	1.2	1.4	1.6	1.7	2.1	2.8	

Table 32. Typical and maximum current consumption from the $\rm V_{BAT}$ supply

1. Data based on characterization results, not tested in production.

Typical current consumption

The MCU is placed under the following conditions:

- V_{DD} = V_{DDA} = 3.3 V
- All I/O pins are in analog input configuration
- The Flash memory access time is adjusted to f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled, f_{PCLK} = f_{HCLK}
- PLL is used for frequencies greater than 8 MHz
- AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and 500 kHz respectively

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 35: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DDIOx} is the I/O supply voltage

 $V_{\rm DDIO_X}$ is the NO supply voltage

 ${\rm f}_{\rm SW}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 35*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 21: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 35*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

	Peripheral	Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	2.2	
	CRC	1.6	
	DMA	5.7	
	Flash memory interface	13.0	
	GPIOA	8.2	
	GPIOB	8.5	µA/MHz
AHB	GPIOC	2.3	
	GPIOD	1.9	
	GPIOE	2.2	
	GPIOF	1.2	
	SRAM	0.9	
	TSC	5.0	
	All AHB peripherals	52.6	

Table 35. Peripheral current consumption

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 36* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter	Conditions	Typ @Vdd = Vdda						Unit
Symbol	Farameter	Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	max	Unit
twustop	Wakeup from Stop mode	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
		Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
t _{wustandby}	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μs
t _{WUSLEEP}	Wakeup from Sleep mode	-		4 S)	/SCLK cy	cles		-	

 Table 36. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 14: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	113

Table	37	High-sr	need e	xternal	user	clock	characteristics
Table	57.	ingn-sp	iccu c	ALCITIAL	usei	CIUCK	character istics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz
V_{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V_{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	20
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115

Table 38. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed internal (LSI) RC oscillator

Table 44. LSI	oscillator	characteristics ⁽¹⁾
---------------	------------	--------------------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μÂ

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 45* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Doromotor		l Init		
Зутрог	Falameter	Min	Тур	Max	Unit
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz
'PLL_IN	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs
Jitter _{PLL}	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps

Table 45. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at T_A = -40 to 105 °C unless otherwise specified.

|--|

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (2 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
	Supply ourropt	Write mode	-	-	10	mA
I _{DD}	Supply current	Erase mode	-	-	12	mA

1. Guaranteed by design, not tested in production.

STM32F071x8 STM32F071xB

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

accuracy.

- 3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.

Figure 25. ADC accuracy characteristics

Figure 26. Typical connection diagram using the ADC

- Refer to Table 57: ADC characteristics for the values of R_{AIN}, R_{ADC} and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 12: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

DocID025451 Rev 6

6.3.17 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
D (1)	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
►LOAD` ′	ON	25	-	-	kΩ	Load connected to V _{DDA}
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$ (0xEAB) at $V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	I	-	V _{DDA} – 1LSB	V	excursion of the DAC.
I (1)	DAC DC current	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA'	mode ⁽²⁾	I	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	I	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{DDA} = 3.6 V
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$

Table	60.	DAC	characteristics
Table	00.	DAO	character istics

Figure 33. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

As applications do not commonly use the STM32F071x8/xB at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL} = 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 1.3 V

P_{INTmax} = 50 mA × 3.5 V= 175 mW

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax}= 175 + 272 = 447 mW

Using the values obtained in Table 77 T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \degree$ C).

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum temperature T_{Amax} = 100 °C (measured according to JESD51-2), I_{DDmax} = 20 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V

P_{INTmax} = 20 mA × 3.5 V= 70 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives: P_{INTmax} = 70 mW and P_{IOmax} = 64 mW:

 $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Using the values obtained in *Table* 77 T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C

Note:

Date	Revision	Changes
Date	Revision 3 (continued)	Changes Section 6: Electrical characteristics: Table 21: Voltage characteristics and Table 22: Current characteristics updated Table 21: Voltage characteristics and Table 22: Current characteristics updated Table 24: General operating conditions - added footnote for V _{IN} of TTa I/O Table 28: Embedded internal reference voltage: added tsTART parameter and removal of -40°-to-85° condition for VREFINT and associated note Table 32: Typical and maximum current consumption from the V _{BAT} supply - added max values Merger of two tables into Table 33: Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal Table 35: Peripheral current consumption - APB peripheral total current consumption corrected Table 40: LSE oscillator characteristics (fLSE = 32.768 kHz) - V _{DD} replaced with V _{DDIOX} Table 41: HSI oscillator characteristics and Figure 18: HSI oscillator accuracy characteristics and Figure 18: HSI oscillator accuracy characteristics: removed V _{prog} Table 42: HSI14 oscillator characteristics: removed V _{prog} Table 45: Flash memory characteristics - note removed Table 46: Flash memory characteristics - note removed Table 45: HSI14 oscillator characteristics: removed V _{prog} Table 46: Flash memory characteristics -
		 Table 69: I²S characteristics: table reorganized Section 7: Package information: information on packages generally updated
		Section 8: Ordering information: added tray packing to options
14-Jun-2016	4	 Added STM32F071C8 part number Section 6: Electrical characteristics: V_{REFINT} values updated in <i>Table 28: Embedded internal</i> reference voltage R_{LOAD} - added value for connection to V_{DD}

Table 79. Document revision history	(continued)
-------------------------------------	-------------

