



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                       |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 48MHz                                                                 |
| Connectivity               | HDMI-CEC, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART             |
| Peripherals                | DMA, I <sup>2</sup> S, POR, PWM, WDT                                  |
| Number of I/O              | 37                                                                    |
| Program Memory Size        | 128KB (128K × 8)                                                      |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | -                                                                     |
| RAM Size                   | 16К х 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.65V ~ 3.6V                                                          |
| Data Converters            | A/D 13x12b; D/A 2x12b                                                 |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 48-UFQFN Exposed Pad                                                  |
| Supplier Device Package    | 48-UFQFPN (7x7)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071cbu7 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).



Figure 2. Clock tree

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

DocID025451 Rev 6



Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

## 3.13 Touch sensing controller (TSC)

The STM32F071x8/xB devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

| Group | Capacitive sensing<br>signal name | Pin<br>name  | Group                                                                                                                                                                                     | Capacitive sensing<br>signal name | Pin<br>name |
|-------|-----------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------|
|       | TSC_G1_IO1                        | PA0          |                                                                                                                                                                                           | TSC_G5_IO1                        | PB3         |
| 1     | TSC_G1_IO2                        | PA1          | 5                                                                                                                                                                                         | TSC_G5_IO2                        | PB4         |
|       | TSC_G1_IO3                        | PA2          | 5                                                                                                                                                                                         | TSC_G5_IO3                        | PB6         |
|       | TSC_G1_IO4                        | PA3          | A3         TSC_G5_IO4         PB1           A4         TSC_G6_IO1         PB1           A5         6         TSC_G6_IO2         PB1           A6         6         TSC_G6_IO3         PB1 | PB7                               |             |
|       | TSC_G2_IO1                        | PA4          | TSC_G6_IO1<br>6 7SC_G6_IO2<br>6 7SC_G6_IO3                                                                                                                                                | TSC_G6_IO1                        | PB11        |
| 2     | TSC_G2_IO2                        | PA5          | 6                                                                                                                                                                                         | TSC_G6_IO2                        | PB12        |
|       | TSC_G2_IO3                        | PA6          | 0                                                                                                                                                                                         | TSC_G6_IO3                        | PB13        |
|       | TSC_G2_IO4                        | PA7          |                                                                                                                                                                                           | TSC_G6_IO4                        | PB14        |
|       | TSC_G3_IO1                        | PC5          |                                                                                                                                                                                           | TSC_G7_IO1                        | PE2         |
| 3     | TSC_G3_IO2                        | PB0          | 7                                                                                                                                                                                         | TSC_G7_IO2                        | PE3         |
| 5     | TSC_G3_IO3                        | PB1          |                                                                                                                                                                                           | TSC_G7_IO3                        | PE4         |
|       | TSC_G3_IO4                        | PB2 TSC_G7_I | TSC_G7_IO4                                                                                                                                                                                | PE5                               |             |
|       | TSC_G4_IO1                        | PA9          |                                                                                                                                                                                           | TSC_G8_IO1                        | PD12        |
|       | TSC_G4_IO2                        | PA10         | 8                                                                                                                                                                                         | TSC_G8_IO2                        | PD13        |
| -     | TSC_G4_IO3                        | PA11         | 0                                                                                                                                                                                         | TSC_G8_IO3                        | PD14        |
|       | TSC_G4_IO4                        | PA12         |                                                                                                                                                                                           | TSC_G8_IO4                        | PD15        |

Table 5. Capacitive sensing GPIOs available on STM32F071x8/xB devices

DocID025451 Rev 6



TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

#### 3.14.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

#### 3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

#### 3.14.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

#### 3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

## 3.15 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on  $V_{DD}$  supply when present or through the  $V_{BAT}$  pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when  $V_{DD}$  power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.



verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

| Table 9. S | TM32F071x8/xB | I <sup>2</sup> C im | plementation |
|------------|---------------|---------------------|--------------|
|            |               |                     |              |

| I <sup>2</sup> C features <sup>(1)</sup>                     | I2C1 | I2C2 |
|--------------------------------------------------------------|------|------|
| 7-bit addressing mode                                        | Х    | Х    |
| 10-bit addressing mode                                       | Х    | Х    |
| Standard mode (up to 100 kbit/s)                             | Х    | Х    |
| Fast mode (up to 400 kbit/s)                                 | Х    | Х    |
| Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os | Х    | Х    |
| Independent clock                                            | Х    | -    |
| SMBus                                                        | Х    | -    |
| Wakeup from STOP                                             | Х    | -    |

1. X = supported.

# 3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

| USART modes/features <sup>(1)</sup>   | USART1 and<br>USART2 | USART3 and<br>USART4 |
|---------------------------------------|----------------------|----------------------|
| Hardware flow control for modem       | Х                    | Х                    |
| Continuous communication using DMA    | х                    | х                    |
| Multiprocessor communication          | Х                    | Х                    |
| Synchronous mode                      | Х                    | Х                    |
| Smartcard mode                        | х                    | -                    |
| Single-wire half-duplex communication | Х                    | Х                    |



## 4 Pinouts and pin descriptions



#### Figure 3. UFBGA100 package pinout





Figure 4. LQFP100 package pinout



#### Table 14. Alternate functions selected through GPIOA\_AFR registers for port A AF1 AF2 AF4 Pin name AF0 AF3 AF5 AF7 AF6 USART2 CTS TIM2 CH1 ETR TSC G1 IO1 USART4 TX PA0 COMP1 OUT \_ -EVENTOUT USART2\_RTS TIM2\_CH2 TSC\_G1\_IO2 USART4 RX PA1 TIM15 CH1N \_ TIM15\_CH1 TIM2\_CH3 PA2 USART2\_TX TSC\_G1\_IO3 COMP2\_OUT ---PA3 TIM15 CH2 USART2 RX TIM2\_CH4 TSC G1 IO4 ----SPI1\_NSS, I2S1\_WS USART2\_CK TSC\_G2\_IO1 TIM14\_CH1 PA4 \_ --\_ SPI1\_SCK, I2S1\_CK CEC TIM2\_CH1\_ETR TSC\_G2\_IO2 PA5 \_ \_ \_ USART3 CTS COMP1 OUT PA6 SPI1 MISO, I2S1 MCK TIM3 CH1 TIM1 BKIN TSC G2 103 TIM16 CH1 EVENTOUT SPI1\_MOSI, I2S1\_SD TIM3\_CH2 TIM1\_CH1N TSC\_G2\_IO4 TIM14\_CH1 TIM17\_CH1 COMP2\_OUT PA7 **EVENTOUT** PA8 МСО USART1 CK TIM1\_CH1 **EVENTOUT** CRS\_SYNC \_ \_ USART1 TX TIM15 BKIN TIM1 CH2 TSC G4 IO1 PA9 ----TIM17\_BKIN USART1 RX TIM1 CH3 TSC\_G4\_IO2 PA10 ----EVENTOUT PA11 USART1\_CTS TIM1 CH4 TSC\_G4\_IO3 COMP1 OUT -\_ -EVENTOUT USART1\_RTS TIM1 ETR TSC\_G4\_IO4 COMP2 OUT PA12 ---SWDIO IR\_OUT PA13 \_ --\_ SWCLK USART2\_TX **PA14** -\_ -SPI1 NSS, I2S1 WS USART2 RX TIM2 CH1 ETR **EVENTOUT** USART4 RTS PA15 \_ --

DocID025451 Rev 6

39/122

| Symbol | Devementer            | 4       | Typical consumption in<br>Run mode |                         | Typical con<br>Sleep   | Unit                    |      |
|--------|-----------------------|---------|------------------------------------|-------------------------|------------------------|-------------------------|------|
| 0,     | Parameter             | IHCLK   | Peripherals<br>enabled             | Peripherals<br>disabled | Peripherals<br>enabled | Peripherals<br>disabled | Unit |
|        |                       | 48 MHz  | 23.5                               | 13.5                    | 14.6                   | 3.5                     |      |
|        |                       | 36 MHz  | 18.3                               | 10.5                    | 11.1                   | 2.9                     |      |
|        |                       | 32 MHz  | 16.0                               | 9.6                     | 10.0                   | 2.7                     |      |
|        | Current               | 24 MHz  | 12.3                               | 7.6                     | 7.8                    | 2.2                     |      |
| I      | consumption           | 16 MHz  | 8.6                                | 5.3                     | 5.5                    | 1.7                     | mΑ   |
| 'DD    | from V <sub>DD</sub>  | 8 MHz   | 4.8                                | 3.1                     | 3.1                    | 1.2                     |      |
|        | Suppry                | 4 MHz   | 3.1                                | 2.1                     | 2.2                    | 1.1                     |      |
|        |                       | 2 MHz   | 2.1                                | 1.6                     | 1.6                    | 1.0                     |      |
|        |                       | 1 MHz   | 1.6                                | 1.3                     | 1.4                    | 1.0                     |      |
|        |                       | 500 kHz | 1.3                                | 1.2                     | 1.2                    | 1.0                     | I    |
|        |                       | 48 MHz  |                                    | 16                      | 3.3                    |                         |      |
|        |                       | 36 MHz  |                                    | 12                      | 4.3                    |                         |      |
|        |                       | 32 MHz  |                                    | 11 <sup>.</sup>         | 1.9                    |                         |      |
|        | Current               | 24 MHz  |                                    | 87                      | '.1                    |                         |      |
| I      | consumption           | 16 MHz  |                                    | 62                      | 2.5                    |                         | μA   |
| 'DDA   | from V <sub>DDA</sub> | 8 MHz   |                                    | 2                       | .5                     |                         |      |
|        | Suppry                | 4 MHz   | 2.5                                |                         |                        |                         |      |
|        |                       | 2 MHz   |                                    | 2                       | .5                     |                         | 1    |
|        |                       | 1 MHz   |                                    | 2                       | .5                     |                         |      |
|        |                       | 500 kHz |                                    | 2                       | .5                     |                         |      |

| Table 33. | Typical | current | consumptio  | on, code | exec   | uting | from | Flash | memory | ļ, |
|-----------|---------|---------|-------------|----------|--------|-------|------|-------|--------|----|
|           |         | run     | ning from H | ISE 8 MH | Iz cry | ystal |      |       |        |    |

#### I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

#### I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt



DocID025451 Rev 6

1. Guaranteed by design, not tested in production.





#### Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 15*.

| Symbol                                       | Parameter <sup>(1)</sup>              | Min                    | Тур    | Мах                    | Unit |
|----------------------------------------------|---------------------------------------|------------------------|--------|------------------------|------|
| f <sub>LSE_ext</sub>                         | User external clock source frequency  | -                      | 32.768 | 1000                   | kHz  |
| $V_{LSEH}$                                   | OSC32_IN input pin high level voltage | 0.7 V <sub>DDIOx</sub> | -      | V <sub>DDIOx</sub>     | V    |
| V <sub>LSEL</sub>                            | OSC32_IN input pin low level voltage  | V <sub>SS</sub>        | -      | 0.3 V <sub>DDIOx</sub> | v    |
| t <sub>w(LSEH)</sub><br>t <sub>w(LSEL)</sub> | OSC32_IN high or low time             | 450                    | -      | -                      | 20   |
| t <sub>r(LSE)</sub><br>t <sub>f(LSE)</sub>   | OSC32_IN rise or fall time            | -                      | -      | 50                     | 115  |

Table 38. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.







#### Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

#### Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

#### **Electromagnetic Interference (EMI)**

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

| Symbol           | Parameter  | Conditions                                                                           | Monitored        | Max vs. [f <sub>HSE</sub> /f <sub>HCLK</sub> ] | Unit |  |
|------------------|------------|--------------------------------------------------------------------------------------|------------------|------------------------------------------------|------|--|
| Symbol           | i arameter | oonaniono                                                                            | frequency band   | 8/48 MHz                                       |      |  |
| S <sub>EMI</sub> | Peak level | $V_{DD}$ = 3.6 V, $T_A$ = 25 °C,<br>LQFP100 package<br>compliant with<br>IEC 61967-2 | 0.1 to 30 MHz    | -2                                             |      |  |
|                  |            |                                                                                      | 30 to 130 MHz    | 27                                             | dBµV |  |
|                  |            |                                                                                      | 130 MHz to 1 GHz | 17                                             |      |  |
|                  |            |                                                                                      | EMI Level        | 4                                              | -    |  |

#### Table 49. EMI characteristics

#### 6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

#### **Electrostatic discharge (ESD)**

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts  $\times$  (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.



#### Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

| OSPEEDRy<br>[1:0] value <sup>(1)</sup> | Symbol                  | Parameter                              | Conditions                                         | Min | Max                                              | Unit |    |  |
|----------------------------------------|-------------------------|----------------------------------------|----------------------------------------------------|-----|--------------------------------------------------|------|----|--|
|                                        | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup>       |                                                    | -   | 2                                                | MHz  |    |  |
|                                        | t <sub>f(IO)out</sub>   | Output fall time                       | $C_L = 50 \text{ pF}, V_{DDIOx} \ge 2 \text{ V}$   |     | 125                                              | ne   |    |  |
| x0                                     | t <sub>r(IO)out</sub>   | Output rise time                       |                                                    | -   | 125                                              | 115  |    |  |
|                                        | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup>       |                                                    | -   | 1                                                | MHz  |    |  |
|                                        | t <sub>f(IO)out</sub>   | Output fall time                       | C <sub>L</sub> = 50 pF, V <sub>DDIOx</sub> < 2 V   | -   | 125                                              | 00   |    |  |
|                                        | t <sub>r(IO)out</sub>   | Output rise time                       |                                                    | -   | 125                                              | 115  |    |  |
|                                        | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup>       |                                                    | -   | 10                                               | MHz  |    |  |
| 01                                     | t <sub>f(IO)out</sub>   | Output fall time                       | C <sub>L</sub> = 50 pF, V <sub>DDIOx</sub> ≥ 2 V   | -   | 25                                               | ns   |    |  |
|                                        | t <sub>r(IO)out</sub>   | Output rise time                       |                                                    | -   | 25                                               |      |    |  |
| 01                                     | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup>       |                                                    | -   | 4                                                | MHz  |    |  |
|                                        | t <sub>f(IO)out</sub>   | Output fall time                       | C <sub>L</sub> = 50 pF, V <sub>DDIOx</sub> < 2 V   | -   | 62.5                                             | ne   |    |  |
|                                        | t <sub>r(IO)out</sub>   | Output rise time                       |                                                    |     | 62.5                                             | 115  |    |  |
|                                        |                         |                                        | $C_L$ = 30 pF, $V_{DDIOx} \ge 2.7 V$               | -   | 50                                               |      |    |  |
|                                        | f <sub>max(IO)out</sub> | Maximum frequency <sup>(3)</sup>       | $C_L$ = 50 pF, $V_{DDIOx} \ge 2.7 V$               | -   | 30                                               |      |    |  |
|                                        |                         |                                        | $C_{L}$ = 50 pF, 2 V ≤ $V_{DDIOx}$ < 2.7 V         | -   | 20                                               |      |    |  |
|                                        |                         |                                        | C <sub>L</sub> = 50 pF, V <sub>DDIOx</sub> < 2 V   | -   | 10                                               |      |    |  |
|                                        |                         |                                        | C <sub>L</sub> = 30 pF, V <sub>DDIOx</sub> ≥ 2.7 V | -   | 5                                                |      |    |  |
| 11                                     | +                       | t <sub>f(IO)out</sub> Output fall time | $C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$ | -   | 8                                                | -    |    |  |
| 11                                     | ۲f(IO)out               |                                        | $C_L$ = 50 pF, 2 V ≤ $V_{DDIOx}$ < 2.7 V           | -   | 12                                               |      |    |  |
|                                        |                         |                                        | C <sub>L</sub> = 50 pF, V <sub>DDIOx</sub> < 2 V   | -   | 25                                               |      |    |  |
|                                        |                         |                                        | $C_L$ = 30 pF, $V_{DDIOx} \ge 2.7 V$               | -   | 5                                                | 115  |    |  |
|                                        | +                       | Output riss time                       | $C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$ | -   | 8                                                | 1    |    |  |
|                                        | ۲(IO)out                |                                        | $C_{L}$ = 50 pF, 2 V ≤ $V_{DDIOx}$ < 2.7 V         | -   | 12                                               |      |    |  |
|                                        |                         |                                        |                                                    |     | C <sub>L</sub> = 50 pF, V <sub>DDIOx</sub> < 2 V | -    | 25 |  |

Table 55. I/O AC characteristics<sup>(1)(2)</sup>



#### Equation 1: R<sub>AIN</sub> max formula

$$R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

| Table 58. R <sub>AIN</sub> max for f <sub>ADC</sub> = 14 MHz |                     |                                          |  |  |  |  |
|--------------------------------------------------------------|---------------------|------------------------------------------|--|--|--|--|
| T <sub>s</sub> (cycles)                                      | t <sub>S</sub> (μs) | R <sub>AIN</sub> max (kΩ) <sup>(1)</sup> |  |  |  |  |
| 1.5                                                          | 0.11                | 0.4                                      |  |  |  |  |
| 7.5                                                          | 0.54                | 5.9                                      |  |  |  |  |
| 13.5                                                         | 0.96                | 11.4                                     |  |  |  |  |
| 28.5                                                         | 2.04                | 25.2                                     |  |  |  |  |
| 41.5                                                         | 2.96                | 37.2                                     |  |  |  |  |
| 55.5                                                         | 3.96                | 50                                       |  |  |  |  |
| 71.5                                                         | 5.11                | NA                                       |  |  |  |  |
| 239.5                                                        | 17.1                | NA                                       |  |  |  |  |

1. Guaranteed by design, not tested in production.

### Table 59. ADC accuracy<sup>(1)(2)(3)</sup>

| Symbol | Parameter                    | Test conditions                                                                  | Тур  | Max <sup>(4)</sup> | Unit |
|--------|------------------------------|----------------------------------------------------------------------------------|------|--------------------|------|
| ET     | Total unadjusted error       |                                                                                  | ±1.3 | ±2                 |      |
| EO     | Offset error                 | $f_{PCLK} = 48 \text{ MHz},$                                                     | ±1   | ±1.5               |      |
| EG     | Gain error                   | $T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$                         | ±0.5 | ±1.5               | LSB  |
| ED     | Differential linearity error | $T_A = 25 \text{ °C}$                                                            | ±0.7 | ±1                 |      |
| EL     | Integral linearity error     |                                                                                  | ±0.8 | ±1.5               |      |
| ET     | Total unadjusted error       |                                                                                  | ±3.3 | ±4                 |      |
| EO     | Offset error                 | $f_{PCLK} = 48 \text{ MHz},$                                                     | ±1.9 | ±2.8               |      |
| EG     | Gain error                   | $V_{DDA} = 2.7 V \text{ to } 3.6 V$                                              | ±2.8 | ±3                 | LSB  |
| ED     | Differential linearity error | $T_A = -40$ to 105 °C                                                            | ±0.7 | ±1.3               |      |
| EL     | Integral linearity error     |                                                                                  | ±1.2 | ±1.7               |      |
| ET     | Total unadjusted error       |                                                                                  | ±3.3 | ±4                 |      |
| EO     | Offset error                 | $f_{PCLK} = 48 \text{ MHz},$                                                     | ±1.9 | ±2.8               |      |
| EG     | Gain error                   | $T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$<br>VDA = 2.4 V to 3.6 V | ±2.8 | ±3                 | LSB  |
| ED     | Differential linearity error | T <sub>A</sub> = 25 °C                                                           | ±0.7 | ±1.3               |      |
| EL     | Integral linearity error     |                                                                                  | ±1.2 | ±1.7               |      |

1. ADC DC accuracy values are measured after internal calibration.



| Symbol                                 | Parameter             | Conditio                                 | Min <sup>(1)</sup>    | Тур | Max <sup>(1)</sup> | Unit |    |
|----------------------------------------|-----------------------|------------------------------------------|-----------------------|-----|--------------------|------|----|
| V <sub>hys</sub> Comparator hysteresis |                       | No hysteresis<br>(COMPxHYST[1:0]=00)     | -                     | -   | 0                  | -    |    |
|                                        | Low bystorosis        | High speed mode                          | 3                     |     | 13                 |      |    |
|                                        | (COMPxHYST[1:0]=01)   | All other power modes                    | 5                     | 8   | 10                 |      |    |
|                                        | Comparator hysteresis | Medium hysteresis<br>(COMPxHYST[1:0]=10) | High speed mode       | 7   |                    | 26   | mV |
|                                        |                       |                                          | All other power modes | 9   | 15                 | 19   |    |
|                                        |                       | High hysteresis<br>(COMPxHYST[1:0]=11)   | High speed mode       | 18  |                    | 49   |    |
|                                        | H<br>((               |                                          | All other power modes | 19  | 31                 | 40   |    |

1. Data based on characterization results, not tested in production.

2. For more details and conditions see Figure 28: Maximum  $V_{REFINT}$  scaler startup time from power down.







| Prescaler divider | PR[2:0] bits | Min timeout RL[11:0]=<br>0x000 | Max timeout RL[11:0]=<br>0xFFF | Unit |  |
|-------------------|--------------|--------------------------------|--------------------------------|------|--|
| /4                | 0            | 0.1                            | 409.6                          |      |  |
| /8                | 1            | 0.2                            | 819.2                          |      |  |
| /16               | 2            | 0.4                            | 1638.4                         |      |  |
| /32               | 3            | 0.8                            | 3276.8                         | ms   |  |
| /64               | 4            | 1.6                            | 6553.6                         |      |  |
| /128              | 5            | 3.2                            | 13107.2                        |      |  |
| /256              | 6 or 7       | 6.4                            | 26214.4                        |      |  |

Table 65. IWDG min/max timeout period at 40 kHz (LSI)<sup>(1)</sup>

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

| Prescaler | WDGTB | Min timeout value | Max timeout value | Unit |
|-----------|-------|-------------------|-------------------|------|
| 1         | 0     | 0.0853            | 5.4613            |      |
| 2         | 1     | 0.1706            | 10.9226           | me   |
| 4         | 2     | 0.3413            | 0.3413 21.8453    |      |
| 8         | 3     | 0.6826            | 43.6906           |      |

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

#### 6.3.22 Communication interfaces

#### I<sup>2</sup>C interface characteristics

The  $I^2C$  interface meets the timings requirements of the  $I^2C$ -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I<sup>2</sup>C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and  $V_{DDIOx}$  is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I<sup>2</sup>C I/Os characteristics.

All I<sup>2</sup>C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:



| Symbol          | Parameter                                                        | Min               | Max                | Unit |
|-----------------|------------------------------------------------------------------|-------------------|--------------------|------|
| t <sub>AF</sub> | Maximum width of spikes that are suppressed by the analog filter | 50 <sup>(2)</sup> | 260 <sup>(3)</sup> | ns   |

Table 67. I<sup>2</sup>C analog filter characteristics<sup>(1)</sup>

1. Guaranteed by design, not tested in production.

- 2. Spikes with widths below  $t_{AF(min)}$  are filtered.
- 3. Spikes with widths above  $t_{AF(max)}$  are not filtered

## SPI/I<sup>2</sup>S characteristics

Unless otherwise specified, the parameters given in *Table 68* for SPI or in *Table 69* for  $I^2S$  are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and supply voltage conditions summarized in *Table 24: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I<sup>2</sup>S).

| Symbol                                       | Parameter                        | Conditions                                            | Min         | Max         | Unit |
|----------------------------------------------|----------------------------------|-------------------------------------------------------|-------------|-------------|------|
| f <sub>SCK</sub>                             | SPI clock froguopov              | Master mode                                           | -           | 18          |      |
| 1/t <sub>c(SCK)</sub>                        | SFT Clock frequency              | Slave mode                                            | -           | 18          |      |
| t <sub>r(SCK)</sub><br>t <sub>f(SCK)</sub>   | SPI clock rise and fall time     | Capacitive load: C = 15 pF                            | -           | 6           | ns   |
| t <sub>su(NSS)</sub>                         | NSS setup time                   | Slave mode                                            | 4Tpclk      | -           |      |
| t <sub>h(NSS)</sub>                          | NSS hold time                    | Slave mode                                            | 2Tpclk + 10 | -           |      |
| t <sub>w(SCKH)</sub><br>t <sub>w(SCKL)</sub> | SCK high and low time            | Master mode, f <sub>PCLK</sub> = 36 MHz,<br>presc = 4 | Tpclk/2 -2  | Tpclk/2 + 1 |      |
| t <sub>su(MI)</sub>                          | Data input setup time            | Master mode                                           | 4           | -           |      |
| t <sub>su(SI)</sub>                          |                                  | Slave mode                                            | 5           | -           |      |
| t <sub>h(MI)</sub>                           | Data input hold time             | Master mode                                           | 4           | -           |      |
| t <sub>h(SI)</sub>                           |                                  | Slave mode                                            | 5           | -           | ns   |
| t <sub>a(SO)</sub> <sup>(2)</sup>            | Data output access time          | Slave mode, f <sub>PCLK</sub> = 20 MHz                | 0           | 3Tpclk      |      |
| t <sub>dis(SO)</sub> <sup>(3)</sup>          | Data output disable time         | Slave mode                                            | 0           | 18          |      |
| t <sub>v(SO)</sub>                           | Data output valid time           | Slave mode (after enable edge)                        | -           | 22.5        |      |
| t <sub>v(MO)</sub>                           | Data output valid time           | Master mode (after enable edge)                       | -           | 6           |      |
| t <sub>h(SO)</sub>                           | Data output hold time            | Slave mode (after enable edge)                        | 11.5        | -           |      |
| t <sub>h(MO)</sub>                           |                                  | Master mode (after enable edge)                       | 2           | -           |      |
| DuCy(SCK)                                    | SPI slave input clock duty cycle | Slave mode                                            | 25          | 75          | %    |

| Table 68. SPI characteristics <sup>(</sup> |
|--------------------------------------------|
|--------------------------------------------|

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z



## 7.4 WLCSP49 package information

WLCSP49 is a 49-ball, 3.277 x 3.109 mm, 0.4 mm pitch wafer-level chip-scale package.



Figure 43. WLCSP49 package outline

1. Drawing is not to scale.



## 7.6 UFQFPN48 package information

UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.





1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.



#### **Device marking**

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.



#### Figure 50. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.



## 8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

| Example:                                           | STM32        | F | 071 | R | В | T | 6 x |
|----------------------------------------------------|--------------|---|-----|---|---|---|-----|
| Device family                                      |              |   |     |   |   |   |     |
| STM32 = ARM-based 32-bit microcontroller           |              |   |     |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
| Product type                                       |              |   |     |   |   |   |     |
| F = General-purpose                                |              |   |     |   |   |   |     |
| Sub-family                                         |              |   |     |   |   |   |     |
| 071 = STM32F071xx                                  |              |   | ]   |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
| Pin count                                          |              |   |     |   |   |   |     |
| C = 48/49 pins                                     |              |   |     |   |   |   |     |
| R = 64 pins                                        |              |   |     |   |   |   |     |
| V = 100 pins                                       |              |   |     |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
| User code memory size                              |              |   |     |   |   |   |     |
| 8 = 64 Kbyte                                       |              |   |     |   |   |   |     |
| B = 128 Kbyte                                      |              |   |     |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
| Package                                            |              |   |     |   |   |   |     |
| H = UFBGA                                          |              |   |     |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
| Y = WLCSP                                          |              |   |     |   |   |   |     |
| Temperature range                                  |              |   |     |   |   |   |     |
| 6 = -40 to 85 °C                                   |              |   |     |   |   |   |     |
| 7 = –40 to 105 °C                                  |              |   |     |   |   |   |     |
|                                                    |              |   |     |   |   |   |     |
| Options                                            |              |   |     |   |   |   |     |
| xxx = code ID of programmed parts (includes parts) | acking type) |   |     |   |   |   |     |

xxx = code ID of programmed parts (includes packing type)TR = tape and reel packingblank = tray packing



| Date        | Revision                     | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date        | Revision<br>3<br>(continued) | Changes         Section 6: Electrical characteristics:         Table 21: Voltage characteristics and Table 22: Current characteristics updated         Table 21: Voltage characteristics and Table 22: Current characteristics updated         Table 24: General operating conditions - added footnote for V <sub>IN</sub> of TTa I/O         Table 28: Embedded internal reference voltage: added tsTART parameter and removal of -40°-to-85° condition for VREFINT and associated note         Table 32: Typical and maximum current consumption from the V <sub>BAT</sub> supply - added max values         Merger of two tables into Table 33: Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal         Table 35: Peripheral current consumption - APB peripheral total current consumption corrected         Table 40: LSE oscillator characteristics (fLSE = 32.768 kHz)         - V <sub>DD</sub> replaced with V <sub>DDIOX</sub> Table 41: HSI oscillator characteristics and Figure 18: HSI oscillator accuracy characteristics and Figure 18: HSI oscillator accuracy characteristics: removed V <sub>prog</sub> Table 42: HSI14 oscillator characteristics: removed V <sub>prog</sub> Table 45: Flash memory characteristics - note removed         Table 46: Flash memory characteristics - note removed         Table 45: HSI14 oscillator characteristics: removed V <sub>prog</sub> Table 46: Flash memory characteristics - |
|             |                              | <ul> <li>Table 69: I<sup>2</sup>S characteristics: table reorganized</li> <li>Section 7: Package information:         <ul> <li>information on packages generally updated</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             |                              | Section 8: Ordering information:     added tray packing to options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14-Jun-2016 | 4                            | <ul> <li>Added STM32F071C8 part number</li> <li>Section 6: Electrical characteristics:</li> <li>V<sub>REFINT</sub> values updated in <i>Table 28: Embedded internal</i> reference voltage</li> <li>R<sub>LOAD</sub> - added value for connection to V<sub>DD</sub></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Table 79. Document revision history | (continued) |
|-------------------------------------|-------------|
|-------------------------------------|-------------|

