

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	49-UFBGA, WLCSP
Supplier Device Package	49-WLCSP
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071cby6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	Recommended footprint for UFQFPN48 package	113
Figure 50.	UFQFPN48 package marking example	114
Figure 51.	LQFP64 P _D max versus T _A	117

Additionally, also the internal RC 48 MHz oscillator can be selected for system clock or PLL input source. This oscillator can be automatically fine-trimmed by the means of the CRS peripheral using the external synchronization.

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 7-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of $Cortex^{\mathbb{R}}$ -M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F071x8/xB devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		Up Capacitive sensing signal name Pin name TSC_G5_IO1 PB TSC_G5_IO2 PB TSC_G5_IO3 PB TSC_G5_IO4 PB TSC_G6_IO1 PB' TSC_G6_IO2 PB' TSC_G6_IO2 PB' TSC_G6_IO3 PB' TSC_G6_IO3 PB' TSC_G6_IO4 PB' TSC_G6_IO3 PB' TSC_G6_IO4 PB' TSC_G6_IO4 PB' TSC_G7_IO1 PE TSC_G7_IO2 PE TSC_G7_IO3 PE TSC_G8_IO1 PD' TSC_G8_IO3 PD' TSC_G8_IO4 PD'	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
1	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	signal name name TSC_G5_IO1 PB3 TSC_G5_IO2 PB4 TSC_G5_IO3 PB6 TSC_G5_IO4 PB7 TSC_G6_IO1 PB11 TSC_G6_IO2 PB12 TSC_G6_IO3 PB13 TSC_G6_IO4 PB14 TSC_G7_IO1 PE2 TSC_G7_IO2 PE3 TSC_G7_IO4 PE5 TSC_G8_IO1 PD12
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2 -	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5	5	TSC_G7_IO1	PE2
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PE3
5	TSC_G3_IO3	PB1		TSC_G7_IO3	PE4
	TSC_G3_IO4	PB2		TSC_G7_IO4	signal name name SC_G5_IO1 PB3 SC_G5_IO2 PB4 SC_G5_IO3 PB6 SC_G5_IO4 PB7 SC_G6_IO1 PB11 SC_G6_IO2 PB12 SC_G6_IO3 PB13 SC_G6_IO4 PB14 SC_G6_IO4 PB14 SC_G7_IO1 PE2 SC_G7_IO3 PE4 SC_G7_IO4 PE5 SC_G8_IO1 PD12 SC_G8_IO2 PD13 SC_G8_IO3 PD14
	TSC_G4_IO1	PA9		TSC_G8_IO1	PD12
1	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PD13
-	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PD14
	TSC_G4_IO4	PA12		TSC_G8_IO4	PD15

Table 5. Capacitive sensing GPIOs available on STM32F071x8/xB devices

DocID025451 Rev 6

3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F071x8/xB devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F071x8/xB devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

4 Pinouts and pin descriptions

Figure 3. UFBGA100 package pinout

Na	me	Abbreviation	Definition					
Pin r	name	Unless otherwise safter reset is the safter re	specified in brackets below the pin name, the pin function during and ame as the actual pin name					
		S	Supply pin					
Pin	type	I	Input-only pin					
		I/O	Input / output pin					
		FT	5 V-tolerant I/O					
		FTf	FTf 5 V-tolerant I/O, FM+ capable					
I/O atr	uoturo	TTa	TTa 3.3 V-tolerant I/O directly connected to ADC					
1/O Sti	ucture	TC	Standard 3.3 V I/O					
		В	Dedicated BOOT0 pin					
		RST	Bidirectional reset pin with embedded weak pull-up resistor					
No	tes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.						
Pin	Alternate functions	Functions selected	through GPIOx_AFR registers					
functions	Additional functions	Functions directly	selected/enabled through peripheral registers					

Table 12.	Legend/abbreviations used in the page of t	pinout table

Table 13. STM32F071x8/xB pin definitions

	Pin	numt	pers						Pin functior	IS
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
B2	1	-	-	-	PE2	I/O	FT	-	TSC_G7_IO1, TIM3_ETR	-
A1	2	-	-	-	PE3	I/O	FT	-	TSC_G7_IO2, TIM3_CH1	-
B1	3	-	-	-	PE4	I/O	FT	-	TSC_G7_IO3, TIM3_CH2	-
C2	4	-	-	-	PE5	I/O	FT	-	TSC_G7_IO4, TIM3_CH3	-
D2	5	-	-	-	PE6	I/O	FT	-	TIM3_CH4	WKUP3, RTC_TAMP3
E2	6	1	1	B7	VBAT	S	-	I	Backup power s	upply
C1	7	2	2	D5	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT

6.1.6 Power supply scheme

Figure 12. Power supply scheme

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

6.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in to *Table 31* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

				A	ll periphe	rals ena	bled	All peripherals disabled				
lodm'	ameto	Conditions	f _{HCLK}		N	lax @ T ₄	(1)	Тур	м	Unit		
Sy	Para			Тур	25 °C	85 °C	105 °C		25 °C	85 °C	105 °C	
		HSI48	48 MHz	24.3	26.9	27.2	27.9	13.1	14.8	14.9	15.5	
	ory	HSE bypass, PLL on	48 MHz	24.1	26.8	27.0	27.7	13.0	14.6	14.8	15.4	
	ode, nem		32 MHz	16.0	18.3	18.6	19.2	8.76	9.56	9.73	10.6	
	n n ash r		24 MHz	12.3	13.7	14.3	14.7	7.36	7.94	8.37	8.81	
	n Rl	HSE bypass,	8 MHz	4.52	5.25	5.28	5.61	2.89	3.17	3.26	3.34	
I _{DD}	ent i I fror	PLL off	1 MHz	1.25	1.39	1.58	1.87	0.93	1.06	1.15	1.34	mA
	curr uting		48 MHz	24.1	27.1	27.6	27.8	12.9	14.7	14.9	15.5	
	Supply de execu	HSI clock, PLL on	32 MHz	16.1	18.2	18.9	19.3	8.82	9.69	9.83	10.7	
		_	24 MHz	12.4	14.0	14.4	14.8	7.31	7.92	8.34	8.75	
	00	HSI clock, PLL off	8 MHz	4.52	5.25	5.35	5.61	2.87	3.16	3.25	3.33	

	ŗ			Α	ll periphe	rals ena	bled	All peripherals disabled				
Iodm	amete	Conditions	f _{HCLK}		N	lax @ T _A	(1)		М	ax @ T _A	(1)	Unit
ŝ	Para			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	23.1	25.4	25.8	26.6	12.8	13.5	13.7	13.9	
			48 MHz	23.0	25.3 ⁽²⁾	25.7	26.5 ⁽²⁾	12.6	13.3 ⁽²⁾	13.5	13.8 ⁽²⁾	
	ode, AM	HSE bypass, PLL on	32 MHz	15.4	17.3	17.8	18.3	7.96	8.92	9.17	9.73	
		24 MHz	11.4	12.9	13.5	13.7	6.48	8.04	8.23	8.41		
	n Ru g fro	HSE bypass,	8 MHz	4.21	4.6	4.89	5.25	2.07	2.3	2.35	2.94	
pply current i	ent i uting	PLL off	1 MHz	0.78	0.9	0.92	1.15	0.36	0.48	0.59	0.82	
	curr		48 MHz	23.1	24.5	25.0	25.2	12.6	13.7	13.9	14.0	
	pply ode	PLL on	32 MHz	15.4	17.4	17.7	18.2	8.05	8.85	9.16	9.94	
	Su		24 MHz	11.5	13.0	13.6	13.9	6.49	8.06	8.21	8.47	
		HSI clock, PLL off	8 MHz	4.34	4.75	5.03	5.41	2.11	2.36	2.38	2.98	m۸
DD		HSI48	48 MHz	15.1	16.6	16.8	17.5	3.08	3.43	3.56	3.61	
	0		48 MHz	15.0	16.5 ⁽²⁾	16.7	17.3 ⁽²⁾	2.93	3.28 ⁽²⁾	3.41	3.46 ⁽²⁾	
	pode	HSE bypass, PLL on	32 MHz	9.9	11.4	11.6	11.9	2.0	2.24	2.32	2.49	
	sep r		24 MHz	7.43	8.17	8.71	8.82	1.63	1.82	1.88	1.9	
	N SIE	HSE bypass,	8 MHz	2.83	3.09	3.26	3.66	0.76	0.88	0.91	0.93	
	ent ir	PLL off	1 MHz	0.42	0.54	0.55	0.67	0.28	0.39	0.41	0.43	
	curre		48 MHz	15.0	17.2	17.3	17.9	3.04	3.37	3.41	3.46	
	ply	HSI clock, PLL on	32 MHz	9.93	11.3	11.6	11.7	2.11	2.35	2.44	2.65	
	Sup		24 MHz	7.53	8.45	8.87	8.95	1.64	1.83	1.9	1.93	
		HSI clock, PLL off	8 MHz	2.95	3.24	3.41	3.8	0.8	0.92	0.94	0.97	

Table 29. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

<u>,</u>												
					V _{DDA}	= 2.4 V	,	V _{DDA} = 3.6 V				
Symbol	Para- meter	Conditions (1)	f _{HCLK}	Tun	Max @ T _A ⁽²⁾			Tun	м	Unit		
				ЧИ	25 °C	85 °C	105 °C	176	25 °C	85 °C	105 °C	
		HSI48	48 MHz	311	326	334	343	322	337	345	354	
	Supply current in Run or Sleep mode.	HSE	48 MHz	152	170 ⁽³⁾	178	182 ⁽³⁾	165	184 ⁽³⁾	196	200 ⁽³⁾	
		rent in un or	32 MHz	105	121	126	128	113	129	136	138	
			24 MHz	81.9	95.9	99.5	101	88.7	102	107	108	
		HSE	8 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5	
I _{DDA}	code executing	bypass, PLL off	1 MHz	2.7	3.8	4.3	4.6	3.6	4.7	5.2	5.5	μA
	from		48 MHz	223	244	255	260	245	265	279	284	
	memory	HSI clock, PLL on	32 MHz	176	195	203	206	193	212	221	224	
	or RAM		24 MHz	154	171	178	181	168	185	192	195	
		HSI clock, PLL off	8 MHz	74.2	83.4	86.4	87.3	83.4	92.5	95.3	96.6	

Table 30. Typical and maximum current consumption from the $\mathrm{V}_{\mathrm{DDA}}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent from the frequency.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Sum	Poro				Тур 🤇	@V _{DD} (V _{DD} = V						
bol	meter		Conditions		2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in	Reg mod osc	gulator in run de, all illators OFF	15.4	15.5	15.6	15.7	15.8	15.9	23 ⁽²⁾	49	68 ⁽²⁾	
I _{DD}	Stop mode	Reg pow osc	gulator in low- ver mode, all illators OFF	3.2	3.3	3.4	3.5	3.6	3.7	8 ⁽²⁾	33	51 ⁽²⁾	
	Supply current in	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.3	1.4	-	-	-	
	Standby mode	LSI OFI	OFF and IWDG =	0.6	0.7	0.9	0.9	1.0	1.1	2.1 ⁽²⁾	2.6	3.1 ⁽²⁾	
	Supply current in Stop mode	z	Regulator in run mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	
		DA monitoring C	Regulator in low-power mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	μΑ
	Supply current in	V _{DC}	LSI ON and IWDG ON	2.5	2.7	2.8	3.0	3.2	3.5	-	-	-	
	Standby mode		LSI OFF and IWDG OFF	1.9	2.1	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	
IDDA	Supply	Ц.	Regulator in run mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
	Stop mode	A monitoring OF	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.9	2.0	2.1	2.2	-	-	-	
	Standby mode		LSI OFF and IWDG OFF	1.2	1.2	1.2	1.3	1.3	1.4	-	-	-	

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Symbol	Devementer	4	Typical con Run i	sumption in node	Typical con Sleep	11:1:4	
Symbol	Farameter	HCLK	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	23.5	13.5	14.6	3.5	
		36 MHz	18.3	10.5	11.1	2.9	
		32 MHz	16.0	9.6	10.0	2.7	
	Current	24 MHz	12.3	7.6	7.8	2.2	
la a	consumption	16 MHz	8.6	5.3	5.5	1.7	mΔ
'DD	from V _{DD}	8 MHz	4.8	3.1	3.1	1.2	mA
	заррну	4 MHz	3.1	2.1	2.2	1.1	
		2 MHz	2.1	1.6	1.6	1.0	
		1 MHz	1.6	1.3	1.4	1.0	
		500 kHz	1.3	1.2	1.2	1.0	
		48 MHz		16	3.3		
		36 MHz		124	4.3		
		32 MHz		11 [.]	1.9		
	Current	24 MHz		87	'.1		
las i	consumption	16 MHz		62	2.5		ıιΔ
'DDA	from V _{DDA}	8 MHz		2.	.5		- μΑ -
	Suppry	4 MHz		2.	.5		
		2 MHz		2.	.5		
		1 MHz		2.	.5		
		500 kHz		2.	.5		1

Table 33.	Typical	current	consumptio	on, code	exec	uting	from	Flash	memory	ļ,
		run	ning from H	ISE 8 MH	Iz cry	ystal				

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 53: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

DocID025451 Rev 6

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 36* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Perameter	Conditions	Typ @Vdd = Vdda						Unit
	Farameter	Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	IVIAX	Unit
t _{WUSTOP} Wakeup from Stop mode	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5		
	mode	Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
t _{wustandby}	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μο
t _{WUSLEEP}	Wakeup from Sleep mode	-		4 S)	/SCLK cy	cles		-	

 Table 36. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 14: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	113

Table	37	High-sr	need e	xternal	liser	clock	characteristics
Table	57.	ingn-sp	iccu c	ALCITIAL	usei	CIUCK	character istics

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
f _{HSI}	Frequency	-	-	8	-	MHz				
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%				
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%				
		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾					
	Accuracy of the HSI oscillator	T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾					
100		T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	0/				
ACCHSI		$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾	70				
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾					
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1					
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs				
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA				

Table 41. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

Figure 18. HSI oscillator accuracy characterization results for soldered parts

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	125	ne
vO	t _{r(IO)out}	Output rise time			125	
×0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	125	00
	t _{r(IO)out}	Output rise time		-	125	ns
01	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	25	ns
	t _{r(IO)out}	Output rise time		-	25	
01	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	62.5	20
	t _{r(IO)out}	Output rise time		-	62.5	115
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	MHz
	f	Maximum frequency ⁽³⁾	C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	30	
	'max(IO)out		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	20	
			C _L = 50 pF, V _{DDIOx} < 2 V	-	10	
			C _L = 30 pF, V _{DDIOx} ≥ 2.7 V	-	5	
11	+	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	
11	۲f(IO)out		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12	
			C _L = 50 pF, V _{DDIOx} < 2 V	25	ne	
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	ns
	+	Output riss time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	
	۲(IO)out		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12	
			C _L = 50 pF, V _{DDIOx} < 2 V	-	25	

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

6.3.17 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
D (1)	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
►LOAD` ′	ON	25	-	-	kΩ	Load connected to V _{DDA}
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$ (0xEAB) at $V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	I	-	V _{DDA} – 1LSB	V	excursion of the DAC.
I (1)	DAC DC current	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA'	mode ⁽²⁾	I	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	I	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{DDA} = 3.6 V
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$

Table	60.	DAC	characteristics
Table	00.	DAO	character istics

7.3 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 40. LQFP64 package outline

1. Drawing is not to scale.

Table 73. LQFP64	package	mechanical	data
------------------	---------	------------	------

Symbol		millimeters		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	

Cumhal		millimeters		inches ⁽¹⁾			
Зупрог	Min	Тур	Max	Min	Тур	Max	
А	0.525	0.555	0.585	0.0207	0.0219	0.0230	
A1	-	0.175	-	-	0.0069	-	
A2	-	0.380	-	-	0.0150	-	
A3 ⁽²⁾	-	0.025	-	-	0.0010	-	
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110	
D	3.242	3.277	3.312	0.1276	0.1290	0.1304	
E	3.074	3.109	3.144	0.1210	0.1224	0.1238	
е	-	0.400	-	-	0.0157	-	
e1	-	2.400	-	-	0.0945	-	
e2	-	2.400	-	-	0.0945	-	
F	-	0.4385	-	-	0.0173	-	
G	-	0.3545	-	-	0.0140	-	
aaa	-	-	0.100	-	-	0.0039	
bbb	-	-	0.100	-	-	0.0039	
ССС	-	-	0.100	-	-	0.0039	
ddd	-	-	0.050	-	-	0.0020	
eee	-	-	0.050	-	-	0.0020	

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

7.6 UFQFPN48 package information

UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

