

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071rbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	Flash memory endurance and data retention
Table 48.	EMS characteristics
Table 49.	EMI characteristics
Table 50.	ESD absolute maximum ratings
Table 51.	Electrical sensitivities
Table 52.	I/O current injection susceptibility
Table 53.	I/O static characteristics
Table 54.	Output voltage characteristics
Table 55.	I/O AC characteristics
Table 56.	NRST pin characteristics
Table 57.	ADC characteristics
Table 58.	R_{AIN} max for f_{ADC} = 14 MHz
Table 59.	ADC accuracy
Table 60.	DAC characteristics
Table 61.	Comparator characteristics
Table 62.	TS characteristics
Table 63.	V _{BAT} monitoring characteristics
Table 64.	TIMx characteristics
Table 65.	IWDG min/max timeout period at 40 kHz (LSI)
Table 66.	WWDG min/max timeout value at 48 MHz (PCLK)
Table 67.	I ² C analog filter characteristics
Table 68.	SPI characteristics
Table 69.	I ² S characteristics
Table 70.	UFBGA100 package mechanical data97
Table 71.	UFBGA100 recommended PCB design rules
Table 72.	LQPF100 package mechanical data100
Table 73.	LQFP64 package mechanical data103
Table 74.	WLCSP49 package mechanical data
Table 75.	LQFP48 package mechanical data110
Table 76.	UFQFPN48 package mechanical data 113
Table 77.	Package thermal characteristics
Table 78.	Ordering information scheme
Table 79.	Document revision history

List of figures

Figure 1.	Block diagram	. 12
Figure 2.	Clock tree	. 16
Figure 3.	UFBGA100 package pinout	. 28
Figure 4.	LQFP100 package pinout	. 29
Figure 5.	LQFP64 package pinout	. 30
Figure 6.	LQFP48 package pinout	. 30
Figure 7.	UFQFPN48 package pinout	. 31
Figure 8.	WLCSP49 package pinout	. 31
Figure 9.	STM32F071xB memory map	. 43
Figure 10.	Pin loading conditions.	. 46
Figure 11.	Pin input voltage	. 46
Figure 12.	Power supply scheme	. 47
Figure 13.	Current consumption measurement scheme	. 48
Figure 14.	High-speed external clock source AC timing diagram	. 65
Figure 15.	Low-speed external clock source AC timing diagram	. 65
Figure 16.	Typical application with an 8 MHz crystal	. 67
Figure 17.	Typical application with a 32.768 kHz crystal	. 68
Figure 18.	HSI oscillator accuracy characterization results for soldered parts	. 69
Figure 19.	HSI14 oscillator accuracy characterization results	. 70
Figure 20.	HSI48 oscillator accuracy characterization results	. 71
Figure 21.	TC and TTa I/O input characteristics	. 78
Figure 22.	Five volt tolerant (FT and FTf) I/O input characteristics	. 78
Figure 23.	I/O AC characteristics definition	. 81
Figure 24.	Recommended NRST pin protection	. 82
Figure 25.	ADC accuracy characteristics	. 85
Figure 26.	Typical connection diagram using the ADC	. 85
Figure 27.	12-bit buffered / non-buffered DAC	. 87
Figure 28.	Maximum V _{REFINT} scaler startup time from power down	. 89
Figure 29.	SPI timing diagram - slave mode and CPHA = 0	. 93
Figure 30.	SPI timing diagram - slave mode and CPHA = 1	. 93
Figure 31.	SPI timing diagram - master mode	. 94
Figure 32.	I ² S slave timing diagram (Philips protocol)	. 95
Figure 33.	I ² S master timing diagram (Philips protocol)	. 96
Figure 34.	UFBGA100 package outline	. 97
Figure 35.	Recommended footprint for UFBGA100 package	. 98
Figure 36.	UFBGA100 package marking example	. 99
Figure 37.	LQFP100 package outline	100
Figure 38.	Recommended footprint for LQFP100 package	101
Figure 39.	LQFP100 package marking example	102
Figure 40.	LQFP64 package outline	103
Figure 41.	Recommended footprint for LQFP64 package	104
Figure 42.	LQFP64 package marking example	105
Figure 43.	WLCSP49 package outline	106
Figure 44.	WLCSP49 package marking example	108
Figure 45.	LQFP48 package outline	109
Figure 46.	Recommended footprint for LQFP48 package	110
Figure 47.	LQFP48 package marking example	111
Figure 48.	UFQFPN48 package outline	112

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F071x8/xB microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.14.3 Basic timers TIM6 and TIM7

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

3.15 Real-time clock (RTC) and backup registers

The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.

Figure 4. LQFP100 package pinout

	Pin	numt	pers						Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
D1	8	3	3	C7	PC14-OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN	
E1	9	4	4	C6	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT	
F2	10	-	-	-	PF9	I/O	FT	-	TIM15_CH1	-	
G2	11	-	-	-	PF10	I/O	FT	-	TIM15_CH2	-	
F1	12	5	5	D7	PF0-OSC_IN (PF0)	I/O	FT	-	CRS_SYNC	OSC_IN	
G1	13	6	6	D6	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT	
H2	14	7	7	E7	NRST	I/O	RST	-	Device reset input / internal reset outpu (active low)		
H1	15	8	-	-	PC0	I/O	TTa	-	EVENTOUT	ADC_IN10	
J2	16	9	-	-	PC1	I/O	ТТа	-	EVENTOUT	ADC_IN11	
J3	17	10	-	-	PC2	I/O	TTa	-	SPI2_MISO, I2S2_MCK, EVENTOUT	ADC_IN12	
K2	18	11	-	-	PC3	I/O	TTa	-	SPI2_MOSI, I2S2_SD, EVENTOUT	ADC_IN13	
J1	19	-	-	-	PF2	I/O	FT	-	EVENTOUT	WKUP8	
K1	20	12	8	E6	VSSA	S	-	-	Analog groui	nd	
M1	21	13	9	F7	VDDA	S	-	-	Analog power s	upply	
L1	22	-	-	-	PF3	I/O	FT	-	EVENTOUT		
L2	23	14	10	F6	PA0	I/O	TTa	-	USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX	RTC_ TAMP2, WKUP1, COMP1_OUT, ADC_IN0, COMP1_INM6	
M2	24	15	11	G7	PA1	I/O	TTa	-	USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP	

Table 13. STM32F0/1x8/xB bin definitions (continued	Table 13.	STM32F071x8/xB	pin definitions	(continued)
---	-----------	----------------	-----------------	-------------

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 6C00 - 0x4000 6FFF	1 KB	CRS
	0x4000 5C00 - 0x4000 6BFF	4 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 5000 - 0x4000 53FF	1 KB	Reserved
	0x4000 4C00 - 0x4000 4FFF	1 KB	USART4
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
APB	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1800 - 0x4000 1FFF	2 KB	Reserved
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 20. STM32F071x8/xB peripheral registe	r boundary ac	ddresses (continued)

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit	
Gymbol		Conditions	frequency band	8/48 MHz	onic	
S _{EMI}	Peak level	V_{DD} = 3.6 V, T_A = 25 °C, LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	-2		
			30 to 130 MHz	27	dBµV	
			130 MHz to 1 GHz	17		
			EMI Level	4	-	

Table 49. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Parameter	Conditions	Min Typ		Мах	Unit	
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution			823	kHz	
TRIG		12-bit resolution	-	-	17	1/f _{ADC}	
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V	
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 58</i> for details	-	-	50	kΩ	
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ	
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF	
+ (2)(3)	Calibration time	f _{ADC} = 14 MHz		5.9		μs	
'CAL'		-		83		1/f _{ADC}	
W _{LATENCY} ⁽²⁾⁽⁴⁾		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-	
	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle	
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle	
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$	0.196			μs	
		$f_{ADC} = f_{PCLK}/2$	5.5			1/f _{PCLK}	
t _{latr} (2)	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$	0.219			μs	
		$f_{ADC} = f_{PCLK}/4$	10.5			1/f _{PCLK}	
		f _{ADC} = f _{HSI14} = 14 MHz	0.179	-	0.250	μs	
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}	
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs	
LS, ,		-	1.5	-	239.5	1/f _{ADC}	
t _{STAB} ⁽²⁾	Stabilization time	-		14		1/f _{ADC}	
+ (2)	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs	
t _{CONV} ⁽²⁾	(including sampling time)	12-bit resolution	14 to 252 (t _S fo successive ap	or samp proxima	14 to 252 (t _S for sampling +12.5 for successive approximation)		

 Table 57. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.

6.3.17 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
D (1)	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
►LOAD` ′	ON	25	-	-	kΩ	Load connected to V _{DDA}
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$ (0xEAB) at $V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	I	-	V _{DDA} – 1LSB	V	excursion of the DAC.
I (1)	DAC DC current	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA'	mode ⁽²⁾	I	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	I	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{DDA} = 3.6 V
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$

Table	60.	DAC	characte	ristics
Table	00.	DAO	characte	1131163

Symbol	Parameter	Min	Тур	Мах	Unit	Comments
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF

Table 60. DAC characteristics (c	continued)
----------------------------------	------------

1. Guaranteed by design, not tested in production.

2. The DAC is in "quiescent mode" when it keeps the value steady on the output so no dynamic consumption is involved.

3. Data based on characterization results, not tested in production.

Figure 27. 12-bit buffered / non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 1.

6.3.18 Comparator characteristics

Symbol	Parameter	Conditio	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-		V_{DD}	-	3.6	V
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	-	
V _{SC}	V _{REFINT} scaler offset voltage	-	-	±5	±10	mV	
ts sc	V _{REFINT} scaler startup	First V _{REFINT} scaler activation after device power on		-	-	1000 (2)	ms
	time from power down	Next activations		-	-	0.2	
t _{START}	Comparator startup time	Startup time to reach pro specification	-	-	60	μs	
		Ultra-low power mode		-	2	4.5	
	Propagation delay for 200 mV step with 100 mV overdrive	Low power mode			0.7	1.5	μs
		Medium power mode			0.3	0.6	
		High speed mode	V _{DDA} ≥ 2.7 V	-	50	100	ns
t_			V _{DDA} < 2.7 V	-	100	240	
۲D	Propagation delay for full range step with	Ultra-low power mode		-	2	7	
		Low power mode	-	0.7	2.1	μs	
		Medium power mode		-	0.3		1.2
	100 mV overdrive	High speed mode	V _{DDA} ≥ 2.7 V	-	90	180	
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	115
V _{offset}	Comparator offset error	-		-	±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient	-			18	-	µV/°C
		Ultra-low power mode		-	1.2	1.5	
	COMP current	Low power mode		-	3	5	
'DD(COMP)	consumption	Medium power mode		-	10	15	μΑ
		High speed mode		-	75	100	

Table 61. Comparator characteristics

6.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	4	-	-	μs

1. Guaranteed by design, not tested in production.

 Measured at V_{DDA} = 3.3 V ± 10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}	4	-	-	μs

Table 63. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.

6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t	Timer resolution time	-	-	1	-	t _{TIMxCLK}
res(TIM)		f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
^I EXT	CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
t _{MAX_COUNT}	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
	32-bit counter	-	-	2 ³²	-	t _{TIMxCLK}
	maximum period	f _{TIMxCLK} = 48 MHz	-	89.48	-	s

Table 64. TIMx charac	teristics
-----------------------	-----------

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit					
/4	0	0.1	409.6						
/8	1	0.2	819.2						
/16	2	0.4	1638.4						
/32	3	0.8	3276.8	ms					
/64	4	1.6	6553.6						
/128	5	3.2	13107.2						
/256	6 or 7	6.4	26214.4						

Table 65. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	1115
8	3	0.6826	43.6906	

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

7.2 LQFP100 package information

LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.

1. Drawing is not to scale.

Table 72	LQPF100	package	mechanical	data
		puonuge	meenamoar	autu

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031

Table 72. LQPF100 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

7.4 WLCSP49 package information

WLCSP49 is a 49-ball, 3.277 x 3.109 mm, 0.4 mm pitch wafer-level chip-scale package.

Figure 43. WLCSP49 package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 75. LQFP48 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 46. Recommended footprint for LQFP48 package

1. Dimensions are expressed in millimeters.

DocID025451 Rev 6

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 47. LQFP48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 24: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm	55	°C/W
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	42	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	44	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	54	
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	49	

Table 77. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

DocID025451 Rev 6