

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071v8h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	Recommended footprint for UFQFPN48 package	. 113
Figure 50.	UFQFPN48 package marking example	. 114
Figure 51.	LQFP64 P _D max versus T _A	. 117

2 Description

The STM32F071x8/xB microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (two I²Cs, two SPI/one I²S, one HDMI CEC and four USARTs), one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F071x8/xB microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F071x8/xB microcontrollers include devices in six different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F071x8/xB microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

	Number of capacitive sensing channels							
Analog I/O group	STM32F071Vx	STM32F071Rx	STM32F071Cx					
G1	3	3	3					
G2	3	3	3					
G3	3	3	2					
G4	3	3	3					
G5	3	3	3					
G6	3	3	3					
G7	3	0	0					
G8	3	0	0					
Number of capacitive sensing channels	24	18	17					

Table 6. Number of capacitive sensing channels available
on STM32F071x8/xB devices

3.14 Timers and watchdogs

The STM32F071x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.


Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

4 Pinouts and pin descriptions

Figure 3. UFBGA100 package pinout

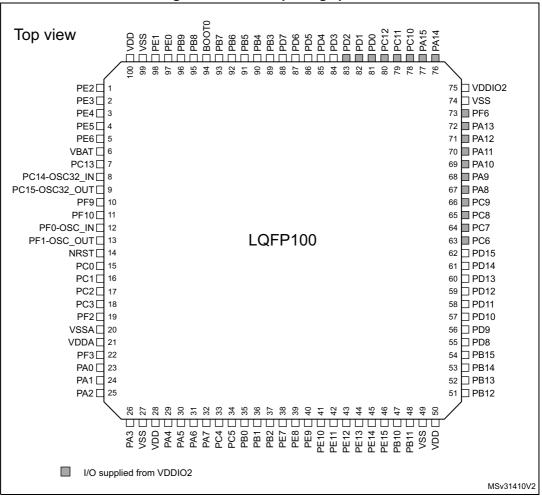


Figure 4. LQFP100 package pinout

Na	me	Abbreviation Definition					
Pin r	name		specified in brackets below the pin name, the pin function during and ame as the actual pin name				
		S	Supply pin				
Pin	type	I	Input-only pin				
		I/O	Input / output pin				
		FT	5 V-tolerant I/O				
		FTf 5 V-tolerant I/O, FM+ capable					
I/O otr	ucture	TTa 3.3 V-tolerant I/O directly connected to ADC					
1/O Sti	ucture	TC Standard 3.3 V I/O					
		B Dedicated BOOT0 pin					
		RST	ST Bidirectional reset pin with embedded weak pull-up resistor				
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.					
Alternate Pin functions		Functions selected through GPIOx_AFR registers					
functions	Additional functions	Functions directly selected/enabled through peripheral registers					

Table 12 Legend/abbreviations used in the	ningut tabla
Table 12. Legend/abbreviations used in the	pinout table

Table 13. STM32F071x8/xB pin definitions

	Pin	numb	pers						Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
B2	1	-	-	-	PE2	I/O	FT	-	TSC_G7_IO1, TIM3_ETR	-	
A1	2	-	-	-	PE3	I/O	FT	-	TSC_G7_IO2, TIM3_CH1	-	
B1	3	-	-	-	PE4	I/O	FT	-	TSC_G7_IO3, TIM3_CH2	-	
C2	4	-	-	-	PE5	I/O	FT	-	TSC_G7_IO4, TIM3_CH3	-	
D2	5	-	-	-	PE6	I/O	FT	-	TIM3_CH4	WKUP3, RTC_TAMP3	
E2	6	1	1	B7	VBAT	S	-	-	Backup power s	upply	
C1	7	2	2	D5	PC13	I/O	тс	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	

	Pin	numt	pers				_		Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
M7	38	-	-	-	PE7	I/O	FT	-	TIM1_ETR	-	
L7	39	-	-	-	PE8	I/O	FT	-	TIM1_CH1N	-	
M8	40	-	-	-	PE9	I/O	FT	-	TIM1_CH1	-	
L8	41	-	-	-	PE10	I/O	FT	-	TIM1_CH2N	-	
M9	42	-	-	-	PE11	I/O	FT	-	TIM1_CH2	-	
L9	43	-	-	-	PE12	I/O	FT	-	SPI1_NSS, I2S1_WS, TIM1_CH3N	-	
M10	44	-	-	-	PE13	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM1_CH3	-	
M11	45	-	-	-	PE14	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM1_CH4	-	
M12	46	-	-	-	PE15	I/O	FT	-	SPI1_MOSI, I2S1_SD, TIM1_BKIN	-	
L10	47	29	21	E3	PB10	I/O	FT	-	SPI2_SCK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	-	
L11	48	30	22	G2	PB11	I/O	FT	-	USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA	-	
F12	49	31	23	D3	VSS	S	-	-	Ground		
G12	50	32	24	F2	VDD	S	-	I	Digital power su	ipply	
L12	51	33	25	E2	PB12	I/O	FT	-	TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT	-	
K12	52	34	26	G1	PB13	I/O	FTf	-	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3	-	
K11	53	35	27	F1	PB14	I/O	FTf	-	SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	-	

Table 13. STM32F071x8/xB	pin definitions	(continued)
	p	

	Pin	numb	oers						Pin functior	IS
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
B5	92	58	42	C4	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_I03	-
B4	93	59	43	D4	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, USART4_CTS, TIM17_CH1N, TSC_G5_IO4	-
A4	94	60	44	A5	BOOT0	I	В	-	Boot memory sel	ection
A3	95	61	45	B5	PB8	I/O	FTf	-	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC	-
В3	96	62	46	C5	PB9	I/O	FTf	-	SPI2_NSS, I2S2_WS, I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	-
C3	97	-	-	-	PE0	I/O	FT	-	EVENTOUT, TIM16_CH1	-
A2	98	-	-	-	PE1	I/O	FT	-	EVENTOUT, TIM17_CH1	-
D3	99	63	47	A6	VSS	S	-	-	Ground	
C4	100	64	48	A7	VDD	S	-	-	Digital power su	ipply

Table 13. STM32F071x8/xB pin definitions (continued)

 PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

The speed should not exceed 2 MHz with a maximum load of 30 pF.
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.

3. PC6, PC7, PC8, PC9, PA8, PA9, PA10, PA11, PA12, PA13, PF6, PA14, PA15, PC10, PC11, PC12, PD0, PD1 and PD2 I/Os are supplied by VDDIO2.

4. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

Pin name	AF0	AF1
PC0	EVENTOUT	-
PC1	EVENTOUT	-
PC2	EVENTOUT	SPI2_MISO, I2S2_MCK
PC3	EVENTOUT	SPI2_MOSI, I2S2_SD
PC4	EVENTOUT	USART3_TX
PC5	TSC_G3_IO1	USART3_RX
PC6	TIM3_CH1	-
PC7	TIM3_CH2	-
PC8	TIM3_CH3	-
PC9	TIM3_CH4	-
PC10	USART4_TX	USART3_TX
PC11	USART4_RX	USART3_RX
PC12	USART4_CK	USART3_CK
PC13	-	-
PC14	-	-
PC15	-	-

Table 16. Alternate functions selected through GPIOC_AFR registers for port C

Table 17. Alternate functions selected through GPIOD_AFR registers for port D

Pin name	AF0	AF1
PD0	-	SPI2_NSS, I2S2_WS
PD1	-	SPI2_SCK, I2S2_CK
PD2	TIM3_ETR	USART3_RTS
PD3	USART2_CTS	SPI2_MISO, I2S2_MCK
PD4	USART2_RTS	SPI2_MOSI, I2S2_SD
PD5	USART2_TX	-
PD6	USART2_RX	-
PD7	USART2_CK	-
PD8	USART3_TX	-
PD9	USART3_RX	-
PD10	USART3_CK	-
PD11	USART3_CTS	-
PD12	USART3_RTS	TSC_G8_IO1
PD13	-	TSC_G8_IO2
PD14	-	TSC_G8_IO3
PD15	CRS_SYNC	TSC_G8_IO4

DocID025451 Rev 6

Sym-	Para-				Тур	@V _{DD} (V _{DD} = V	/ _{DDA})		Max ⁽¹⁾			
bol meter		Conditions		2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in	mod	julator in run de, all illators OFF	15.4	15.5	15.6	15.7	15.8	15.9	23 ⁽²⁾	49	68 ⁽²⁾	
I _{DD}	Stop mode	pow	ulator in low- ver mode, all illators OFF	3.2	3.3	3.4	3.5	3.6	3.7	8(2)	33	51 ⁽²⁾	
	Supply current in	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.3	1.4	-	-	-	
	Standby mode	LSI OFF	OFF and IWDG	0.6	0.7	0.9	0.9	1.0	1.1	2.1 ⁽²⁾	2.6	3.1 ⁽²⁾	
	Supply current in Stop mode	z	Regulator in run mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	
		V _{DDA} monitoring O	Regulator in low-power mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	μΑ
	Supply current in	VDC	LSI ON and IWDG ON	2.5	2.7	2.8	3.0	3.2	3.5	-	-	-	
 	Standby mode		LSI OFF and IWDG OFF	1.9	2.1	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	
I _{DDA}	Supply	OFF	Regulator in run mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
	Current in Stop commode	Stop	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-	
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.9	2.0	2.1	2.2	-	-	-	
	Standby mode		LSI OFF and IWDG OFF	1.2	1.2	1.2	1.3	1.3	1.4	-	-	-	

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 35*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 21: Voltage characteristics*
- The power consumption of the digital part of the on-chip peripherals is given in *Table 35*. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet.

	Peripheral	Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	2.2	
	CRC	1.6	
	DMA	5.7	
	Flash memory interface	13.0	
	GPIOA	8.2	
	GPIOB	8.5	
AHB	GPIOC	2.3	µA/MHz
	GPIOD	1.9	
	GPIOE	2.2	
	GPIOF	1.2	
	SRAM	0.9	
	TSC	5.0	
	All AHB peripherals	52.6	

Table 35. Peripheral current consumption

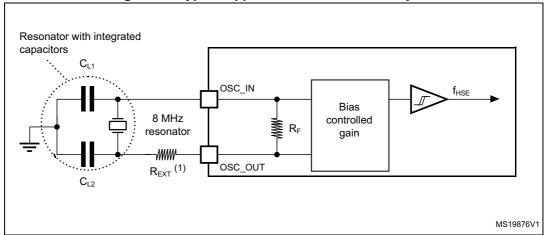


Figure 16. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter Conditions ⁽¹⁾		Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		low drive capability	-	0.5	0.9		
	LSE current consumption	medium-low drive capability	-	-	1		
I _{DD}	LSE current consumption	medium-high drive capability	-	-	1.3	μA	
		high drive capability	-	-	1.6		
	Oscillator transconductance	low drive capability		-	-		
		medium-low drive capability	8	-	-	µA/V	
9 _m		medium-high drive capability	15	-	-	μΑνν	
		high drive capability	25	-	-		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S	

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol Falank		Conditions	frequency band	8/48 MHz	onne
		0.1 to 30 MHz	-2		
0	Peak level	V_{DD} = 3.6 V, T_A = 25 °C, LQFP100 package compliant with IEC 61967-2	30 to 130 MHz	27	dBµV
S _{EMI}	reak level		130 MHz to 1 GHz	17	
	IEC 01907-2	EMI Level	4	-	

Table 49. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

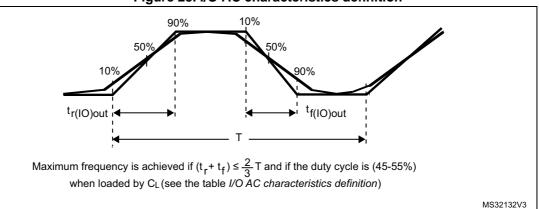

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	12	ns	
Fm+	t _{r(IO)out}	Output rise time			34	115	
configuration (4)	f _{max(IO)out}	Maximum frequency ⁽³⁾			0.5	MHz	
	t _{f(IO)out}	Output fall time	C_L = 50 pF, V_{DDIOx} < 2 V	-	16	ne	
	t _{r(IO)out}	Output rise time			44	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾ (continued)

 The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

- 3. The maximum frequency is defined in *Figure 23*.
- 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Figure 23. I/O AC characteristics definition

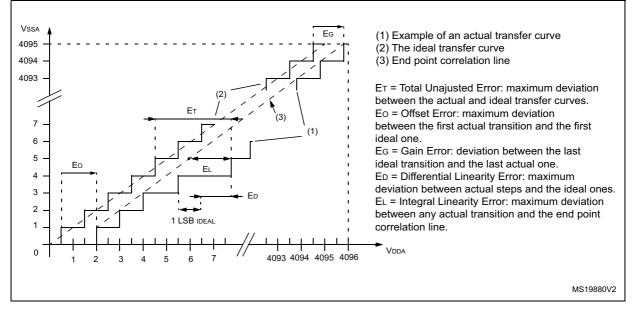
6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v

Table 56. NRST pin characteristics



STM32F071x8 STM32F071xB

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

accuracy.

- 3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.

Figure 25. ADC accuracy characteristics

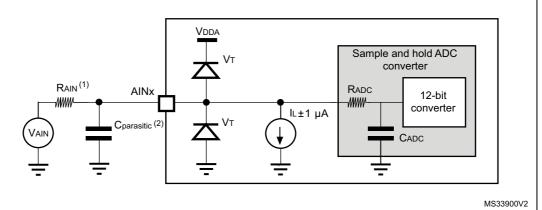


Figure 26. Typical connection diagram using the ADC

- Refer to Table 57: ADC characteristics for the values of R_{AIN}, R_{ADC} and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 12: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

DocID025451 Rev 6

6.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	4	-	-	μs

1. Guaranteed by design, not tested in production.

 Measured at V_{DDA} = 3.3 V ± 10 mV. The V₃₀ ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Мах	Unit
R	Resistor bridge for V _{BAT}		2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement		2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}	4	-	-	μs

Table 63. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.

6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{ere} (TIM)	Timer resolution time	-	-	1	-	t _{TIMxCLK}
t _{res(TIM)}		f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f _{EXT}	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
	frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
t	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
t _{MAX_COUNT}	32-bit counter	-	-	2 ³²	-	t _{TIMxCLK}
	maximum period	f _{TIMxCLK} = 48 MHz	-	89.48	-	S

Table 64	. TIMx	characteristics
----------	--------	-----------------

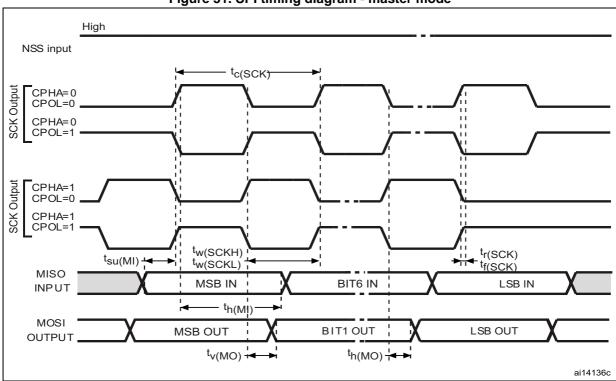


Figure 31. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

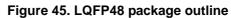
Table	69.	l ² S	characteristics ⁽¹⁾
-------	-----	------------------	--------------------------------

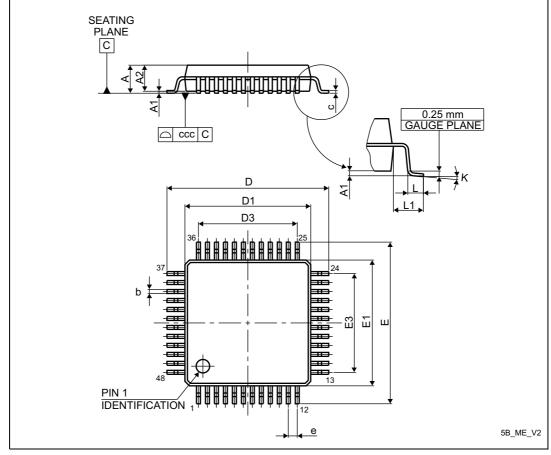
Symbol	Parameter	Conditions	Min	Мах	Unit
f _{CK}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)			MHz
1/t _{c(CK)}		Slave mode	0	6.5	
t _{r(CK)}	I ² S clock rise time		-	10	ns
t _{f(CK)}	I ² S clock fall time	Capacitive load C _L = 15 pF	-	12	
t _{w(CKH)}	I ² S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)}	I ² S clock low time	frequency = 48 kHz	312	-	
t _{v(WS)}	WS valid time	Master mode	2	-	115
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	7	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
DuCy(SCK)	I ² S slave input clock duty cycle	Slave mode	25	75	%

Symbol		millimeters		inches ⁽¹⁾		
Symbol Min	Тур	Мах	Min	Тур	Max	
А	0.525	0.555	0.585	0.0207	0.0219	0.0230
A1	-	0.175	_	-	0.0069	-
A2	-	0.380	-	-	0.0150	-
A3 ⁽²⁾	-	0.025	-	-	0.0010	-
b ⁽³⁾	0.220	0.250	0.280	0.0087	0.0098	0.0110
D	3.242	3.277	3.312	0.1276	0.1290	0.1304
E	3.074	3.109	3.144	0.1210	0.1224	0.1238
е	-	0.400	-	-	0.0157	-
e1	-	2.400	-	-	0.0945	-
e2	-	2.400	-	-	0.0945	-
F	-	0.4385	-	-	0.0173	-
G	-	0.3545	-	-	0.0140	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
ссс	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 74. WLCSP49	package	mechanical c	lata
-------------------	---------	--------------	------

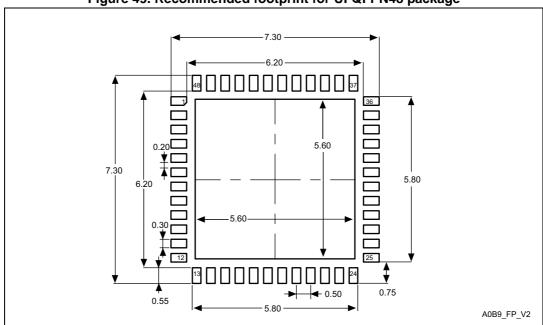
1. Values in inches are converted from mm and rounded to 4 decimal digits.


2. Back side coating


3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

7.5 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.



1. Drawing is not to scale.

Quarter at	millimeters			inches ⁽¹⁾		
Symbol -	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. Recommended footprint for UFQFPN48 package

1. Dimensions are expressed in millimeters.

