STMicroelectronics - STM32F071V8T7TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071v8t7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.14.6	SysTick timer
	3.15	Real-tir	me clock (RTC) and backup registers
	3.16	Inter-in	tegrated circuit interface (I ² C) 24
	3.17	Univers	sal synchronous/asynchronous receiver/transmitter (USART) 25
	3.18	Serial p	peripheral interface (SPI) / Inter-integrated sound interface (I ² S) . 26
	3.19	High-de	efinition multimedia interface (HDMI) - consumer
		electro	nics control (CEC)
	3.20	Clock r	ecovery system (CRS) 27
	3.21	Serial w	wire debug port (SW-DP) 27
4	Pino	uts and	pin descriptions 28
5	Mem	ory map	oping
6	Elect	trical ch	aracteristics
	6.1	Parame	eter conditions
		6.1.1	Minimum and maximum values46
		6.1.2	Typical values
		6.1.3	Typical curves
		6.1.4	Loading capacitor
		6.1.5	Pin input voltage
		6.1.6	Power supply scheme
		6.1.7	Current consumption measurement
	6.2	Absolu	te maximum ratings
	6.3	Operat	ing conditions
		6.3.1	General operating conditions
		6.3.2	Operating conditions at power-up / power-down
		6.3.3	Embedded reset and power control block characteristics
		6.3.4	Embedded reference voltage
		6.3.5	Supply current characteristics
		6.3.6	Wakeup time from low-power mode64
		6.3.7	External clock source characteristics
		6.3.8	Internal clock source characteristics
		6.3.9	PLL characteristics
		6.3.10	Memory characteristics
		6.3.11	EMC characteristics

	Number of capacitive sensing channels			
Analog I/O group	STM32F071Vx	STM32F071Rx	STM32F071Cx	
G1	3	3	3	
G2	3	3	3	
G3	3	3	2	
G4	3	3	3	
G5	3	3	3	
G6	3	3	3	
G7	3	0	0	
G8	3	0	0	
Number of capacitive sensing channels	24	18	17	

Table 6. Number of capacitive sensing channels available
on STM32F071x8/xB devices

3.14 Timers and watchdogs

The STM32F071x8/xB devices include up to six general-purpose timers, two basic timers and an advanced control timer.

Table 7 compares the features of the different timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6 TIM7	16-bit	Up	integer from 1 to 65536	Yes	-	-

Table 7. Timer feature comparison

verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

Table 9. S	TM32F071x8/xB	I ² C im	plementation

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	Х
Independent clock	Х	-
SMBus	Х	-
Wakeup from STOP	Х	-

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
Hardware flow control for modem	Х	Х
Continuous communication using DMA	х	х
Multiprocessor communication	Х	Х
Synchronous mode	Х	Х
Smartcard mode	х	-
Single-wire half-duplex communication	Х	Х

4 Pinouts and pin descriptions

Figure 3. UFBGA100 package pinout

Pin name	AF0	AF1
PE0	TIM16_CH1	EVENTOUT
PE1	TIM17_CH1	EVENTOUT
PE2	TIM3_ETR	TSC_G7_IO1
PE3	TIM3_CH1	TSC_G7_IO2
PE4	TIM3_CH2	TSC_G7_IO3
PE5	TIM3_CH3	TSC_G7_IO4
PE6	TIM3_CH4	-
PE7	TIM1_ETR	-
PE8	TIM1_CH1N	-
PE9	TIM1_CH1	-
PE10	TIM1_CH2N	-
PE11	TIM1_CH2	-
PE12	TIM1_CH3N	SPI1_NSS, I2S1_WS
PE13	TIM1_CH3	SPI1_SCK, I2S1_CK
PE14	TIM1_CH4	SPI1_MISO, I2S1_MCK
PE15	TIM1_BKIN	SPI1_MOSI, I2S1_SD

Table 18. Alternate functions selected through GPIOE AFR registers	s for port E

Table 19. Alternate functions available on port F

	•
Pin name	AF
PF0	CRS_SYNC
PF1	-
PF2	EVENTOUT
PF3	EVENTOUT
PF6	-
PF9	TIM15_CH1
PF10	TIM15_CH2

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 10*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled f_{PCLK} = f_{HCLK}

The parameters given in to *Table 31* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Symbol	r	Conditions		All peripherals enabled			All peripherals disabled					
	Paramet		Conditions f _{HCLK}	CLK		Max @ T _A ⁽¹⁾			м	ax @ T _A	(1)	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	24.3	26.9	27.2	27.9	13.1	14.8	14.9	15.5	
	ent in Run mode, from Flash memory	HSE bypass, PLL on	48 MHz	24.1	26.8	27.0	27.7	13.0	14.6	14.8	15.4]
			32 MHz	16.0	18.3	18.6	19.2	8.76	9.56	9.73	10.6	
			24 MHz	12.3	13.7	14.3	14.7	7.36	7.94	8.37	8.81	
		HSE bypass, PLL off	8 MHz	4.52	5.25	5.28	5.61	2.89	3.17	3.26	3.34	
I _{DD}			1 MHz	1.25	1.39	1.58	1.87	0.93	1.06	1.15	1.34	mA
	curr uting	HSI clock, HSI clock,	48 MHz	24.1	27.1	27.6	27.8	12.9	14.7	14.9	15.5	
	pply exect		32 MHz	16.1	18.2	18.9	19.3	8.82	9.69	9.83	10.7	
	Sul de e	_	24 MHz	12.4	14.0	14.4	14.8	7.31	7.92	8.34	8.75	
	Ö	HSI clock, PLL off	8 MHz	4.52	5.25	5.35	5.61	2.87	3.16	3.25	3.33	

Figure 16. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
		low drive capability	-	0.5	0.9		
	LSE current consumption	medium-low drive capability	-	-	1		
DD		medium-high drive capability	-	-	1.3	μΑ	
		high drive capability	-	-	1.6		
g _m		low drive capability	5	-	-		
	Oscillator	medium-low drive capability	8	-	-		
	transconductance	medium-high drive capability	15	-	-	μΑ/ν	
		high drive capability	25	-	-		
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DDIOx} is stabilized	-	2	-	S	

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit			
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle			
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 85 °C	30	Year			
		1 kcycle ⁽²⁾ at T _A = 105 °C	10				
		10 kcycle ⁽²⁾ at T _A = 55 °C	20				

Table 47. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T_A = +25 °C, conforming to JESD22-A114	All	2	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = +25 ^{\circ}C$, conforming	WLCSP49	C3	250	V
	(charge device model)	to ANSI/ESD STM5.3.1	All others	C4	500	v

 Table 50. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 51	Electrical	sensitivities
----------	------------	---------------

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in *Table* 52.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Description	Func suscep	Unit	
	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 and PF1 pins	-0	NA	
	Injected current on PC0 pin	-0	+5	
I _{INJ}	Injected current on PA11 and PA12 pins with induced leakage current on adjacent pins less than -1 mA	-5	NA	mA
	Injected current on all other FT and FTf pins	-5	NA	
	Injected current on all other TTa, TC and RST pins	-5	+5	

Table 52. I/O current injection susceptibility

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 53* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL}		TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾	
	Low level input voltage	FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾	
		BOOT0	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	V
		All I/Os except BOOT0 pin	-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-	
	High level input voltage	FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-	
V _{IH}		BOOT0	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	V
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-	
V _{hys}		TC and TTa I/O	-	200 ⁽¹⁾	-	
	Schmitt trigger hvsteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV
		BOOT0	-	300 ⁽¹⁾	-	

Table 53. I/O static characteristics

Figure 21. TC and TTa I/O input characteristics

Figure 22. Five volt tolerant (FT and FTf) I/O input characteristics

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 55*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit				
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz				
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	125	ne				
vO	t _{r(IO)out}	Output rise time			125	115				
×0	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz				
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	125					
	t _{r(IO)out}	Output rise time			125	115				
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz				
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} ≥ 2 V	-	25	ns				
01	t _{r(IO)out}	Output rise time		-	25					
UT	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	4	MHz				
	t _{f(IO)out}	Output fall time	C _L = 50 pF, V _{DDIOx} < 2 V	-	62.5	20				
	t _{r(IO)out}	Output rise time			62.5	115				
	f _{max(IO)out}	Maximum frequency ⁽³⁾	C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	– MHz				
			C_L = 50 pF, $V_{DDIOx} \ge 2.7 V$	-	30					
			C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	20					
			C _L = 50 pF, V _{DDIOx} < 2 V	-	- 10					
			C _L = 30 pF, V _{DDIOx} ≥ 2.7 V	-	5					
11	+	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	- ns				
11	۲f(IO)out		C_L = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12					
			C_L = 50 pF, V_{DDIOx} < 2 V	-	25					
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5					
	+	Output riss time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8					
	۲(IO)out		C_{L} = 50 pF, 2 V ≤ V_{DDIOx} < 2.7 V	-	12					
							C _L = 50 pF, V _{DDIOx} < 2 V	-	25	

Table 55. I/O AC characteristics⁽¹⁾⁽²⁾

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit			
/4	0	0.1	409.6				
/8	1	0.2	819.2				
/16	2	0.4	1638.4				
/32	3	0.8	3276.8	ms			
/64	4	1.6	6553.6				
/128	5	3.2	13107.2				
/256	6 or 7	6.4	26214.4				

Table 65. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	1115
8	3	0.6826	43.6906	

Table 66. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Figure 31. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Table	69.	I ² S	characteristics ⁽¹	I)
-------	-----	------------------	-------------------------------	----

Symbol	Parameter	Conditions	Min	Мах	Unit
fcк	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz
^{1/1} c(CK)		Slave mode 0		6.5	
t _{r(CK)}	I ² S clock rise time	Conscitive load C = 15 pE	-	10	
t _{f(CK)}	I ² S clock fall time	Capacitive load CL - 15 pr	-	12	
t _{w(CKH)}	I ² S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)}	I ² S clock low time	frequency = 48 kHz	312	-	
t _{v(WS)}	WS valid time	Master mode	2	-	115
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	7	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
DuCy(SCK)	I ² S slave input clock duty cycle	Slave mode	25	75	%

Symbol	millimeters			inches ⁽¹⁾				
	Min.	Тур.	Max.	Min.	Тур.	Max.		
b	0.240	0.290	0.340	0.0094	0.0114	0.0134		
D	6.850	7.000	7.150	0.2697	0.2756	0.2815		
D1	-	5.500	-	-	0.2165	-		
E	6.850	7.000	7.150	0.2697	0.2756	0.2815		
E1	-	5.500	-	-	0.2165	-		
е	-	0.500	-	-	0.0197	-		
Z	-	0.750	-	-	0.0295	-		
ddd	-	-	0.080	-	-	0.0031		
eee	-	-	0.150	-	-	0.0059		
fff	-	-	0.050	-	-	0.0020		

Table 70. UFBGA100 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Table 71. UFBGA100 recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the solder mask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Symbol		millimeters		inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
D	6.900	7.000	7.100	0.2717	0.2756	0.2795
E	6.900	7.000	7.100	0.2717	0.2756	0.2795
D2	5.500	5.600	5.700	0.2165	0.2205	0.2244
E2	5.500	5.600	5.700	0.2165	0.2205	0.2244
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
Т	-	0.152	-	-	0.0060	-
b	0.200	0.250	0.300	0.0079	0.0098	0.0118
е	-	0.500	-	-	0.0197	-
ddd	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. Recommended footprint for UFQFPN48 package

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 50. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 24: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm	55	°CAN
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	42	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	44	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	54	C/VV
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	49	

Table 77. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

