

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	87
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 19x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071vbh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	
Table 2.	STM32F071x8/xB family device features and peripheral counts	11
Table 3.	Temperature sensor calibration values	18
Table 4.	Internal voltage reference calibration values	
Table 5.	Capacitive sensing GPIOs available on STM32F071x8/xB devices	20
Table 6.	Number of capacitive sensing channels available	
	on STM32F071x8/xB devices	21
Table 7.	Timer feature comparison.	
Table 8.	Comparison of I ² C analog and digital filters	24
Table 9.	STM32F071x8/xB I ² C implementation	25
Table 10.	STM32F071x8/xB USART implementation	25
Table 11.	STM32F071x8/xB SPI/I ² S implementation	26
Table 12.	Legend/abbreviations used in the pinout table	32
Table 13.	STM32F071x8/xB pin definitions	32
Table 14.	Alternate functions selected through GPIOA_AFR registers for port A	39
Table 15.	Alternate functions selected through GPIOB_AFR registers for port B	40
Table 16.	Alternate functions selected through GPIOC_AFR registers for port C	41
Table 17.	Alternate functions selected through GPIOD_AFR registers for port D	41
Table 18.	Alternate functions selected through GPIOE_AFR registers for port E	42
Table 19.	Alternate functions available on port F	42
Table 20.	STM32F071x8/xB peripheral register boundary addresses	44
Table 21.	Voltage characteristics	49
Table 22.	Current characteristics	50
Table 23.	Thermal characteristics.	50
Table 24.	General operating conditions	51
Table 25.	Operating conditions at power-up / power-down	52
Table 26.	Embedded reset and power control block characteristics.	52
Table 27.	Programmable voltage detector characteristics	52
Table 28.	Embedded internal reference voltage	53
Table 29.	Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V	54
Table 30.	Typical and maximum current consumption from the V _{DDA} supply	56
Table 31.	Typical and maximum consumption in Stop and Standby modes	57
Table 32.	Typical and maximum current consumption from the V _{BAT} supply	58
Table 33.	Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal	59
Table 34.	Switching output I/O current consumption	
Table 35.	Peripheral current consumption	
Table 36.	Low-power mode wakeup timings	
Table 37.	High-speed external user clock characteristics.	
Table 38.	Low-speed external user clock characteristics	
Table 39.	HSE oscillator characteristics	
Table 40.	LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)	
Table 41.	HSI oscillator characteristics	
Table 42.	HSI14 oscillator characteristics.	
Table 43.	HSI48 oscillator characteristics.	
Table 44.	LSI oscillator characteristics	
Table 45.	PLL characteristics	
Table 46.	Flash memory characteristics	
		· · · -

The RTC is an independent BCD timer/counter. Its main features are the following:

- calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- automatic correction for 28, 29 (leap year), 30, and 31 day of the month
- programmable alarm with wake up from Stop and Standby mode capability
- Periodic wakeup unit with programmable resolution and period.
- on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock
- digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- Three anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection
- timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection
- reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s), Fast mode (up to 400 kbit/s) and Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive on most of the associated I/Os.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter	
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks	
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length 	
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.	

Table 8. Comparison of I ² C analog and digital filters	Table 8. Comparison of I	² C analog and digital filters
--	--------------------------	---

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts

verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to *Table 9* for the differences between I2C1 and I2C2.

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	Х
Independent clock	Х	-
SMBus	Х	-
Wakeup from STOP	Х	-

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds four universal synchronous/asynchronous receivers/transmitters (USART1, USART2, USART3, USART4) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 support also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and have a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1 and USART2	USART3 and USART4
Hardware flow control for modem	Х	Х
Continuous communication using DMA	X	х
Multiprocessor communication	X	х
Synchronous mode	X	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	X	Х

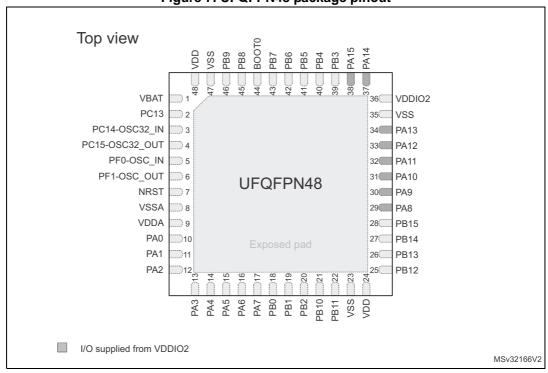


Figure 7. UFQFPN48 package pinout

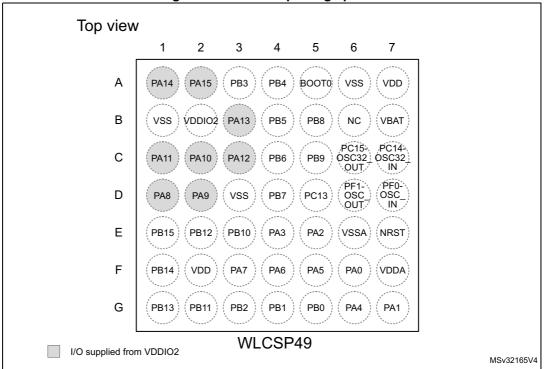


Figure 8. WLCSP49 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

	Pin	numt	pers						Pin functior	IS
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
D1	8	3	3	C7	PC14-OSC32_IN (PC14)	I/O	тс	(1) (2)	-	OSC32_IN
E1	9	4	4	C6	PC15- OSC32_OUT (PC15)	I/O	тс	(1) (2)	-	OSC32_OUT
F2	10	-	-	-	PF9	I/O	FT	-	TIM15_CH1	-
G2	11	-	-	-	PF10	I/O	FT	-	TIM15_CH2	-
F1	12	5	5	D7	PF0-OSC_IN (PF0)	I/O	FT	-	CRS_SYNC	OSC_IN
G1	13	6	6	D6	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT
H2	14	7	7	E7	NRST	I/O	RST	-	Device reset input / internal reset output (active low)	
H1	15	8	-	-	PC0	I/O	TTa	-	EVENTOUT	ADC_IN10
J2	16	9	-	-	PC1	I/O	TTa	-	EVENTOUT	ADC_IN11
J3	17	10	-	-	PC2	I/O	ТТа	-	SPI2_MISO, I2S2_MCK, EVENTOUT	ADC_IN12
K2	18	11	-	-	PC3	I/O	ТТа	-	SPI2_MOSI, I2S2_SD, EVENTOUT	ADC_IN13
J1	19	-	-	-	PF2	I/O	FT	-	EVENTOUT	WKUP8
K1	20	12	8	E6	VSSA	S	-	-	Analog ground	
M1	21	13	9	F7	VDDA	S	-	-	Analog power supply	
L1	22	-	-	-	PF3	I/O	FT	-	EVENTOUT	
L2	23	14	10	F6	PA0	I/O	ТТа	-	USART2_CTS, TIM2_CH1_ETR, TSC_G1_IO1, USART4_TX	RTC_TAMP2, WKUP1, COMP1_OUT, ADC_IN0, COMP1_INM6
M2	24	15	11	G7	PA1	I/O	ТТа	-	USART2_RTS, TIM2_CH2, TIM15_CH1N, TSC_G1_IO2, USART4_RX, EVENTOUT	ADC_IN1, COMP1_INP

Table 13. STM32F071x8/xB pin definitions (continued)
--

	Pin	numb	oers		ble 13. STM32F0				Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
К3	25	16	12	E5	PA2	I/O	ТТа	-	USART2_TX, TIM2_CH3, TIM15_CH1, TSC_G1_IO3	ADC_IN2, COMP2_OUT, COMP2_INM6, WKUP4	
L3	26	17	13	E4	PA3	I/O	ТТа	-	USART2_RX,TIM2_CH4, TIM15_CH2, TSC_G1_IO4	ADC_IN3, COMP2_INP	
D3	27	18	-	-	VSS	S	-	-	Ground		
H3	28	19	-	-	VDD	S	-	-	Digital power su	ipply	
М3	29	20	14	G6	PA4	I/O	ТТа	-	SPI1_NSS, I2S1_WS, TIM14_CH1, TSC_G2_IO1, USART2_CK	COMP1_INM4, COMP2_INM4, ADC_IN4, DAC_OUT1	
K4	30	21	15	F5	PA5	I/O	ТТа	-	SPI1_SCK, I2S1_CK, CEC, TIM2_CH1_ETR, TSC_G2_IO2	COMP1_INM5, COMP2_INM5, ADC_IN5, DAC_OUT2	
L4	31	22	16	F4	PA6	I/O	ТТа	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT, USART3_CTS	ADC_IN6	
M4	32	23	17	F3	PA7	I/O	ТТа	_	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7	
K5	33	24	-	-	PC4	I/O	TTa	-	EVENTOUT, USART3_TX	ADC_IN14	
L5	34	25	-	-	PC5	I/O	ТТа	-	TSC_G3_IO1, USART3_RX	ADC_IN15, WKUP5	
M5	35	26	18	G5	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT, USART3_CK	ADC_IN8	
M6	36	27	19	G4	PB1	I/O	ТТа	-	TIM3_CH4, USART3_RTS, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9	
L6	37	28	20	G3	PB2	I/O	FT		TSC_G3_IO4	-	

Table 13. STM32F071x8/xE	B pin definitions	(continued)
--------------------------	--------------------------	-------------

	Pin	numt	oers				_		Pin function	IS
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
M7	38	-	-	-	PE7	I/O	FT	-	TIM1_ETR	-
L7	39	-	-	-	PE8	I/O	FT	-	TIM1_CH1N	-
M8	40	-	-	-	PE9	I/O	FT	-	TIM1_CH1	-
L8	41	-	-	-	PE10	I/O	FT	-	TIM1_CH2N	-
M9	42	-	-	-	PE11	I/O	FT	-	TIM1_CH2	-
L9	43	-	-	-	PE12	I/O	FT	-	SPI1_NSS, I2S1_WS, TIM1_CH3N	-
M10	44	-	-	-	PE13	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM1_CH3	-
M11	45	-	-	-	PE14	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM1_CH4	-
M12	46	-	-	-	PE15	I/O	FT	-	SPI1_MOSI, I2S1_SD, TIM1_BKIN	-
L10	47	29	21	E3	PB10	I/O	FT	-	SPI2_SCK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	-
L11	48	30	22	G2	PB11	I/O	FT	-	USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA	-
F12	49	31	23	D3	VSS	S	-	-	Ground	
G12	50	32	24	F2	VDD	S	-	I	Digital power su	ipply
L12	51	33	25	E2	PB12	I/O	FT	-	TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT	-
K12	52	34	26	G1	PB13	I/O	FTf	-	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3	-
K11	53	35	27	F1	PB14	I/O	FTf	-	SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	-

Table 13. STM32F071x8/xB	pin definitions	(continued)
	p	

Pin name	AF0	AF1	AF2	AF3	AF4	AF5
PB0	EVENTOUT	TIM3_CH3	TIM1_CH2N	TSC_G3_IO2	USART3_CK	-
PB1	TIM14_CH1	TIM3_CH4	TIM1_CH3N	TSC_G3_IO3	USART3_RTS	-
PB2	-	-	-	TSC_G3_IO4	-	-
PB3	SPI1_SCK, I2S1_CK	EVENTOUT	TIM2_CH2	TSC_G5_IO1	-	-
PB4	SPI1_MISO, I2S1_MCK	TIM3_CH1	EVENTOUT	TSC_G5_IO2	-	TIM17_BKIN
PB5	SPI1_MOSI, I2S1_SD	TIM3_CH2	TIM16_BKIN	I2C1_SMBA	-	-
PB6	USART1_TX	I2C1_SCL	TIM16_CH1N	TSC_G5_IO3	-	-
PB7	USART1_RX	I2C1_SDA	TIM17_CH1N	TSC_G5_IO4	USART4_CTS	-
PB8	CEC	I2C1_SCL	TIM16_CH1	TSC_SYNC		-
PB9	IR_OUT	I2C1_SDA	TIM17_CH1	EVENTOUT		SPI2_NSS, I2S2_W
PB10	CEC	I2C2_SCL	TIM2_CH3	TSC_SYNC	USART3_TX	SPI2_SCK, I2S2_CI
PB11	EVENTOUT	I2C2_SDA	TIM2_CH4	TSC_G6_IO1	USART3_RX	-
PB12	SPI2_NSS, I2S2_WS	EVENTOUT	TIM1_BKIN	TSC_G6_IO2	USART3_CK	TIM15_BKIN
PB13	SPI2_SCK, I2S2_CK	-	TIM1_CH1N	TSC_G6_IO3	USART3_CTS	I2C2_SCL
PB14	SPI2_MISO, I2S2_MCK	TIM15_CH1	TIM1_CH2N	TSC_G6_IO4	USART3_RTS	I2C2_SDA
PB15	SPI2_MOSI, I2S2_SD	TIM15_CH2	TIM1_CH3N	TIM15_CH1N	-	-

_ - -. . - -- -_ - ----_ . _

40/122

5

Symbol	Ratings	Max.	Unit
ΣI_{VDD}	Total current into sum of all VDD power lines (source) ⁽¹⁾	120	
ΣI _{VSS}	Total current out of sum of all VSS ground lines (sink) ⁽¹⁾	-120	
I _{VDD(PIN)}	Maximum current into each VDD power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS ground pin (sink) ⁽¹⁾	-100	
I	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	
	Total output current sunk by sum of all I/Os and control pins ⁽²⁾	80	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all I/Os and control pins ⁽²⁾	-80	mA
	Total output current sourced by sum of all I/Os supplied by VDDIO2	-40	
	Injected current on B, FT and FTf pins	-5/+0 ⁽⁴⁾	1
I _{INJ(PIN)} ⁽³⁾	Injected current on TC and RST pin	± 5	1
	Injected current on TTa pins ⁽⁵⁾	± 5	1
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	1

Table 22. Current characteristics

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP packages.

3. A positive injection is induced by $V_{IN} > V_{DDIOx}$ while a negative injection is induced by $V_{IN} < V_{SS}$. $I_{INJ(PIN)}$ must never be exceeded. Refer to *Table 21: Voltage characteristics* for the maximum allowed input voltage values.

4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

5. On these I/Os, a positive injection is induced by $V_{IN} > V_{DDA}$. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 59: ADC accuracy*.

6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Table 23. Thermal characteristics

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Sym-	Poro				Тур	@V _{DD} (V _{DD} = V	/ _{DDA})			Max ⁽¹⁾							
bol	Para- meter		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	$T_{A} = 105 °C$ $68^{(2)}$ $51^{(2)}$ $-$ $3.1^{(2)}$ $4.6^{(2)}$ $-$ $4.6^{(2)}$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	Unit					
	Supply current in	mod	julator in run de, all illators OFF	15.4	15.5	15.6	15.7	15.8	15.9	23 ⁽²⁾	49	68 ⁽²⁾						
I _{DD}	Stop mode	pow	ulator in low- ver mode, all illators OFF	3.2	3.3	3.4	3.5	3.6	3.7	8(2)	33	51 ⁽²⁾						
	Supply current in	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.3	1.4	-	-	-						
	Standby mode	LSI OFF	OFF and IWDG	0.6	0.7	0.9	0.9	1.0	1.1	2.1 ⁽²⁾	2.6	$ \begin{array}{r} T_A = \\ 105 °C \\ 68^{(2)} \\ 51^{(2)} \\ - \\ 3.1^{(2)} \\ 4.6^{(2)} \\ - \\ 4.6^{(2)} \\ - \\ - \\ - $						
	Supply current in Stop mode Supply current in Standby mode	NO	Regulator in run mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾						
		V _{DDA} monitoring O	Regulator in low-power mode, all oscillators OFF	2.1	2.2	2.3	2.5	2.6	2.8	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾	μΑ					
							VDC	LSI ON and IWDG ON	2.5	2.7	2.8	3.0	3.2	3.5	-	-	-	
 			LSI OFF and IWDG OFF	1.9	2.1	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.6	4.6 ⁽²⁾						
I _{DDA}	Supply current in	OFF	Regulator in run mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-						
	Stop mode	V _{DDA} monitoring OI	Regulator in low-power mode, all oscillators OFF	1.3	1.3	1.4	1.4	1.5	1.5	-	-	-						
	Supply current in	V _{DD}	LSI ON and IWDG ON	1.7	1.8	1.9	2.0	2.1	2.2	-	-	-						
	Standby mode		LSI OFF and IWDG OFF	1.2	1.2	1.2	1.3	1.3	1.4	-	-	-						

Table 31. Typical and maximum consumption in Stop and Standby modes

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

	Peripheral	rrent consumption (continued Typical consumption at 25 °C	Unit
	APB-Bridge ⁽²⁾	2.8	onn
	ADC ⁽³⁾		
		4.1	
	CEC	1.5	
	CRS	0.8	
	DAC ⁽³⁾	4.7	
	DEBUG (MCU debug feature)	0.1	
	I2C1	3.9	
	I2C2	4.0	
	PWR	1.3	
	SPI1	8.7	
	SPI2	8.5	
	SYSCFG & COMP	1.7	
	TIM1	14.9	
	TIM2	15.5	
	TIM3	11.4	
APB	TIM6	2.5	µA/MHz
	TIM7	2.3	
	TIM14	5.3	
	TIM15	9.1	
	TIM16	6.6	
	TIM17	6.8	
	USART1	17.0	
	USART2	16.7	
	USART3	5.4	
	USART4	5.4	
	WWDG	1.4	
	All APB peripherals	162.4	

Table 35. Peripheral current consumption (continued)

1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).

2. The APB Bridge is automatically active when at least one peripheral is ON on the Bus.

 The power consumption of the analog part (I_{DDA}) of peripherals such as ADC, DAC, Comparators, is not included. Refer to the tables of characteristics in the subsequent sections.

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 36* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

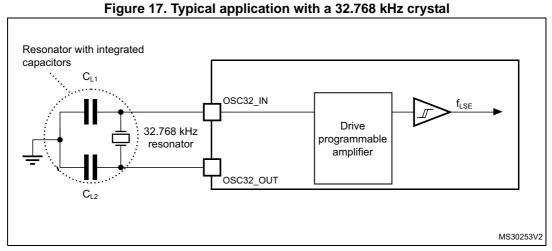
All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

Cumbal	Devenuertex	Conditions	Typ @Vdd = Vdda					Мах	Unit
Symbol	Parameter	Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	wax	Unit
	Wakeup from Stop mode	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
^t wustop		Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
twustandby	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μs
twusleep	Wakeup from Sleep mode	-		4 S)	/SCLK cy	cles	<u>.</u>	-	

 Table 36. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source


In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 14: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	113

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 41* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*. The provided curves are characterization results, not tested in production.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Cymbol		Conditions	frequency band 8/48 MHz		onne
		V - 2 6 V T - 25 °C	0.1 to 30 MHz	-2	
0	Peak level	V_{DD} = 3.6 V, T_A = 25 °C, LQFP100 package compliant with IEC 61967-2	30 to 130 MHz	27	dBµV
S _{EMI}	reak level		130 MHz to 1 GHz	17	
			EMI Level	4	-

Table 49. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution	-	-	823	kHz
		12-bit resolution	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 58</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
t _{CAL} ⁽²⁾⁽³⁾	Calibration time	f _{ADC} = 14 MHz		5.9		μs
^L CAL		-		83		1/f _{ADC}
		ADC clock = HSI14	1.5 ADC cycles + 2 f _{PCLK} cycles	-	1.5 ADC cycles + 3 f _{PCLK} cycles	-
W _{LATENCY} ⁽²⁾⁽⁴⁾	ADC_DR register ready latency	ADC clock = PCLK/2	-	4.5	-	f _{PCLK} cycle
		ADC clock = PCLK/4	-	8.5	-	f _{PCLK} cycle
		$f_{ADC} = f_{PCLK}/2 = 14 \text{ MHz}$		0.196		μs
		$f_{ADC} = f_{PCLK}/2$		5.5		1/f _{PCLK}
t _{latr} (2)	Trigger conversion latency	$f_{ADC} = f_{PCLK}/4 = 12 \text{ MHz}$		0.219		μs
		$f_{ADC} = f_{PCLK}/4$		10.5		1/f _{PCLK}
		$f_{ADC} = f_{HSI14} = 14 \text{ MHz}$	0.179	-	0.250	μs
Jitter _{ADC}	ADC jitter on trigger conversion	f _{ADC} = f _{HSI14}	-	1	-	1/f _{HSI14}
ts ⁽²⁾	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
0		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Stabilization time	-		14		1/f _{ADC}
t _{CONV} ⁽²⁾	Total conversion time	f _{ADC} = 14 MHz, 12-bit resolution	1	-	18	μs
'CONV` ´	(including sampling time)	12-bit resolution	14 to 252 (t _S fo successive ap		823 17 V _{DDA} 50 1 1 8 1.5 ADC cycles + 3 f _{PCLK} cycles - 0.250 - 0.250 - 17.1 239.5 18 ing +12.5 for	1/f _{ADC}

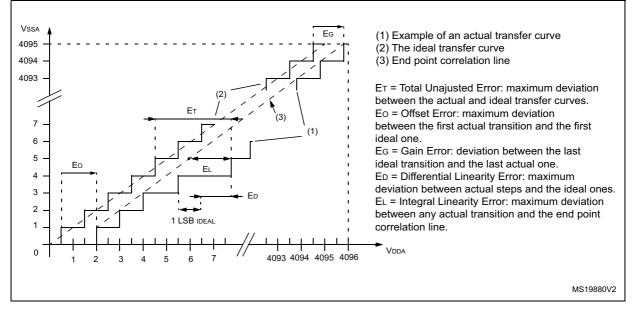
 Table 57. ADC characteristics (continued)

1. During conversion of the sampled value (12.5 x ADC clock period), an additional consumption of 100 μ A on I_{DDA} and 60 μ A on I_{DD} should be taken into account.

2. Guaranteed by design, not tested in production.

3. Specified value includes only ADC timing. It does not include the latency of the register access.

4. This parameter specify latency for transfer of the conversion result to the ADC_DR register. EOC flag is set at this time.



STM32F071x8 STM32F071xB

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

accuracy.

- 3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.
- 4. Data based on characterization results, not tested in production.

Figure 25. ADC accuracy characteristics

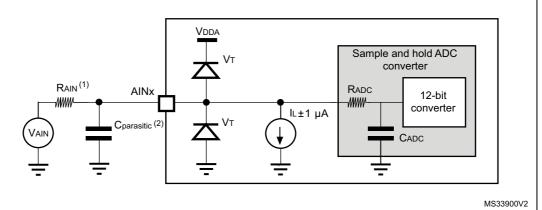
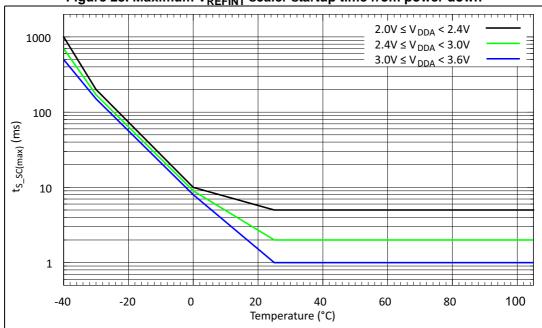


Figure 26. Typical connection diagram using the ADC

- Refer to Table 57: ADC characteristics for the values of R_{AIN}, R_{ADC} and C_{ADC}.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 12: Power supply scheme*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

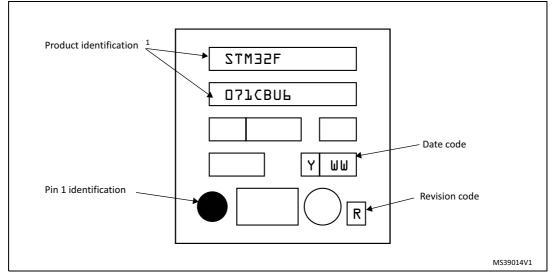

DocID025451 Rev 6

Symbol	Parameter	Conditio	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
		No hysteresis (COMPxHYST[1:0]=00)	-	-	0	-	
	Comparator hysteresis	Low hysteresis (COMPxHYST[1:0]=01)	High speed mode	3	8	13	mV
V _{hys}			All other power modes	5		10	
		Medium hysteresis (COMPxHYST[1:0]=10)	High speed mode	7	15	26	
			All other power modes	9		19	
		High hysteresis (COMPxHYST[1:0]=11)	High speed mode	18		49	
			All other power modes	19	31	40	

Table 61. Comparator	characteristics	(continued)
----------------------	-----------------	-------------

1. Data based on characterization results, not tested in production.

2. For more details and conditions see Figure 28: Maximum V_{REFINT} scaler startup time from power down.



Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 50. UFQFPN48 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 78	Ordering	information	scheme
----------	----------	-------------	--------

Example:	STM32	F	071	R	В	T	6 x
Device family							
STM32 = ARM-based 32-bit microcontroller							
Product type							
F = General-purpose							
Sub-family							
071 = STM32F071xx]				
Pin count							
C = 48/49 pins							
R = 64 pins							
V = 100 pins							
User code memory size							
8 = 64 Kbyte							
B = 128 Kbyte							
Package							
H = UFBGA							
T = LQFP							
Y = WLCSP							
Temperature range							
6 = -40 to 85 °C							
7 = -40 to 105 °C							
Options							
xxx = code ID of programmed parts (includes parts)	acking type)						

xxx = code ID of programmed parts (includes packing type)TR = tape and reel packingblank = tray packing

Date	Revision	Changes
15-Sep-2016	5	 Section 6: Electrical characteristics: Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 updated - modified NSS timing waveforms (among other changes)
10-Jan-2017	6	 Section 6: Electrical characteristics: Table 40: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) information on configuring different drive capabilities removed. See the corresponding reference manual. Table 28: Embedded internal reference voltage - V_{REFINT} values Table 60: DAC characteristics - min. R_{LOAD} to V_{DDA} defined Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: The name of the section changed from the previous "Part numbering"

Table 79. Document revision history (continued
--

