

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details Product Status	Active	
Core Processor	ARM® Cortex®-M0	
Core Size	32-Bit Single-Core	
Speed	48MHz	
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART	
Peripherals	DMA, I ² S, POR, PWM, WDT	
Number of I/O	87	
Program Memory Size	128KB (128K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	16K x 8	
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V	
Data Converters	A/D 19x12b; D/A 2x12b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 85°C (TA)	
Mounting Type	Surface Mount	
Package / Case	100-LQFP	
Supplier Device Package	100-LQFP (14x14)	
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f071vbt6	

2 Description

The STM32F071x8/xB microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 128 Kbytes of Flash memory and 16 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (two I²Cs, two SPI/one I²S, one HDMI CEC and four USARTs), one 12-bit ADC, one 12-bit DAC with two channels, seven 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F071x8/xB microcontrollers operate in the -40 to +85 °C and -40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F071x8/xB microcontrollers include devices in six different packages ranging from 48 pins to 100 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F071x8/xB microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

47/

Table 2. STM32F071x8/xB family device features and peripheral counts

Perip	heral	STM32	F071Cx	STM32F071RB	STM32	2F071Vx				
Flash mem	ory (Kbyte)	64	128	128	64	128				
SRAM	(Kbyte)		16							
	Advanced control		1 (16-bit)							
Timers	General purpose			5 (16-bit) 1 (32-bit)						
	Basic			2 (16-bit)						
	SPI [I ² S] ⁽¹⁾		2 [2]							
Comm.	I ² C		2							
interfaces	USART			4						
	CEC		1							
	t ADC f channels)		1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.)							
	t DAC f channels)		1 (2)							
Analog co	omparator			2						
GP	lOs	3	7	51	:	87				
	e sensing nnels	1	7	18		24				
Max. CPU	frequency			48 MHz	•					
Operatin	g voltage			2.0 to 3.6 V						
Operating t	emperature	A	Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C							
Pack	ages	LQF UFQF WLC	PN48	LQFP64	•	FP100 GA100				

^{1.} The SPI interface can be used either in SPI mode or in I²S audio mode.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 32 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 87 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage V_{SENSE} that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The

Table 12. Legend/abbreviations used in the pinout table

Na	me	Abbreviation	Definition				
Pin r	name		specified in brackets below the pin name, the pin function during and ame as the actual pin name				
		S	Supply pin				
Pin	type	I	Input-only pin				
		I/O	Input / output pin				
		FT	5 V-tolerant I/O				
		FTf 5 V-tolerant I/O, FM+ capable					
UO etr	ucture	TTa	3.3 V-tolerant I/O directly connected to ADC				
1/0 511	ucture	TC	Standard 3.3 V I/O				
		В	Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor				
No	tes	Unless otherwise reset.	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.				
Pin	Alternate functions	Functions selected	d through GPIOx_AFR registers				
functions	Additional functions	Functions directly	selected/enabled through peripheral registers				

Table 13. STM32F071x8/xB pin definitions

	Pin	numb	ers						Pin functions		
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	Not Not		Alternate functions	Additional functions	
B2	1	-	-	-	PE2	I/O	FT	-	TSC_G7_IO1, TIM3_ETR	-	
A1	2	ı	-	-	PE3	I/O	FT	-	TSC_G7_IO2, TIM3_CH1	-	
B1	3	ı	-	-	PE4	I/O	FT	-	TSC_G7_IO3, TIM3_CH2	-	
C2	4	-	-	-	PE5	I/O	FT	-	TSC_G7_IO4, TIM3_CH3	-	
D2	5	i	-	-	PE6	I/O	FT	-	TIM3_CH4	WKUP3, RTC_TAMP3	
E2	6	1	1	В7	VBAT	S	-	-	Backup power s	upply	
C1	7	2	2	D5	PC13	I/O	TC	(1) (2)	-	WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT	

Table 13. STM32F071x8/xB pin definitions (continued)

	Pin	numb	ers						Pin function	ıs
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
M7	38	-	-	-	PE7	I/O	FT	-	TIM1_ETR	-
L7	39	ı	-	-	PE8	I/O	FT	-	TIM1_CH1N	-
M8	40	-	-	-	PE9	I/O	FT	-	TIM1_CH1	-
L8	41	ı	-	-	PE10	I/O	FT	-	TIM1_CH2N	-
М9	42	1	-	-	PE11	I/O	FT	-	TIM1_CH2	-
L9	43	-	-	-	PE12	I/O	FT	-	SPI1_NSS, I2S1_WS, TIM1_CH3N	-
M10	44	-	-	-	PE13	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM1_CH3	-
M11	45	-	-	-	PE14	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM1_CH4	-
M12	46	-	-	-	PE15	I/O	FT	-	SPI1_MOSI, I2S1_SD, TIM1_BKIN	-
L10	47	29	21	E3	PB10	I/O	FT	-	SPI2_SCK, I2C2_SCL, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	-
L11	48	30	22	G2	PB11	I/O	FT	-	USART3_RX, TIM2_CH4, EVENTOUT, TSC_G6_IO1, I2C2_SDA	-
F12	49	31	23	D3	VSS	S	-	-	Ground	
G12	50	32	24	F2	VDD	S	-	-	Digital power su	ıpply
L12	51	33	25	E2	PB12	I/O	FT	-	TIM1_BKIN, TIM15_BKIN, SPI2_NSS, I2S2_WS, USART3_CK, TSC_G6_IO2, EVENTOUT	-
K12	52	34	26	G1	PB13	I/O	FTf	-	SPI2_SCK, I2S2_CK, I2C2_SCL, USART3_CTS, TIM1_CH1N, TSC_G6_IO3	-
K11	53	35	27	F1	PB14	I/O	FTf	-	SPI2_MISO, I2S2_MCK, I2C2_SDA, USART3_RTS, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	-

Table 13. STM32F071x8/xB pin definitions (continued)

	Pin	numb	ers						Pin function	ıs
UFBGA100	LQFP100	LQFP64	LQFP48/UFQFPN48	WLCSP49	Pin name (function upon reset)	Pin type Notes Notes (3)		Notes	Alternate functions	Additional functions
C11	73	-	-	-	PF6	I/O	FT	(3)	-	-
F11	74	47	35	B1	VSS	S	-	-	Ground	
G11	75	48	36	B2	VDDIO2	S	-	-	Digital power su	ipply
A10	76	49	37	A1	PA14	I/O	FT	(3) (4)	USART2_TX, SWCLK	-
A9	77	50	38	A2	PA15	I/O	FT	(3)	SPI1_NSS, I2S1_WS, USART2_RX, USART4_RTS, TIM2_CH1_ETR, EVENTOUT	-
B11	78	51	-	-	PC10	I/O	FT	(3)	USART3_TX, USART4_TX	-
C10	79	52	-	-	PC11	I/O	FT	(3)	USART3_RX, USART4_RX	-
B10	80	53	-	-	PC12	I/O	FT	(3)	USART3_CK, USART4_CK	-
C9	81	-	-	-	PD0	I/O	FT	(3)	SPI2_NSS, I2S2_WS	-
В9	82	-	-	-	PD1	I/O	FT	(3)	SPI2_SCK, I2S2_CK	-
C8	83	54	-	-	PD2	I/O	FT	(3)	USART3_RTS, TIM3_ETR	-
В8	84	ı	-	1	PD3	I/O	FT	-	SPI2_MISO, I2S2_MCK, USART2_CTS	-
В7	85	-	-	-	PD4	I/O	FT	-	SPI2_MOSI, I2S2_SD, USART2_RTS	-
A6	86	-	-	-	PD5	I/O	FT	-	USART2_TX	-
В6	87	-	-	-	PD6	I/O	FT	-	USART2_RX	-
A5	88	ı	-	-	PD7	I/O	FT	-	USART2_CK	-
A8	89	55	39	A3	PB3	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT	-
A7	90	56	40	A4	PB4	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM17_BKIN, TIM3_CH1, TSC_G5_IO2, EVENTOUT	-
C5	91	57	41	B4	PB5	I/O	FT	-	SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	WKUP6

Table 18. Alternate functions selected through GPIOE_AFR registers for port E

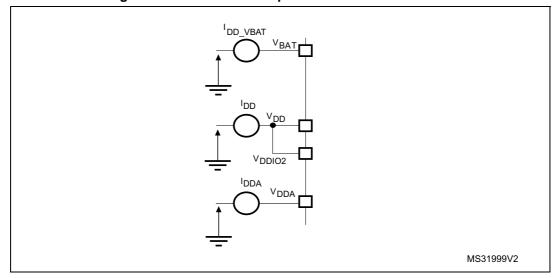

Pin name	AF0	AF1
PE0	TIM16_CH1	EVENTOUT
PE1	TIM17_CH1	EVENTOUT
PE2	TIM3_ETR	TSC_G7_IO1
PE3	TIM3_CH1	TSC_G7_IO2
PE4	TIM3_CH2	TSC_G7_IO3
PE5	TIM3_CH3	TSC_G7_IO4
PE6	TIM3_CH4	-
PE7	TIM1_ETR	-
PE8	TIM1_CH1N	-
PE9	TIM1_CH1	-
PE10	TIM1_CH2N	-
PE11	TIM1_CH2	-
PE12	TIM1_CH3N	SPI1_NSS, I2S1_WS
PE13	TIM1_CH3	SPI1_SCK, I2S1_CK
PE14	TIM1_CH4	SPI1_MISO, I2S1_MCK
PE15	TIM1_BKIN	SPI1_MOSI, I2S1_SD

Table 19. Alternate functions available on port F

Pin name	AF
PF0	CRS_SYNC
PF1	-
PF2	EVENTOUT
PF3	EVENTOUT
PF6	-
PF9	TIM15_CH1
PF10	TIM15_CH2

6.1.7 Current consumption measurement

Figure 13. Current consumption measurement scheme

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 6	Rising edge	2.66	2.78	2.9	V
V _{PVD6}	F VD tillesiloid o	Falling edge	2.56	2.68	2.8	V
V	PVD threshold 7	Rising edge	2.76	2.88	3	V
V _{PVD7}	F VD tillesiloid 7	Falling edge	2.66	2.78	2.9	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
I _{DD(PVD)}	PVD current consumption	-	-	0.15	0.26 ⁽¹⁾	μΑ

Table 27. Programmable voltage detector characteristics (continued)

6.3.4 Embedded reference voltage

The parameters given in *Table 28* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 24: General operating conditions*.

	Table 201 Elliboa	aoa iiitoiiiai roioroiiot	, ronag	•		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{REFINT}	Internal reference voltage	-40 °C < T _A < +105 °C	1.2	1.23	1.25	V
t _{START}	ADC_IN17 buffer startup time	-	-	-	10 ⁽¹⁾	μs
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	4 ⁽¹⁾	-	-	μs
ΔV_{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽¹⁾	mV
T _{Coeff}	Temperature coefficient	-	- 100 ⁽¹⁾	-	100 ⁽¹⁾	ppm/°C

Table 28. Embedded internal reference voltage

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 13: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

^{1.} Guaranteed by design, not tested in production.

^{1.} Guaranteed by design, not tested in production.

Table 29. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V (continued)

	ī			Α	II periphe	rals ena	bled	All	periphe	rals disa	abled	
Symbol	Parameter	Conditions	f _{HCLK}		Max @ T _A ⁽¹⁾				Max @ T _A ⁽¹⁾			Unit
Sy	S ₎			Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSI48	48 MHz	23.1	25.4	25.8	26.6	12.8	13.5	13.7	13.9	
			48 MHz	23.0	25.3 ⁽²⁾	25.7	26.5 ⁽²⁾	12.6	13.3 ⁽²⁾	13.5	13.8 ⁽²⁾	
	Supply current in Run mode, code executing from RAM	HSE bypass, PLL on	32 MHz	15.4	17.3	17.8	18.3	7.96	8.92	9.17	9.73	
	upply current in Run mode code executing from RAM		24 MHz	11.4	12.9	13.5	13.7	6.48	8.04	8.23	8.41	
	n Ru g froi	HSE bypass,	8 MHz	4.21	4.6	4.89	5.25	2.07	2.3	2.35	2.94	
	ent i uting	PLL off	1 MHz	0.78	0.9	0.92	1.15	0.36	0.48	0.59	0.82	
curre	curr		48 MHz	23.1	24.5	25.0	25.2	12.6	13.7	13.9	14.0	
	pply ode (HSI clock, PLL on	32 MHz	15.4	17.4	17.7	18.2	8.05	8.85	9.16	9.94	
	lns		24 MHz	11.5	13.0	13.6	13.9	6.49	8.06	8.21	8.47	
		HSI clock, PLL off	8 MHz	4.34	4.75	5.03	5.41	2.11	2.36	2.38	2.98	mA
I _{DD}		HSI48	48 MHz	15.1	16.6	16.8	17.5	3.08	3.43	3.56	3.61	IIIA
			48 MHz	15.0	16.5 ⁽²⁾	16.7	17.3 ⁽²⁾	2.93	3.28 ⁽²⁾	3.41	3.46 ⁽²⁾	
	Poor	HSE bypass, PLL on	32 MHz	9.9	11.4	11.6	11.9	2.0	2.24	2.32	2.49	
	u də;		24 MHz	7.43	8.17	8.71	8.82	1.63	1.82	1.88	1.9	
	Sle	HSE bypass,	8 MHz	2.83	3.09	3.26	3.66	0.76	0.88	0.91	0.93	
	ant ir	PLL off	1 MHz	0.42	0.54	0.55	0.67	0.28	0.39	0.41	0.43	
	curre		48 MHz	15.0	17.2	17.3	17.9	3.04	3.37	3.41	3.46	
	Supply current in Sleep mode	HSI clock, PLL on	32 MHz	9.93	11.3	11.6	11.7	2.11	2.35	2.44	2.65	
	Sup		24 MHz	7.53	8.45	8.87	8.95	1.64	1.83	1.9	1.93	
		HSI clock, PLL off	8 MHz	2.95	3.24	3.41	3.8	0.8	0.92	0.94	0.97	

^{1.} Data based on characterization results, not tested in production unless otherwise specified.

^{2.} Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 39*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R_{F}	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		$V_{DD} = 3.3 \text{ V},$ $Rm = 30 \Omega,$ CL = 10 pF@8 MHz	-	0.4	-	
		V_{DD} = 3.3 V, Rm = 45 Ω , CL = 10 pF@8 MHz	-	0.5	-	
I _{DD}	HSE current consumption	V_{DD} = 3.3 V, Rm = 30 Ω , CL = 5 pF@32 MHz	-	0.8	-	mA
		V_{DD} = 3.3 V, Rm = 30 Ω , CL = 10 pF@32 MHz	-	1	-	
		$V_{DD} = 3.3 \text{ V},$ $Rm = 30 \Omega,$ $CL = 5 \text{ pF}@32 \text{ MHz}$ $V_{DD} = 3.3 \text{ V},$ $Rm = 30 \Omega,$ $-$ 1	-			
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 39. HSE oscillator characteristics

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 2. Guaranteed by design, not tested in production.
- 3. This consumption level occurs during the first 2/3 of the $t_{\text{SU(HSE)}}$ startup time
- 4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 16*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit	
N _{END}	Endurance	$T_A = -40 \text{ to } +105 ^{\circ}\text{C}$	10	kcycle	
t _{RET} [1 kcycle ⁽²⁾ at T _A = 85 °C	30		
	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year	
		10 kcycle ⁽²⁾ at T _A = 55 °C	20		

Table 47. Flash memory endurance and data retention

- 1. Data based on characterization results, not tested in production.
- 2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 48*. They are based on the EMS levels and classes defined in application note AN1709.

Level/ **Parameter Symbol Conditions Class** $V_{DD} = 3.3 \text{ V, LQFP100, T}_{A} = +25 ^{\circ}\text{C,}$ Voltage limits to be applied on any I/O pin $f_{HCLK} = 48 \text{ MHz},$ 2B V_{FESD} to induce a functional disturbance conforming to IEC 61000-4-2 Fast transient voltage burst limits to be $V_{DD} = 3.3 \text{ V, LQFP100, } T_A = +25^{\circ}\text{C,}$ f_{HCLK} = 48 MHz, applied through 100 pF on V_{DD} and V_{SS} 4B V_{EFTB} pins to induce a functional disturbance conforming to IEC 61000-4-4

Table 48. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V	NRST input not filtered pulse	2.7 < V _{DD} < 3.6	300 ⁽³⁾	-	-	ns
V _{NF(NRST)}	TWNOT Imput not intered pulse	2.0 < V _{DD} < 3.6	500 ⁽³⁾	-	-	113

Table 56. NRST pin characteristics (continued)

- 1. Data based on design simulation only. Not tested in production.
- 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).
- 3. Data based on design simulation only. Not tested in production.

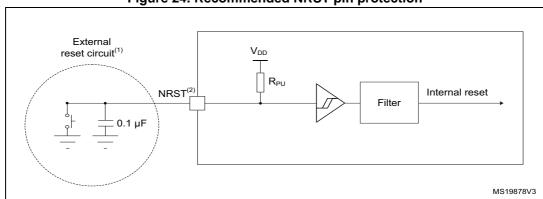


Figure 24. Recommended NRST pin protection

- 1. The external capacitor protects the device against parasitic resets.
- 2. The user must ensure that the level on the NRST pin can go below the $V_{\rm IL(NRST)}$ max level specified in *Table 56: NRST pin characteristics*. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 57* are derived from tests performed under the conditions summarized in *Table 24: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol Conditions Unit **Parameter** Min Тур Max Analog supply voltage for 2.4 3.6 ٧ V_{DDA} ADC ON Current consumption of $V_{DDA} = 3.3 V$ 0.9 mA I_{DDA} (ADC) the ADC⁽¹⁾ ADC clock frequency 0.6 14 MHz f_{ADC} $f_S^{(2)}$ Sampling rate 12-bit resolution 0.043 1 MHz

Table 57. ADC characteristics

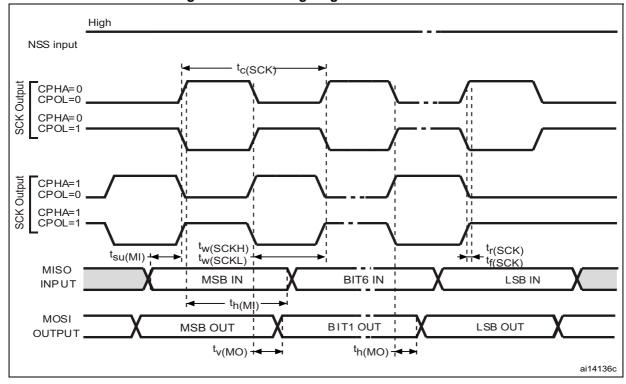


Figure 31. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 $V_{\rm DD}$ and 0.7 $V_{\rm DD}$.

Table 69. I²S characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz
1/t _{c(CK)}		Slave mode	0	6.5	
t _{r(CK)}	I ² S clock rise time	Canacitive lead C = 15 pE	-	10	
t _{f(CK)}	I ² S clock fall time	Capacitive load C _L = 15 pF	-	12	
t _{w(CKH)}	I ² S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-	
t _{w(CKL)}	I ² S clock low time	frequency = 48 kHz	312	-	
t _{v(WS)}	WS valid time	Master mode	2	-	ns
t _{h(WS)}	WS hold time	Master mode	2	-	
t _{su(WS)}	WS setup time	Slave mode	7	-	
t _{h(WS)}	WS hold time	Slave mode	0	-	
DuCy(SCK)	I ² S slave input clock duty cycle	Slave mode	25	75	%

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

7.1 UFBGA100 package information

UFBGA100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package.

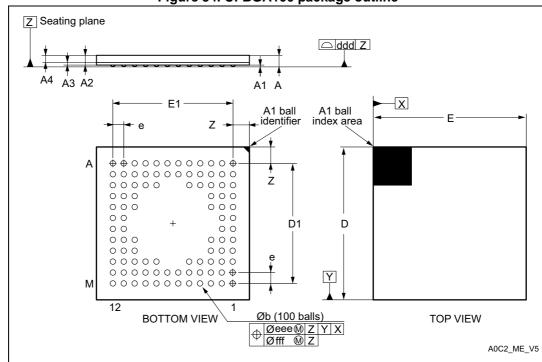


Figure 34. UFBGA100 package outline

1. Drawing is not to scale.

Table 70. UFBGA100 package mechanical data

Sumbal		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-

	rable 70. Of BOATOO package mechanical data (continued)						
Complead		millimeters	eters inches ⁽¹⁾		inches ⁽¹⁾		
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	
b	0.240	0.290	0.340	0.0094	0.0114	0.0134	
D	6.850	7.000	7.150	0.2697	0.2756	0.2815	
D1	-	5.500	-	-	0.2165	-	
Е	6.850	7.000	7.150	0.2697	0.2756	0.2815	
E1	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
Z	-	0.750	-	-	0.0295	-	
ddd	-	-	0.080	-	-	0.0031	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

Table 70. UFBGA100 package mechanical data (continued)

^{1.} Values in inches are converted from mm and rounded to 4 decimal digits.

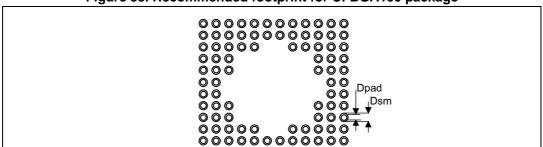


Figure 35. Recommended footprint for UFBGA100 package

Table 71. UFBGA100 recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the solder mask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

98/122 DocID025451 Rev 6

A0C2_FP_V1

7.2 LQFP100 package information

LQFP100 is a100-pin, 14 x 14 mm low-profile quad flat package.

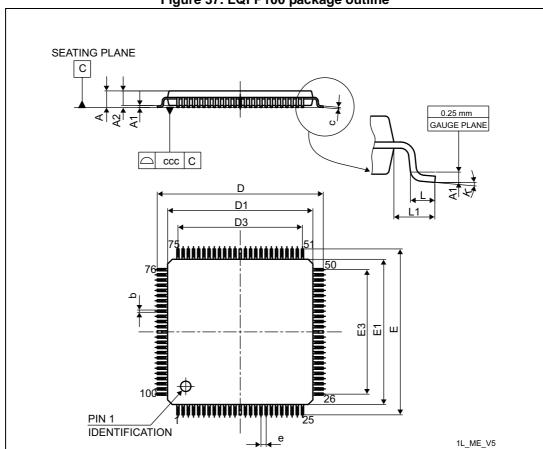


Figure 37. LQFP100 package outline

1. Drawing is not to scale.

Table 72. LQPF100 package mechanical data

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
Α	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378

7.7 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 24: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

$$T_J \max = T_A \max + (P_D \max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

$$P_{I/O}$$
 max = $\Sigma (V_{OL} \times I_{OL}) + \Sigma ((V_{DDIOx} - V_{OH}) \times I_{OH})$,

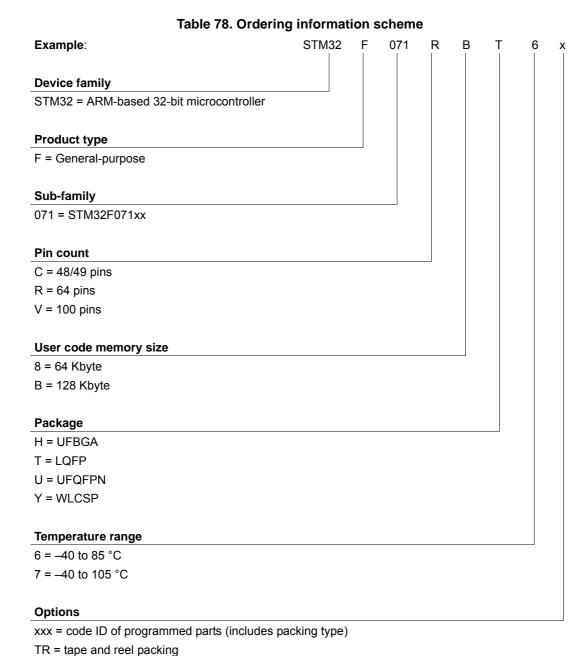
taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm	42	
ΘЈΑ	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	44	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	54	C/VV
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	49	

Table 77. Package thermal characteristics

7.7.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org


7.7.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

DocID025451 Rev 6

blank = tray packing

Table 79. Document revision history (continued)

Date	Revision	Changes
15-Sep-2016	5	Section 6: Electrical characteristics: - Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 updated - modified NSS timing waveforms (among other changes)
10-Jan-2017	6	Section 6: Electrical characteristics: - Table 40: LSE oscillator characteristics (f _{LSE} = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. - Table 28: Embedded internal reference voltage - V _{REFINT} values - Table 60: DAC characteristics - min. R _{LOAD} to V _{DDA} defined - Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: - The name of the section changed from the previous "Part numbering"