

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f363a6dfb-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

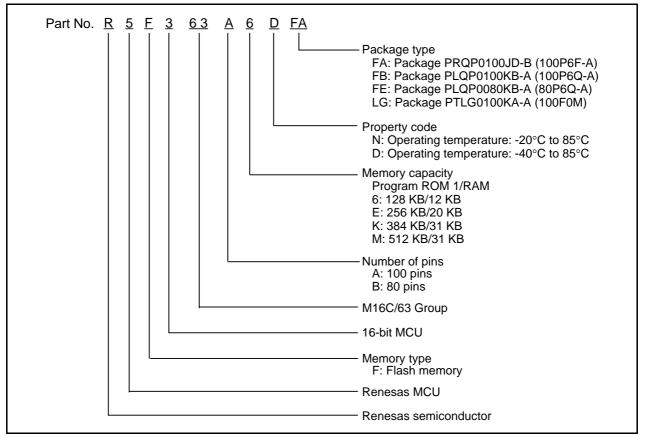
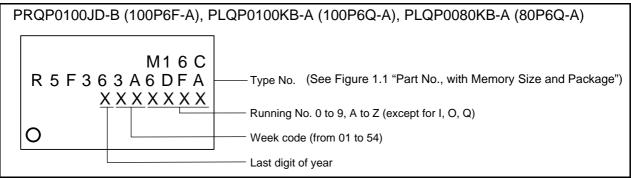
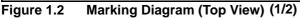




Figure 1.1 Part No., with Memory Size and Package

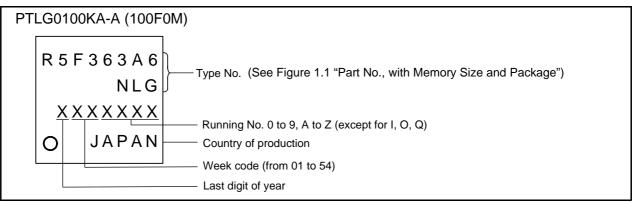


Figure 1.5 Block Diagram for the 80-Pin Package

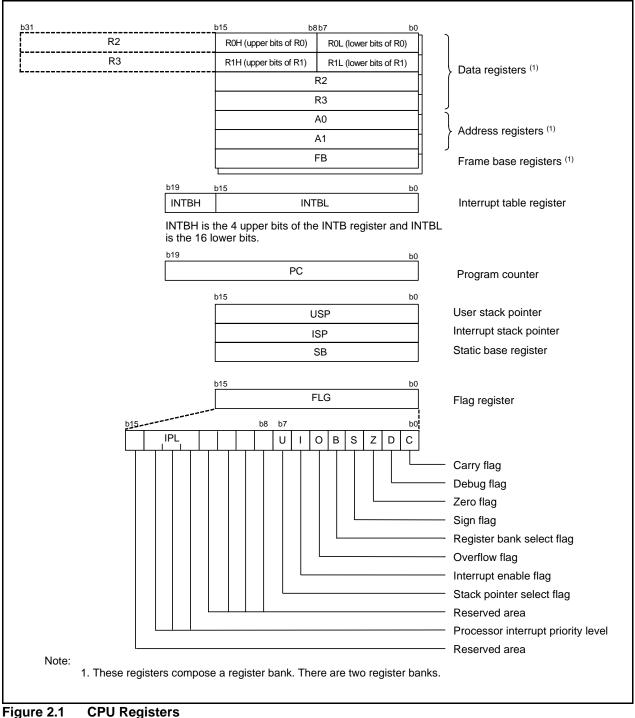

Dia Ma	Control Din	Port		I/O Pii	n for Peripheral Function	
Pin No.	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter
1		P9_5			CLK4	ANEX0
2		P9_4		TB4IN/PWM1		DA1
3		P9_3		TB3IN/PWM0		DA0
4		P9_2		TB2IN/PMC0	SOUT3	
5		P9_0		TB0IN	CLK3	
6	CNVSS					
7	XCIN	P8_7				
8	XCOUT	P8_6				
9	RESET					
10	XOUT					
11	VSS					
12	XIN					
13	VCC1					
14		P8_5	NMI		CEC	
15		P8_4	INT2	ZP		
16		P8_3	INT1			
17		P8_2	INTO			
18		P8_1		TA4IN	CTS5/RTS5	
19		P8_0		TA4OUT	RXD5/SCL5	
20		P7_7		TA3IN	CLK5	
21		P7_6		TA3OUT	TXD5/SDA5	
22		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM	
23		P7_0		TA0OUT	TXD2/SDA2/SDAMM	
24		P6_7			TXD1/SDA1	
25		P6_6			RXD1/SCL1	
26		P6_5			CLK1	
27		P6_4			CTS1/RTS1/CTS0/	
28		P6_3			CLKS1 TXD0/SDA0	
20		P6_2			RXD0/SCL0	
30		P6_1			CLK0	
31		P6_0		TRHO	CTS0/RTS0	
32	CLKOUT	P5_7			0100/1100	
33	0_11001	P5_6				
34		P5_5				
35		P5_4				
36		P5_3				
37		P5_2				
38		P5_1				
39		P5_0				
40		P4_3				

Table 1.8 Pin Names for the 80-Pin Package (1/2)

Central Processing Unit (CPU) 2.

Figure 2.1 shows the CPU registers. Seven registers (R0, R1, R2, R3, A0, A1, and FB) out of 13 compose a register bank, and there are two register banks.

2.8.7 Interrupt Enable Flag (I Flag)

The I flag enables maskable interrupts.

Maskable interrupts are disabled when the I flag is 0, and enabled when it is 1. The I flag becomes 0 when an interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag becomes 0 when a hardware interrupt request is accepted, or the INT instruction of software interrupt number 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt request is enabled.

2.8.10 Reserved Areas

Only set these bits to 0. The read value is undefined.

4. Special Function Registers (SFRs)

4.1 SFRs

An SFR is a control register for a peripheral function.

Address	Register	Symbol	Reset Value
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	0000 0000b (CNVSS pin is low) 0000 0011b (CNVSS pin is high) ⁽²⁾
0005h	Processor Mode Register 1	PM1	0000 1000b
0006h	System Clock Control Register 0	CM0	0100 1000b
0007h	System Clock Control Register 1	CM1	0010 0000b
0008h	Chip Select Control Register	CSR	01h
0009h	External Area Recovery Cycle Control Register	EWR	XXXX XX00b
000Ah	Protect Register	PRCR	00h
000Bh	Data Bank Register	DBR	00h
000Ch	Oscillation Stop Detection Register	CM2	0X00 0010b ⁽³⁾
000Dh			
000Eh			
000Fh			
0010h	Program 2 Area Control Register	PRG2C	XXXX XX00b
0011h	External Area Wait Control Expansion Register	EWC	00h
0012h	Peripheral Clock Select Register	PCLKR	0000 0011b
0013h	Sub Clock Division Control Register	SCM0	XXXX X000b
0014h			
0015h	Clock Prescaler Reset Flag	CPSRF	0XXX XXXXb
0016h	Peripheral Clock Stop Register 1	PCLKSTP1	X000 0000b
0017h			
0018h	Reset Source Determine Register	RSTFR	XX00 001Xb (hardware reset) ⁽⁴⁾
0019h	Voltage Detector 2 Flag Register	VCR1	0000 1000b ⁽⁵⁾
001Ah	Voltage Detector Operation Enable Register	VCR2	00h (5)
001Bh	Chip Select Expansion Control Register	CSE	00h
001Ch			
001Dh			
001Eh	Processor Mode Register 2	PM2	XX00 0X01b
001Fh			

Table 4.1SFR Information (1) (1)

X: Undefined

Notes:

- 1. The blank areas are reserved. No access is allowed.
- 2. Software reset, watchdog timer reset, oscillator stop detect reset, voltage monitor 1 reset, and voltage monitor 2 reset do not affect the following bits: bits PM01 and PM00 in the PM0 register.
- 3. Oscillator stop detect reset does not affect bits CM20, CM21, and CM27.
- 4. The state of bits in the RSTFR register depends on the reset type.
- 5. This is the reset value after hardware reset. Refer to the explanation of each register for details.

			Description of the
Address	Register	Symbol	Reset Value
0240h			
0241h			
0242h			
0243h			
0244h	UART0 Special Mode Register 4	U0SMR4	00h
0245h	UART0 Special Mode Register 3	U0SMR3	000X 0X0Xb
0246h	UART0 Special Mode Register 2	U0SMR2	X000 0000b
0247h	UART0 Special Mode Register	U0SMR	X000 0000b
0248h	UART0 Transmit/Receive Mode Register	U0MR	00h
0249h	UART0 Bit Rate Register	U0BRG	XXh
024Ah	UART0 Transmit Buffer Register	UOTB	XXh
024Bh		0015	XXh
024Ch	UART0 Transmit/Receive Control Register 0	U0C0	0000 1000b
024Dh	UART0 Transmit/Receive Control Register 1	U0C1	00XX 0010b
024Eh	UART0 Receive Buffer Register	UORB	XXh
024Fh			XXh
0250h	UART Transmit/Receive Control Register 2	UCON	X000 0000b
0251h			
0252h	UART Clock Select Register	UCLKSEL0	X0h
0253h			
0254h	UART1 Special Mode Register 4	U1SMR4	00h
0255h	UART1 Special Mode Register 3	U1SMR3	000X 0X0Xb
0256h	UART1 Special Mode Register 2	U1SMR2	X000 0000b
0257h	UART1 Special Mode Register	U1SMR	X000 0000b
0258h	UART1 Transmit/Receive Mode Register	U1MR	00h
0259h	UART1 Bit Rate Register	U1BRG	XXh
025Ah	LIADTA Transmit Duffer Desister	LIATE	XXh
025Bh	UART1 Transmit Buffer Register	U1TB	XXh
025Ch	UART1 Transmit/Receive Control Register 0	U1C0	0000 1000b
025Dh	UART1 Transmit/Receive Control Register 1	U1C1	00XX 0010b
025Eh		1400	XXh
025Fh	UART1 Receive Buffer Register	U1RB	XXh
0260h			
0261h			
0262h			
0263h			
0264h	UART2 Special Mode Register 4	U2SMR4	00h
0265h	UART2 Special Mode Register 3	U2SMR3	000X 0X0Xb
0266h	UART2 Special Mode Register 2	U2SMR2	X000 0000b
0267h	UART2 Special Mode Register	U2SMR	X000 0000b
0268h	UART2 Transmit/Receive Mode Register	U2MR	00h
0269h	UART2 Bit Rate Register	U2BRG	XXh
026Ah			XXh
026Bh	UART2 Transmit Buffer Register	U2TB	XXh
026Ch	UART2 Transmit/Receive Control Register 0	U2C0	0000 1000b
026Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000 0010b
026Eh	Ŭ		XXh
026Fh	UART2 Receive Buffer Register	U2RB	XXh
			Villadofino

Table 4.9SFR Information (9) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
0360h	Pull-Up Control Register 0	PUR0	00h
0361h	Pull-Up Control Register 1	PUR1	0000 0000b ⁽²⁾
			0000 0010b
0362h	Pull-Up Control Register 2	PUR2	00h
0363h			
0364h			
0365h			
0366h	Port Control Register	PCR	0000 0XX0b
0367h			
0368h			
0369h	NMI/SD Digital Filter Register	NMIDF	XXXX X000b
036Ah			
036Bh			
036Ch			
036Dh			
036Eh			
036Fh			
0370h	PWM Control Register 0	PWMCON0	00h
0371h			
0372h	PWM0 Prescaler	PWMPRE0	00h
0373h	PWM0 Register	PWMREG0	00h
0374h	PWM1 Prescaler	PWMPRE1	00h
0375h	PWM1 Register	PWMREG1	00h
0376h	PWM Control Register 1	PWMCON1	00h
0377h			
0378h			
0379h			
037Ah			
037Bh			
037Ch	Count Source Protection Mode Register	CSPR	00h ⁽³⁾
037Dh	Watchdog Timer Refresh Register	WDTR	XXh
037Eh	Watchdog Timer Start Register	WDTS	XXh
037Fh	Watchdog Timer Control Register	WDC	00XX XXXXb
0380h to			
038Fh			X: Unde

Table 4.14SFR Information (14) (1)

Notes:

2. Values after hardware reset, power-on reset, or voltage monitor 0 reset are as follows:

- 00000000b when a low-level signal is input to the CNVSS pin

- 00000010b when a high-level signal is input to the CNVSS pin

Values after voltage monitor 1 reset, voltage monitor 2 reset, software reset, watchdog timer reset, or oscillation stop detect reset are as follows:

- 00000000b when bits PM01 and PM00 in the PM0 register are 00b (single-chip mode).

- 00000010b when bits PM01 and PM00 in the PM0 register are 01b (memory expansion mode) or 11b (microprocessor mode).

3. When the CSPROINI bit in the OFS1 address is 0, the reset value is 1000 0000b.

^{1.} The blank areas are reserved. No access is allowed.

5.1.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions (1/4)

 $V_{CC1} = V_{CC2} = 1.8$ to 5.5 V at $T_{opr} = -20^{\circ}$ C to 85° C/-40°C to 85° C unless otherwise specified.

Symbol	Parameter				Standard	ł	Unit
Symbol		Faranteler		Min.	Тур.	Max.	Unit
V _{CC1}	Supply					5.5	V
	voltage	CEC function is not used ($V_{CC1} = V_{C0}$	C2)	1.8		5.5	V
		CEC function is used		2.7		3.63	V
V _{CC2}	Supply volt	age	$V_{CC1} \ge 2.7$	2.7		V _{CC1}	V
			V _{CC1} < 2.7		V _{CC1}		V
AV _{CC}	Analog sup	ply voltage			V _{CC1}		V
V _{SS}	Supply volt	age			0		V
AV _{SS}	Analog sup	ply voltage			0		V
VIH	High input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	$2.7 \text{ V} \le \text{V}_{CC1} \le 5.5 \text{ V}$	0.8V _{CC2}		V _{CC2}	V
	voltage		$1.8 \text{ V} \le \text{V}_{\text{CC1}} < 2.7 \text{ V}$	0.85V _{CC2}		V _{CC2}	V
	 	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (in single-chip mode)	$2.7 \text{ V} \le \text{V}_{CC1} \le 5.5 \text{ V}$	0.8V _{CC2}		V _{CC2}	V
			$1.8 \text{ V} \le \text{V}_{\text{CC1}} < 2.7 \text{ V}$	0.85V _{CC2}		V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7,	$2.7~\text{V} \leq \text{V}_{\text{CC1}} \leq 5.5~\text{V}$	0.5V _{CC2}		V _{CC2}	V
		P2_0 to P2_7, P3_0 (data input in memory expansion and microprocessor modes)	$1.8 \text{ V} \le \text{V}_{\text{CC1}} < 2.7 \text{ V}$	0.55V _{CC2}		V _{CC2}	V
		P6_0 to P6_7, P7_2 to P7_7,	$2.7 \text{ V} \le \text{V}_{\text{CC1}} \le 5.5 \text{ V}$	0.8V _{CC1}		V _{CC1}	V
		P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE	$1.8 \text{ V} \le \text{V}_{\text{CC1}} < 2.7 \text{ V}$	0.85V _{CC1}		V _{CC1}	V
		P7_0, P7_1, P8_5	$2.7~V \leq V_{CC1} \leq 5.5~V$	0.8V _{CC1}		6.5	V
			$1.8 \text{ V} \le \text{V}_{\text{CC1}} < 2.7 \text{ V}$	0.85V _{CC1}		6.5	V
		CEC		0.7V _{CC1}			V
V _{IL}	Low input	P3_1 to P3_7, P4_0 to P4_7, P5_0) to P5_7	0		0.2V _{CC2}	V
	voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (in single-chip mode)		0		0.2V _{CC2}	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input in memory expansion and microprocessor mode)		0		0.16V _{CC2}	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	0 to P8_7, P9_0 to P9_7,	0		0.2V _{CC1}	V
		CEC				0.26V _{CC1}	V

Table 5.11 Flash Memory (Data Flash) Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V at T_{opr} = -20 to 85°C/-40 to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions	Standard		ard	Unit
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program and erase cycles ^{(1), (3), (4)}	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	10,000 (2)			times
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		300	4000	μS
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		140	3000	μS
-	Block erase time	V _{CC1} = 3.3 V, T _{opr} = 25°C		0.2	3.0	S
t _{d(SR-SUS)}	Time delay from suspend request until suspend				$5 + \frac{3}{f(BCLK)}$	ms
-	Interval from erase start/restart until following suspend request		0			μs
-	Suspend interval necessary for auto-erasure to complete ⁽⁷⁾		20			ms
-	Time from suspend until erase restart				$30 + \frac{1}{f_{(BCLK)}}$	μs
-	Program, erase voltage		2.7		5.5	V
-	Read voltage		2.7		5.5	V
-	Program, erase temperature		-20/-40		85	°C
t _{PS}	Flash memory circuit stabilization wa	ait time			50	μS
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles

The program and erase cycles refer to the number of per-block erasures.

If the program and erase cycles are n (n = 10,000), each block can be erased n times.

For example, if a 4 KB block is erased after writing 2 word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.

Table 5.14 Voltage Detector 2 Electrical Characteristics

The measurement condition is V_{CC1} = 1.8 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
Symbol	i arameter	Condition	Min.	Тур.	Max.	Onit
V _{det2}	Voltage detection level Vdet2_0	When V _{CC1} is falling	3.70	4.00	4.30	V
-	Hysteresis width at the rising of V _{CC1} in voltage detector 2			0.15		V
-	Voltage detector 2 response time ⁽²⁾	When V _{CC1} falls from 5 V to (Vdet2_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC27 = 1, V _{CC1} = 5.0 V		1.7		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽¹⁾				100	μs

Notes:

1. Necessary time until the voltage detector operates after setting to 1 again after setting the VC27 bit in the VCR2 register to 0.

2. Time from when passing the V_{det2} until when a voltage monitor 2 reset is generated.

Table 5.15Power-On Reset Circuit

The measurement condition is V_{CC1} = 2.0 to 5.5 V, T_{opr} = -20°C to 85°C/ -40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
	i arameter		Min.	Тур.	Max.	Offic
V _{por1}	Voltage at which power-on reset enabled ⁽¹⁾				0.5	V
t _{rth}	External power V _{CC1} rise gradient		2.0		50000	mV/ms
t _{w(por)}	Time necessary to enable power-on reset		300			ms

Note: 1.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS1 address to 0. Also, set the VDSEL1 bit to 0 (Vdet0_2).

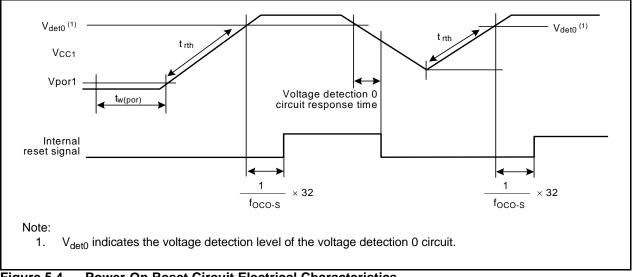


Figure 5.4 Power-On Reset Circuit Electrical Characteristics

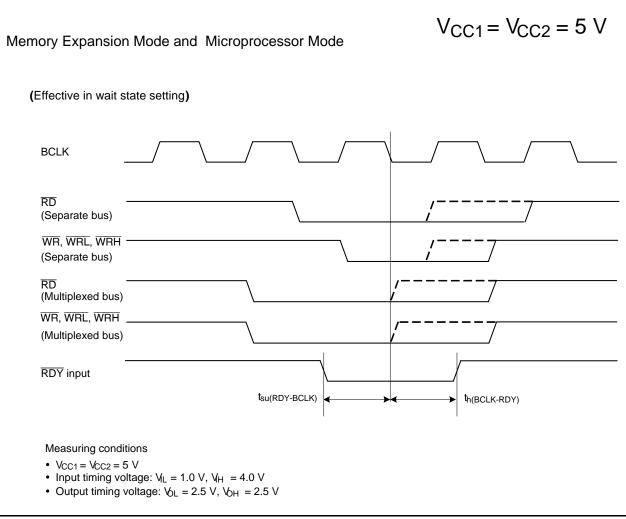


Figure 5.14 Timing Diagram

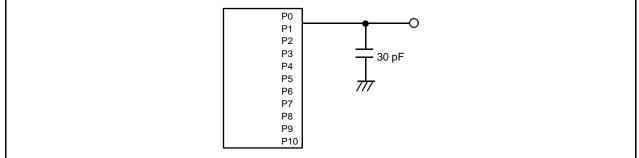
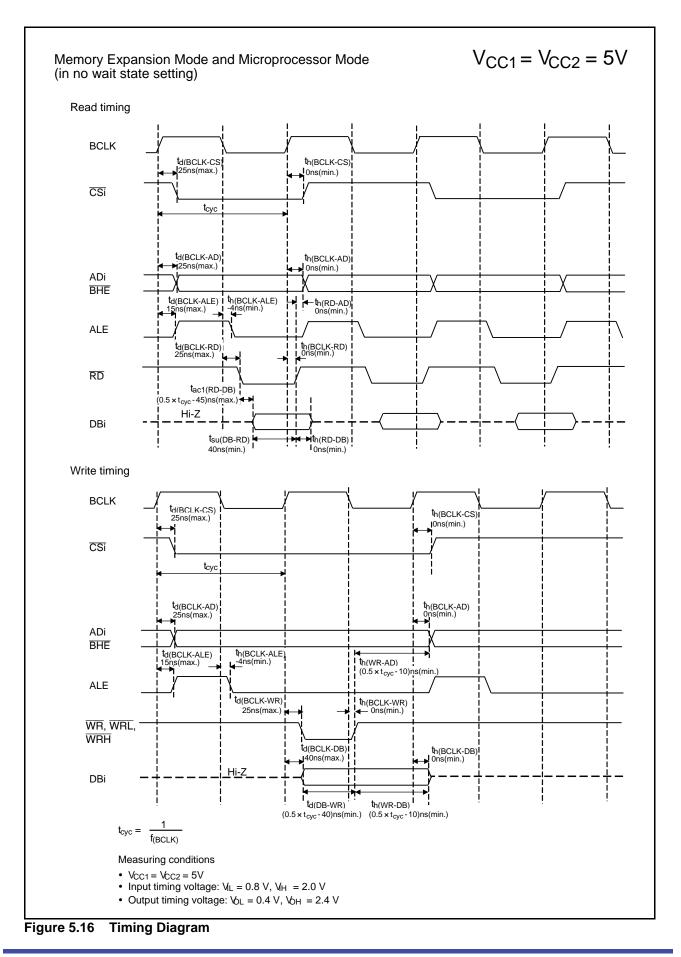



Figure 5.15 Ports P0 to P10 Measurement Circuit

RENESAS

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

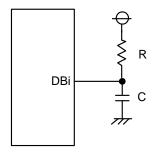
(V_{CC1} = V_{CC2} = 3 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85° C/-40°C to 85° C unless otherwise specified)

5.3.4.4 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area

Table 5.60Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Accessing External Area)

Symbol	Parameter	Measuring	Stan	Unit	
Symbol	Palameter	Condition	Min.	Min. Max.	
t _{d(BCLK-AD)}	Address output delay time			30	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		0		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			30	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			25	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.30		30	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			30	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) (3)		(Note 2)		ns

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)\times 10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pullup (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1 - V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF \times 1 k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

$V_{CC1} = V_{CC2} = 1.8 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

Table 5.71	Timer A Input	(Two-Phase Pulse Input	in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Onit
t _{c(TA)}	TAiIN input cycle time	3		μS
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	800		ns
t _{su(TAOUT-TAIN)}	TAilN input setup time	800		ns

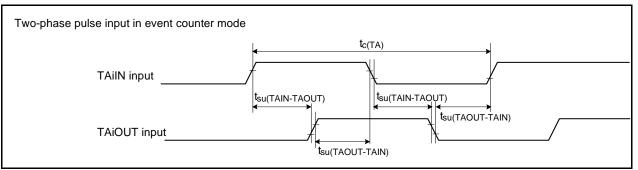
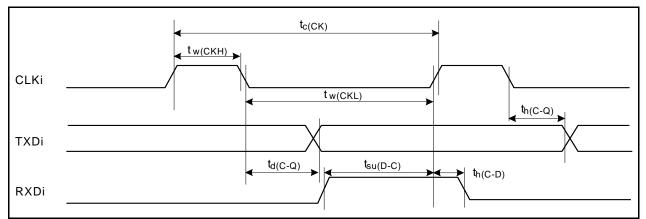


Figure 5.39 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

$V_{CC1} = V_{CC2} = 1.8 V$

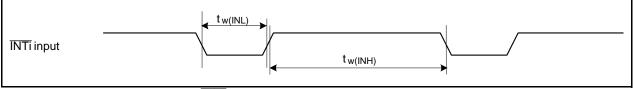

Timing Requirements

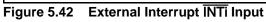
 $(V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.4.2.5 Serial Interface

Table 5.75Serial Interface

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
t _{c(CK)}	CLKi input cycle time	800		ns
t _{w(CKH)}	CLKi input high pulse width	400		ns
t _{w(CKL)}	CLKi input low pulse width	400		ns
t _{d(C-Q)}	TXDi output delay time		240	ns
t _{h(C-Q)}	TXDi hold time	0		ns
t _{su(D-C)}	RXDi input setup time	200		ns
t _{h(C-D)}	RXDi input hold time	90		ns

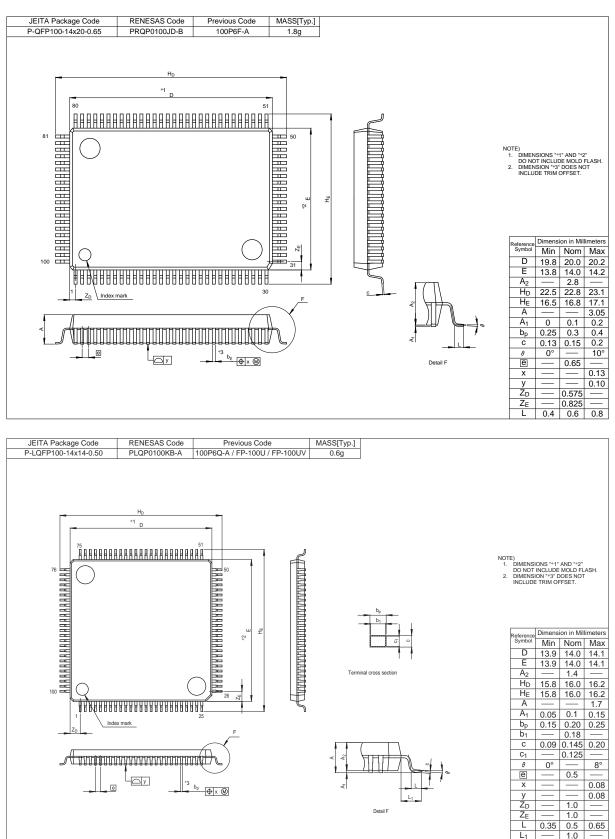



Figure 5.41 Serial Interface

5.4.2.6 External Interrupt INTi Input

Table 5.76 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Onit
t _{w(INH)}	INTi input high pulse width	1000		ns
t _{w(INL)}	INTi input low pulse width	1000		ns
tr(INT)	INTi input rising time		100	μs
tf(INT)	INTi input falling time		100	μs



Appendix 1. Package Dimensions

The information on the latest package dimensions or packaging may be obtained from "Packages" on the Renesas Electronics website.

REVISION HISTORY

M16C/63 Group Datasheet

			Description				
Rev.	Date	Page	Summary				
0.30	Jul 15, 2009	-	First Edition issued.				
0.40	Aug 18, 2009	3	Table 1.2 "Specifications for the 100-Pin Package (2/2)" partially modified				
01.10	,	6	Table 1.5 "Product List" partially modified				
		7	Figure 1.1 "Part No., with Memory Size and Package" partially modified				
		12	Figure 1.7 "Pin Assignment for the 100-Pin Package" added				
		13	Table 1.6 "Pin Names for the 100-Pin Package (1/2)" partially modified				
		14	Table 1.7 "Pin Names for the 100-Pin Package (2/2)" partially modified				
		107	Table 5.65 "External Clock Input (XIN Input)" partially modified				
		112	Appendix 1. "Package Dimensions" PTLG0100KA-A added				
0.41	Aug 25, 2009	6	Table 1.5 "Product List" Part No. partially modified				
		7	Figure 1.3 "Marking Diagram (Top View) (2/2)" added				
1.00	Sep 15, 2009	52	Table 5.6 "A/D Conversion Characteristics (1/2)" note 3 added				
2.00	Feb 07, 2011	Overall	001Ah Voltage Detector Operation Enable Register: Changed reset value from "000X 0000b".				
		Overall	002Ah Voltage Monitor 0 Control Register: Changed reset value from "1100 XX10b".				
		Overall	002Bh Voltage Monitor 1 Control Register: Changed reset value from "1000 1X10b".				
		Overall	0324h Increment/Decrement Flag: Changed name from Up/Down Flag.				
		Overall	03DCh D/A Control Register: Changed reset value from "XXXX XX00b".				
		Overall	D08Ah to D08Bh PMC0 Counter Value Register: Deleted.				
		Overall	D09Eh to D09Fh PMC1 Counter Value Register: Deleted.				
		Overview					
		3, 5	Table 1.2 and Table 1.4 Specifications for the 100/80-Pin Package: Deleted note 1.				
		6	Table 1.5 Product List: Changed the development status.				
		10	Table 1.10 Pin Functions for the 100-Pin Package (1/3):				
		18	Changed the descriptions of the HOLD pin.				
		Address Space					
		27	Figure 3.2 Memory Map: Added note 1 and 3 to the reserved areas.				
		Special Fund	tion Registers (SFRs)				
	29 Table 4.1 SFR Information (1):						
			Deleted "the VCR1 register, the VCR2 register" from note 2.				
		30	Deleted notes 5 to 6 and added note 5. Table 4.2 SFR Information (2): Deleted notes 2 to 7 and added note 2.				
		47					
			4.2.1 Register Settings: Added the description regarding read-modify-write instructions.				
		48 Electrical Ch	Table 4.20 Read-Modify-Write Instructions: Added. aracteristics				
			Table 5.1 Absolute Maximum Ratings:				
		49	Divide a row for T _{opr} (Flash program erase) into Program area and Data area.				
		50	Table 5.2 Recommended Operating Conditions (1/4):				
		50	Added rows for the CEC value to V_{CC1} , V_{IH} , and V_{IL} .				
		56	Table 5.9 CPU Clock When Operating Flash Memory (f _(BCLK)): Added note 3.				
		56	Table 5.10 Flash Memory (Program ROM 1, 2) Electrical Characteristics:				
		50	Added a condition to the Read voltage row.				
		59	Table 5.15 Power-On Reset Circuit:				
			 Changed the maximum value for V_{por1} from 0.1. 				
			• Added the t _{w(por)} row.				
			Added the last line in note 1.				
		59	Figure 5.4 Power-On Reset Circuit Electrical Characteristics: Deleted note 2.				
		61	Table 5.17 40 MHz On-Chip Oscillator Electrical Characteristics: Deleted note 1.				
		63	Table 5.20 Electrical Characteristics (2): Added "ZP, IDU, IDV, IDW" to the $V_{T+} - V_{T-}$ row.				
		70, 91, 113	5.2.2.7, 5.3.2.7, and 5.4.2.7 Multi-master I ² C-bus: Added.				
		71	Table 5.35 Memory Expansion Mode and Microprocessor Mode:				
			Changed RDY input setup time from 30.				

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.