

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, I ² C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	384KB (384K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f363aknfa-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Product List

Table 1.5 lists product information. Figure 1.1 shows the Part No., with Memory Size and Package, and Figure 1.2 and Figure 1.3 shows the Marking Diagram (Top View).

Table 1.5 Product List

As of November, 2012

	R	ROM Capacity		RAM														
Part No.	Program ROM 1	Program ROM 2	Data flash	Capacity	Package Code	Remarks												
R5F363A6NFA					PRQP0100JD-B													
R5F363A6NFB					PLQP0100KB-A	Operating												
R5F363A6NLG					PTLG0100KA-A	temperature -20°C to 85°C												
R5F363B6NFE	128 KB	16 KB	4 KB × 2 blocks	12 KB	PLQP0080KB-A													
R5F363A6DFA			X 2 010013		PRQP0100JD-B	Operating												
R5F363A6DFB					F	PLQP0100KB-A	temperature											
R5F363B6DFE					PLQP0080KB-A	-40°C to 85°C												
R5F363AENFA					PRQP0100JD-B													
R5F363AENFB						PLQP0100KB-A	Operating											
R5F363AENLG		16 KB	16 KB	16 KB	16 KB	16 KB	16 KB	16 KB	16 KB		4 KB		PTLG0100KA-A	temperature -20°C to 85°C				
R5F363BENFE	256 KB									16 KB	16 KB	16 KB	16 KB	16 K B	4 ND x 2 blocks	20 KB	PLQP0080KB-A	
R5F363AEDFA												PRQP0100JD-B	Operating					
R5F363AEDFB									PLQP0100KB-A	temperature								
R5F363BEDFE					PLQP0080KB-A	-40°C to 85°C												
R5F363AKNFA					PRQP0100JD-B	Operating												
R5F363AKNFB					PLQP0100KB-A	temperature												
R5F363AKNLG	384 KB	16 KB	4 KB	31 KB	PTLG0100KA-A	-20°C to 85°C												
R5F363AKDFA	001112	10112	× 2 blocks	01 HD	PRQP0100JD-B													
R5F363AKDFB					PLQP0100KB-A	temperature -40°C to 85°C												
R5F363AMNFA					PRQP0100JD-B	Operating												
R5F363AMNFB					PLQP0100KB-A	temperature												
R5F363AMNLG	512 KB	16 KB	4 KB	31 KB	PTLG0100KA-A	-20°C to 85°C												
R5F363AMDFA			× 2 blocks	0110	PRQP0100JD-B	Operating temperature												
R5F363AMDFB					PLQP0100KB-A													

(D): Under development

(P): Planning

Previous package codes are as follows: PRQP0100JD-B: 100P6F-A PLQP0100KB-A: 100P6Q-A PTLG0100KA-A: 100F0M PLQP0080KB-A: 80P6Q-A

Signal Name	Pin Name	I/O	Power Supply	Description
UART0 to	SDA0 to SDA2, SDA5	I/O	VCC1	Serial data I/O.
UART2, UART5 to	SDA6, SDA7	I/O	VCC2	
UART7 I ² C mode	SCL0 to SCL2, SCL5	I/O	VCC1	Transmit/receive clock I/O.
SCL6, SCL7 I/O VCC2				
Serial	CLK3, CLK4	I/O	VCC1	Transmit/receive clock I/O.
interface	SIN3, SIN4	I	VCC1	Serial data input.
SI/O3, SI/O4	SOUT3, SOUT4	0	VCC1	Serial data output.
Multi-master	SDAMM	I/O	VCC1	Serial data I/O (N-channel open drain output).
I ² C-bus interface	SCLMM	I/O	VCC1	Transmit/receive clock I/O (N-channel open drain output).
CEC I/O	CEC	I/O	VCC1	CEC I/O (N-channel open drain output).
Reference voltage input	VREF	I	VCC1	Reference voltage input for the A/D and D/A converters.
	AN0 to AN7	I	VCC1	
A/D converter	AN0_0 to AN0_7 AN2_0 to AN2_7	Ι	VCC2	Analog input.
converter	ADTRG	I	VCC1	External trigger input.
	ANEX0, ANEX1	I	VCC1	Extended analog input.
D/A converter	DA0, DA1	0	VCC1	Output for the D/A converter.
I/O ports	P0_0 to P0_7 P1_0 to P1_7 P2_0 to P2_7 P3_0 to P3_7 P4_0 to P4_7 P5_0 to P5_7	I/O	VCC2	8-bit CMOS I/O ports. A direction register determines whether each pin is used as an input port or an output port. A pull-up resistor may be enabled or disabled for input ports in 4-bit units.
	P6_0 to P6_7 P7_0 to P7_7 P8_0 to P8_7 P9_0 to P9_7 P10_0 to P10_7	I/O	VCC1	8-bit I/O ports having equivalent functions to P0. However, P7_0, P7_1, and P8_5 are N-channel open drain output ports. No pull-up resistor is provided. P8_5 is an input port for verifying the NMI pin level and shares a pin with NMI.

 Table 1.12
 Pin Functions for the 100-Pin Package (3/3)

Address	Register	Symbol	Reset Value
0300h	Timer B3/B4/B5 Count Start Flag	TBSR	000X XXXXb
0301h			
0302h			XXh
0303h	Timer A1-1 Register	TA11	XXh
0304h			XXh
0304h	Timer A2-1 Register	TA21	XXh
0306h			XXh
0300h	Timer A4-1 Register	TA41 -	XXh
	Three Dheese DW/M Constral Devictor 0	1010/000	
0308h	Three-Phase PWM Control Register 0	INVC0 INVC1	00h
0309h	Three-Phase PWM Control Register 1		00h
030Ah	Three-Phase Output Buffer Register 0	IDB0	XX11 1111b
030Bh	Three-Phase Output Buffer Register 1	IDB1	XX11 1111b
030Ch	Dead Time Timer	DTT	XXh
030Dh	Timer B2 Interrupt Generation Frequency Set Counter	ICTB2	XXh
030Eh	Position-Data-Retain Function Control Register	PDRF	XXXX 0000b
030Fh			
0310h	Timer B3 Register	ТВЗ	XXh
0311h	Timer B3 Register	103	XXh
0312h	Timer D4 Desister		XXh
0313h	Timer B4 Register	TB4	XXh
0314h	Timer DC De sister	TDC	XXh
0315h	Timer B5 Register	TB5	XXh
0316h			
0317h			
0318h	Port Function Control Register	PFCR	0011 1111b
0319h			
031Ah			
031Bh	Timer B3 Mode Register	TB3MR	00XX 0000b
031Ch	Timer B4 Mode Register	TB4MR	00XX 0000b
031Dh	Timer B5 Mode Register	TB5MR	00XX 0000b
031Eh		1 Bolvint	00/// 00000
031Eh			
0320h	Count Start Flag	TABSR	00h
032011 0321h	Count Start Flag	TADON	0011
		0105	0.01
0322h	One-Shot Start Flag	ONSF	00h
0323h	Trigger Select Register	TRGSR	00h
0324h	Increment/Decrement Flag	UDF	00h
0325h			
0326h	Timer A0 Register	TAO	XXh
0327h			XXh
0328h	Timer A1 Register	TA1	XXh
0329h			XXh
032Ah	Timer A2 Register	TA2	XXh
032Bh		172	XXh
032Ch	Timor A2 Bogistor	TAD	XXh
	Timer A3 Register	TA3	XXh
032Dh			
032Dh 032Eh	Timer A4 Register	TA4	XXh

Table 4.12 SFR Information (12) ⁽¹⁾

Note:

1. The blank areas are reserved. No access is allowed.

Address	Register	Symbol	Reset Value
D080h	PMC0 Header Pattern Set Register (Min)	PMC0HDPMIN	0000 0000b
D081h	PMC0 Header Pattern Set Register (Min)		XXXX X000b
D082h	DMC0 Header Dettern Set Register (Max)	PMC0HDPMAX	0000 0000b
D083h	PMC0 Header Pattern Set Register (Max)	PINCONDPINAL	XXXX X000b
D084h	PMC0 Data 0 Pattern Set Register (Min)	PMC0D0PMIN	00h
D085h	PMC0 Data 0 Pattern Set Register (Max)	PMC0D0PMAX	00h
D086h	PMC0 Data 1 Pattern Set Register (Min)	PMC0D1PMIN	00h
D087h	PMC0 Data 1 Pattern Set Register (Max)	PMC0D1PMAX	00h
D088h	PMC0 Measurements Register	PMC0TIM	00h
D089h	- FINCO Measurements Register	FINCOTIN	00h
D08Ah			
D08Bh			
D08Ch	PMC0 Receive Data Store Register 0	PMC0DAT0	00h
D08Dh	PMC0 Receive Data Store Register 1	PMC0DAT1	00h
D08Eh	PMC0 Receive Data Store Register 2	PMC0DAT2	00h
D08Fh	PMC0 Receive Data Store Register 3	PMC0DAT3	00h
D090h	PMC0 Receive Data Store Register 4	PMC0DAT4	00h
D091h	PMC0 Receive Data Store Register 5	PMC0DAT5	00h
D092h	PMC0 Receive Bit Count Register	PMC0RBIT	XX00 0000b
D093h			
D094h	PMC1 Header Pattern Set Register (Min)	PMC1HDPMIN	0000 0000b
D095h		FMCTHDFMIN	XXXX X000b
D096h	DMC1 Header Dettern Set Register (Max)	PMC1HDPMAX	0000 0000b
D097h	PMC1 Header Pattern Set Register (Max)	PINCTHOPINIAN	XXXX X000b
D098h	PMC1 Data 0 Pattern Set Register (Min)	PMC1D0PMIN	00h
D099h	PMC1 Data 0 Pattern Set Register (Max)	PMC1D0PMAX	00h
D09Ah	PMC1 Data 1 Pattern Set Register (Min)	PMC1D1PMIN	00h
D09Bh	PMC1 Data 1 Pattern Set Register (Max)	PMC1D1PMAX	00h
D09Ch	PMC1 Massuramente Register	PMC1TIM	00h
D09Dh	PMC1 Measurements Register		00h
D09Eh			
D09Fh			

Table 4.18SFR Information (18) (1)

Note:

1. The blank areas are reserved. No access is allowed.

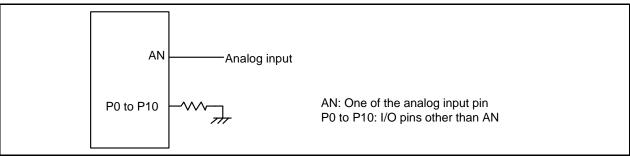


Figure 5.3 A/D Accuracy Measure Circuit

Table 5.7A/D Conversion Characteristics (2/2) (1)

 $AV_{CC} = V_{CC1} = V_{CC2} = V_{REF} = 1.8$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Measuring Condition		Unit		
Symbol	Falameter	Measuring Condition	Min.	Тур.	Max.	Onit
φAD	A/D operating clock frequency	$4.0 \text{ V} \le \text{V}_{\text{REF}} \le \text{AV}_{\text{CC}} \le 5.5 \text{ V}$	2		20	MHz
		$3.2~V \leq V_{REF} \leq AV_{CC} \leq 5.5~V$	2		16	MHz
		$3.0~\text{V} \le \text{V}_{\text{REF}} \le \text{AV}_{\text{CC}} \le 5.5~\text{V}$	2		10	MHz
		$1.8~V \le V_{REF} \le AV_{CC} \le 5.5~V$	2		5	MHz
-	Tolerance level impedance			3		kΩ
D _{NL}	Differential non-linearity error	(4)			±1	LSB
-	Offset error	(4)			±3	LSB
-	Gain error	(4)			±3	LSB
t _{CONV}	10-bit conversion time	V _{CC1} = 5 V, ϕ AD = 20 MHz	2.15			μS
t _{SAMP}	Sampling time		0.75			μS
V _{REF}	Reference voltage		1.8		AV _{CC}	V
V _{IA}	Analog input voltage (2), (3)		0		V _{REF}	V

Notes:

1. Use when $AV_{CC} = V_{CC1} = V_{CC2}$.

2. Do not use A/D converter when $V_{CC1} > V_{CC2}$.

3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.

4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.3 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.8 D/A Conversion Characteristics

 $V_{CC1} = AV_{CC} = V_{REF} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified.}$

Symbol	Parameter	Measuring Condition		Unit		
Symbol	i arameter	measuring Condition		Тур.	Max.	Onit
-	Resolution				8	Bits
-	Absolute Accuracy				2.5	LSB
t _{SU}	Setup Time				3	μS
R _O	Output Resistance		5	6	8.2	kΩ
I _{VREF}	Reference Power Supply Input Current	See Notes ¹ and ²			1.5	mA

Notes:

1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.

 The current consumption of the A/D converter is not included. Also, the I_{VREF} of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).

5.1.5 Flash Memory Electrical Characteristics

Table 5.9 CPU Clock When Operating Flash Memory (f_(BCLK))

 V_{CC1} = 1.8 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	r didificiei	Conditions	Min.	Тур.	Max.	Onit
-	CPU rewrite mode				10 (1)	MHz
f(SLOW_R)	Slow read mode				5 (3)	MHz
-	Low current consumption read mode			fC(32.768)	35	kHz
-	Data flash read	$3.0 \text{ V} < \text{V}_{\text{CC1}} \le 5.5 \text{ V}$			20 (2)	MHz

Notes:

1. Set the PM17 bit in the PM1 register to 1 (one wait).

 When the frequency is 1.8 ≤ V_{CC1} ≤ 3.0 V, set the FMR17 bit in the FMR1 register to 0 (one wait) or the PM17 bit in the PM1 register to 1 (one wait)

3. Set the PM17 bit in the PM1 register to 1 (one wait). When using 125 kHz on-chip oscillator clock or sub clock as the CPU clock source, a wait is not necessary.

Table 5.10 Flash Memory (Program ROM 1, 2) Electrical Characteristics

 $V_{CC1} = 2.7$ to 5.5 V at $T_{opr} = 0^{\circ}$ C to 60°C (option: -40°C to 85°C), unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program and erase cycles ^{(1), (3), (4)}	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	1,000 (2)			times
-	2 word program time	V _{CC1} = 3.3 V, T _{opr} = 25°C		150	4000	μs
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		70	3000	μs
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	S
t _{d(SR-SUS)}	Time delay from suspend request until suspend				$5 + \frac{3}{f(BCLK)}$	ms
-	Interval from erase start/restart until following suspend request		0			μS
-	Suspend interval necessary for auto-erasure to complete ⁽⁷⁾		20			ms
-	Time from suspend until erase restart				$30 + \frac{1}{f(BCLK)}$	μS
-	Program, erase voltage		2.7		5.5	V
-	Read voltage	T_{opr} = -20°C to 85°C/-40°C to 85°C	2.7		5.5	V
-	Program, erase temperature		0		60	°C
t _{PS}	Flash memory circuit stabilization w	ait time			50	μs
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles:

The program and erase cycles refer to the number of per-block erasures. If the program and erase cycles are n (n = 1,000), each block can be erased n times. For example, if a block is erased after writing 2 word data 16,384 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. It is advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.

4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.

Table 5.11 Flash Memory (Data Flash) Electrical Characteristics

 V_{CC1} = 2.7 to 5.5 V at T_{opr} = -20 to 85°C/-40 to 85°C, unless otherwise specified.

Symbol	Parameter	Conditions		Unit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program and erase cycles ^{(1), (3), (4)}	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$	10,000 (2)			times
-	2 word program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		300	4000	μS
-	Lock bit program time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		140	3000	μS
-	Block erase time	$V_{CC1} = 3.3 \text{ V}, \text{ T}_{opr} = 25^{\circ}\text{C}$		0.2	3.0	S
t _{d(SR-SUS)}	Time delay from suspend request until suspend				$5 + \frac{3}{f(BCLK)}$	ms
-	Interval from erase start/restart until following suspend request		0			μs
-	Suspend interval necessary for auto-erasure to complete ⁽⁷⁾		20			ms
-	Time from suspend until erase restart				$30 + \frac{1}{f_{(BCLK)}}$	μs
-	Program, erase voltage		2.7		5.5	V
-	Read voltage		2.7		5.5	V
-	Program, erase temperature		-20/-40		85	°C
t _{PS}	Flash memory circuit stabilization wa	ait time			50	μS
-	Data hold time ⁽⁶⁾	Ambient temperature = 55°C	20			year

Notes:

1. Definition of program and erase cycles

The program and erase cycles refer to the number of per-block erasures.

If the program and erase cycles are n (n = 10,000), each block can be erased n times.

For example, if a 4 KB block is erased after writing 2 word data 1,024 times, each to a different address, this counts as one program and erase cycles. Data cannot be written to the same address more than once without erasing the block (rewrite prohibited).

2. Cycles to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 256 groups before erasing them all in one operation. In addition, averaging the erasure cycles between blocks A and B can further reduce the actual erasure cycles. It is also advisable to retain data on the erasure cycles of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact a Renesas Electronics sales office.

6. The data hold time includes time that the power supply is off or the clock is not supplied.

7. After an erase start or erase restart, if an interval of at least 20 ms is not set before the next suspend request, the erase sequence cannot be completed.

Table 5.14 Voltage Detector 2 Electrical Characteristics

The measurement condition is V_{CC1} = 1.8 to 5.5 V, T_{opr} = -20°C to 85°C/-40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
Symbol	i arameter	Condition	Min.	Тур.	Max.	Onit
V _{det2}	Voltage detection level Vdet2_0	When V _{CC1} is falling	3.70	4.00	4.30	V
-	Hysteresis width at the rising of V _{CC1} in voltage detector 2			0.15		V
-	Voltage detector 2 response time ⁽²⁾	When V _{CC1} falls from 5 V to (Vdet2_0 - 0.1) V			200	μS
-	Voltage detector self power consumption	VC27 = 1, V _{CC1} = 5.0 V		1.7		μΑ
t _{d(E-A)}	Waiting time until voltage detector operation starts ⁽¹⁾				100	μs

Notes:

1. Necessary time until the voltage detector operates after setting to 1 again after setting the VC27 bit in the VCR2 register to 0.

2. Time from when passing the V_{det2} until when a voltage monitor 2 reset is generated.

Table 5.15Power-On Reset Circuit

The measurement condition is V_{CC1} = 2.0 to 5.5 V, T_{opr} = -20°C to 85°C/ -40°C to 85°C, unless otherwise specified.

Symbol	Parameter	Condition		Unit		
Gynnool	i arameter	Condition	Min.	Тур.	rd Max. 0.5 50000	Offic
V _{por1}	Voltage at which power-on reset enabled ⁽¹⁾				0.5	V
t _{rth}	External power V _{CC1} rise gradient		2.0		50000	mV/ms
t _{w(por)}	Time necessary to enable power-on reset		300			ms

Note: 1.

To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS1 address to 0. Also, set the VDSEL1 bit to 0 (Vdet0_2).

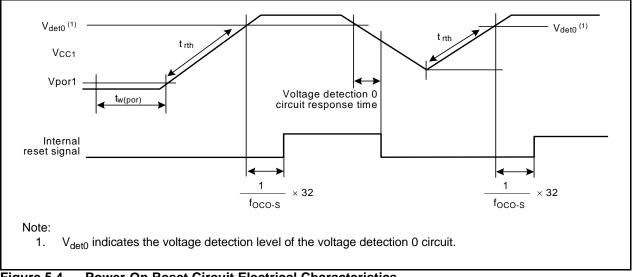


Figure 5.4 Power-On Reset Circuit Electrical Characteristics

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Table 5.20 Electrical Characteristics (2) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 20 \text{ MHz unless otherwise specified.}$

Symbol		Parameter	Measuring	Sta	andard		Unit
Symbol		Falameter	Condition	Min.	Тур.	Max.	Unit
V _{T+} - V _{T-}	Hysteresis	HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT7, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, KI0 to KI7, RXD0 to RXD2, RXD5 to RXD7, SIN3, SIN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC, ZP, IDU, IDV, IDW		0.5		2.0	V
V _{T+} - V _{T-}	Hysteresis	RESET		0.5		2.5	V
Ι _{ΙΗ}	High input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V _I = 5 V			5.0	μA
IIL	Low input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V _I = 0 V			-5.0	μA
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7	V _I = 0 V	30	50	170	kΩ
R _{fXIN}	Feedback re	esistance XIN			0.8		MΩ
R _{fXCIN}	Feedback re	esistance XCIN			8		MΩ
V _{RAM}	RAM retenti	on voltage	In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.

$V_{CC1} = V_{CC2} = 5 V$

Table 5.21Electrical Characteristics (3) $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 20 \text{ MHz unless otherwise specified.}$

Symbol	Parameter	Parameter Measuring Condition			Standard		Unit
-				Min.	Тур.	Max.	Offic
I _{CC}	Power supply current	High-speed mode	f _(BCLK) = 20 MHz (no division)				
			XIN = 20 MHz (square wave)				
	In single-chip, mode,		125 kHz on-chip oscillator stopped		10.7		mA
	the output pin are		CM15 = 1 (drive capacity High)				
	open and other pins		A/D converter stopped				
	are V _{SS}		f _(BCLK) =20 MHz (no division)				
			XIN = 20 MHz (square wave)				
			125 kHz on-chip oscillator stopped		11.4		mA
			CM15 = 1 (drive capacity High)				
			A/D converter operating (2)				
			$f_{(BCLK)} = 20 \text{ MHz}$				
			XIN = 20 MHz (square wave)		40.4		
			125 kHz on-chip oscillator stopped		10.1		mA
			CM15 = 0 (drive capacity Low)				
			A/D converter stopped				
			f _(BCLK) = 20 MHz (no division)				
			XIN = 20 MHz (square wave)				
			125 kHz on-chip oscillator stopped		9.1		mA
			CM15 = 1 (drive capacity High)				
			PCLKSTP1 = FF (peripheral clock stop)				
			f _(BCLK) = 20 MHz (no division)				
			XIN = 20 MHz (square wave)				
			125 kHz on-chip oscillator stopped	8.5	85		mA
			CM15 = 0 (drive capacity Low)				
			PCLKSTP1 = FF (peripheral clock stopped)				
		40 MHz on-chip	Main clock stopped				
		oscillator mode					
		Oscillator mode	40 MHz on-chip oscillator on,		9.0		mA
			divide-by-2 (f _(BCLK) = 20 MHz)				
			125 kHz on-chip oscillator stopped				
		125 kHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator stopped,		450.0		μA
			125 kHz on-chip oscillator on, no division		100.0		μαι
			FMR22 = 1 (slow read mode)				
		Low-power mode	$f_{(BCLK)} = 32 \text{ kHz}$				
			FMR22 = FMR23 = 1 (in low current consumption		00.0		
			read mode)		80.0		μA
			On flash memory ⁽¹⁾				
		Wait mode	$f_{(BCLK)} = 32 \text{ kHz}$				
			Main clock stopped				
			40 MHz on-chip oscillator stopped				
					FC		A
			125 kHz on-chip oscillator on		5.6		μA
			PM25 = 1 (peripheral function clock fC operating)				
			$T_{opr} = 25^{\circ}C$				
			Real-time clock operating				
			$f_{(BCLK)} = 32 \text{ kHz}$				
			Main clock stopped				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped	5.3			μA
			PM25 = 0 (peripheral function clock fC stopped)				
			$T_{opr} = 25^{\circ}C$				
		Stop mode			24		
			$T_{opr} = 25^{\circ}C$		2.4		μA
		During flash	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		20.0		mA
		memory program	V _{CC1} = 5.0 V		20.0		
		During flash	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		00.0		
		memory erase	$V_{CC1} = 5.0 V$		30.0		mA
		-	001		I		

This indicates the memory in which the program to be executed exists.

Notes: 1. This indicates the memory in which the pros. 2. A/D conversion is executed in repeat mode.

 $V_{CC1} = V_{CC2} = 5 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.7 Multi-master I²C-bus

Table 5.34Multi-master I²C-bus

Cumhal	Parameter	Standard (Standard Clock Mode		Fast-mode	
Symbol	i alameter	Min.	Max.	Min.	Max.	Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μS
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μS
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μS
t _{su;STO}	Stop condition setup time	4.0		0.6		μS

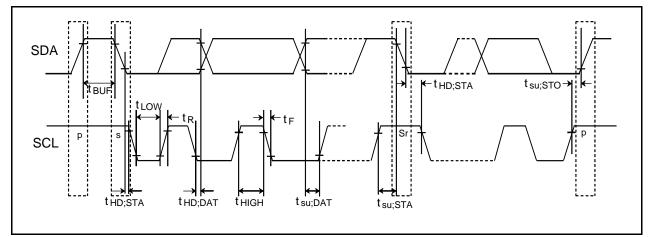
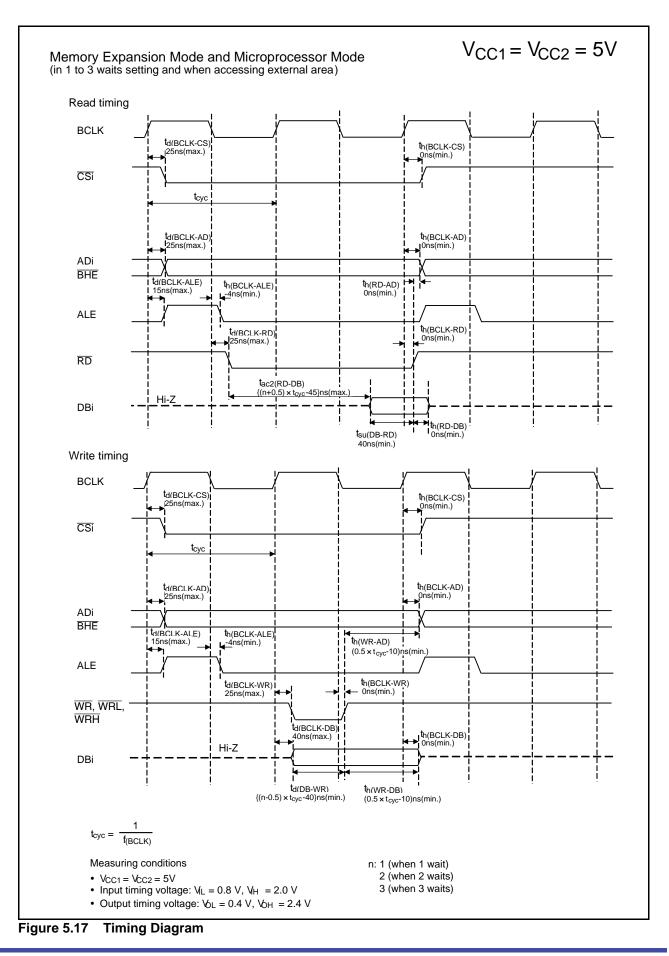



Figure 5.13 Multi-master I²C-bus

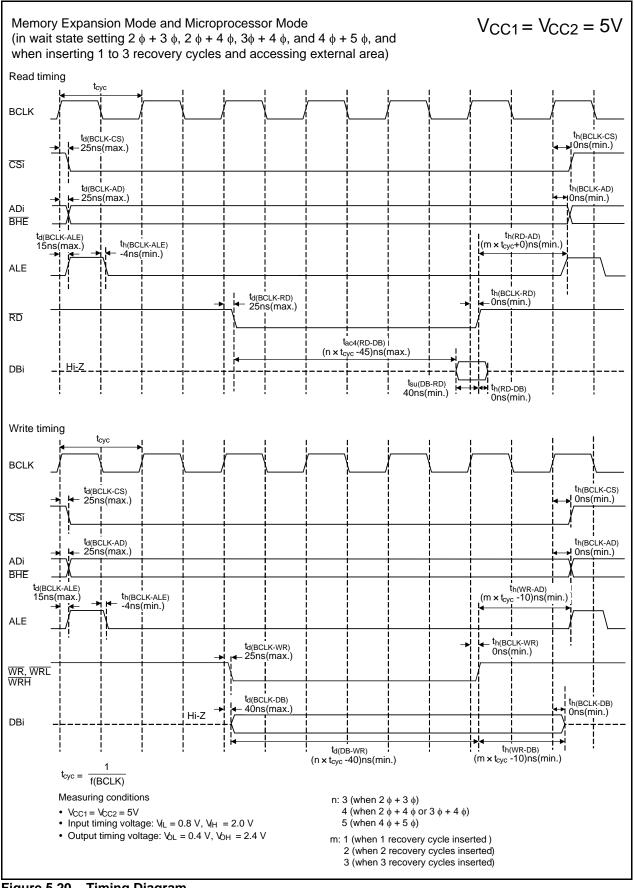


Figure 5.20 Timing Diagram

5.3 Electrical Characteristics (V_{CC1} = V_{CC2} = 3 V)

5.3.1 Electrical Characteristics

$$V_{CC1} = V_{CC2} = 3 V$$

Table 5.41 Electrical Characteristics (1) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 2.7 \text{ to } 3.3 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 20 \text{ MHz unless otherwise specified.}$

Queshal	mbol Decemptor Measuring Star		andard		Unit			
Symbol		Parameter		Condition	Min.	Тур.	Max.	Uni
V _{OH}	High output	P6_0 to P6_7, P7_2 to P7 P8_6, P8_7, P9_0 to P9_7		I _{OH} = -1 mA	V _{CC1} – 0.5		V _{CC1}	V
	voltage	P0_0 to P0_7, P1_0 to P1 P3_0 to P3_7, P4_0 to P4		I _{OH} = -1 mA	V _{CC2} – 0.5		V _{CC2}	
V _{OH}	High outpu	t voltage XOUT	HIGHPOWER	I _{OH} = -0.1 mA	$V_{CC1} - 0.5$		V_{CC1}	V
			LOWPOWER	I _{OH} = -50 μA	$V_{CC1} - 0.5$		V_{CC1}	
	High outpu			With no load applied		1.5		V
V _{OL}	Low output	P6_0 to P6_7, P7_0 to P7 P9_0 to P9_7, P10_0 to P		I _{OL} = 1 mA			0.5	V
	voltage	P0_0 to P0_7, P1_0 to P1 P3_0 to P3_7, P4_0 to P4		I _{OL} = 1 mA			0.5	
		CEC		I _{OL} = 1 mA		0	0.5	V
V _{OL}	Low output	voltage XOUT	HIGHPOWER	I _{OL} = 0.1 mA			0.5	V
			LOWPOWER	I _{OL} = 50 μA			0.5	
	Low output	voltage XCOUT	I	With no load applied		0		V
V _{T+} -V _{T-}	Hysteresis	HOLD, RDY, TAOIN to TAA TBOIN to TB5IN, INTO to I ADTRG, CTS0 to CTS2, C SCL0 to SCL2, SCL5 to S SDA0 to SDA2, SDA5 to S CLK0 to CLK7, TAOOUT KI0 to KI7, RXD0 to RXD2 SIN3, SIN4, SD, PMC0, P SDAMM, ZP, IDU, IDV, ID CEC	NT7, NMI, CTS5 to CTS7, CL7, SDA7, to TA4OUT, 2, RXD5 to RXD7, MC1, SCLMM,		0.2	0.5	1.0	V
		RESET			0.2	0.0	1.8	V
I _{IH}	High input current	P0_0 to P0_7, P1_0 to P1 P3_0 to P3_7, P4_0 to P4 P6_0 to P6_7, P7_0 to P7 P9_0 to P9_7, P10_0 to P XIN, RESET, CNVSS, BY	_7, P5_0 to P5_7, _7, P8_0 to P8_7, P10_7	V ₁ = 3 V			4.0	μA
_	Leakage cu	urrent in powered-off state	CEC	V _{CC1} = 0 V			1.8	μΑ
IIL	Low input current	P0_0 to P0_7, P1_0 to P1 P3_0 to P3_7, P4_0 to P4 P6_0 to P6_7, P7_0 to P7 P9_0 to P9_7, P10_0 to P XIN, RESET, CNVSS, BY	_7, P5_0 to P5_7, _7, P8_0 to P8_7, 10_7	V ₁ = 0 V			-4.0	μA
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1 P3_0 to P3_7, P4_0 to P4 P6_0 to P6_7, P7_2 to P7 P8_6, P8_7, P9_0 to P9_7	_7, P5_0 to P5_7, _7, P8_0 to P8_4,	V _I = 0 V	50	100	500	kΩ
R _{fXIN}	Feedback I	esistance XIN				0.8		MΩ
R _{fXCIN}	Feedback I	resistance XCIN				8		MΩ
V _{RAM}	RAM reten	tion voltage		In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.

 $V_{CC1} = V_{CC2} = 3 V$

Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.4 Timer B Input

Table 5.50 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard		Unit
	i didineter	Min.	Max.	Onit
t _{c(TB)}	TBiIN input cycle time (counted on one edge)	150		ns
t _{w(TBH)}	TBiIN input high pulse width (counted on one edge)	60		ns
t _{w(TBL)}	TBiIN input low pulse width (counted on one edge)	60		ns
t _{c(TB)}	TBiIN input cycle time (counted on both edges)	300		ns
t _{w(TBH)}	TBiIN input high pulse width (counted on both edges)	120		ns
t _{w(TBL)}	TBiIN input low pulse width (counted on both edges)	120		ns

Table 5.51 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard Min. Max.		Unit	
				Offic	
t _{c(TB)}	TBiIN input cycle time	600		ns	
t _{w(TBH)}	TBiIN input high pulse width	300		ns	
t _{w(TBL)}	TBiIN input low pulse width	300		ns	

Table 5.52 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	i alameter	Min.	Max.	Onit
t _{c(TB)}	TBiIN input cycle time	600		ns
t _{w(TBH)}	TBiIN input high pulse width	300		ns
tw(TBL)	TBiIN input low pulse width	300		ns

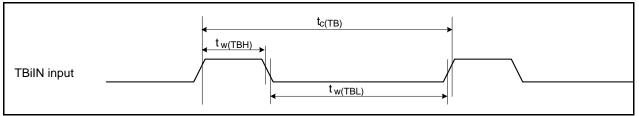


Figure 5.25 Timer B Input

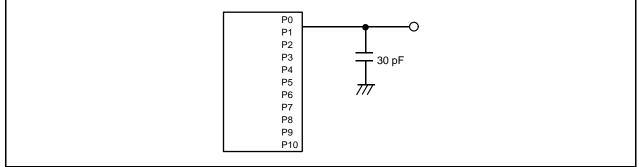


Figure 5.30 Ports P0 to P10 Measurement Circuit

 $V_{CC1} = V_{CC2} = 3 V$

Switching Characteristics

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.4.3 In 2 or 3 Waits Setting, and When Accessing External Area and Using Multiplexed Bus

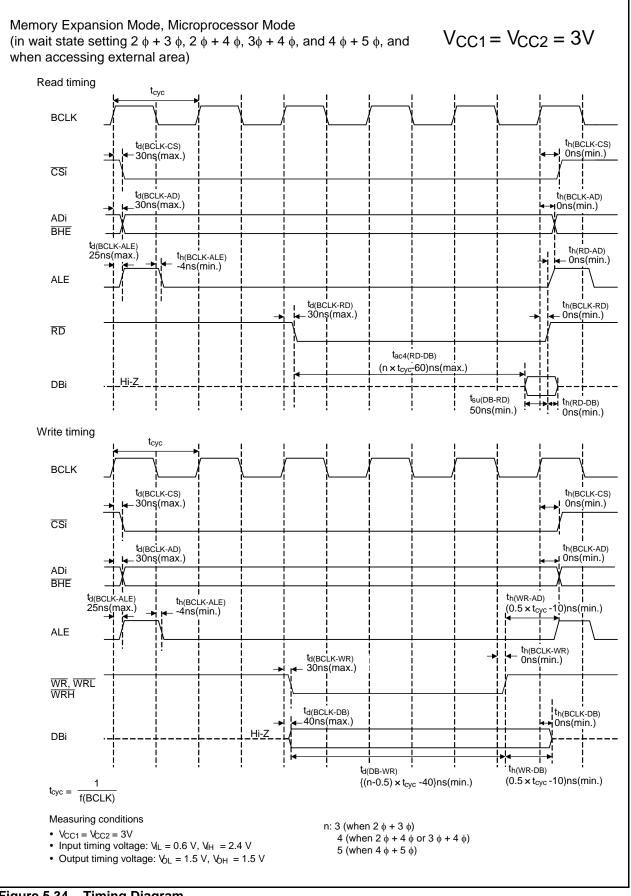
Table 5.59Memory Expansion Mode and Microprocessor Mode (in 2 or 3 Waits Setting, and When
Accessing External Area and Using Multiplexed Bus) ⁽⁵⁾

Symbol	Porometer	Measuring	Standard		
Symbol	Parameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			50	ns
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD)}	Address output hold time (in relation to RD)		(Note 1)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 1)		ns
t _{d(BCLK-CS)}	Chip select output delay time			50	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{h(RD-CS)}	Chip select output hold time (in relation to RD)		(Note 1)		ns
t _{h(WR-CS)}	Chip select output hold time (in relation to WR)		(Note 1)		ns
t _{d(BCLK-RD)}	RD signal output delay time			40	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			40	ns
t _{h(BCLK-WR)}	WR signal output hold time	See Figure 5.30	0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)	g		50	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK)		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 2)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR)		(Note 1)		ns
t _{d(BCLK-ALE)}	ALE signal output delay time (in relation to BCLK)			25	ns
t _{h(BCLK-ALE)}	ALE signal output hold time (in relation to BCLK)		-4		ns
t _{d(AD-ALE)}	ALE signal output delay time (in relation to Address)		(Note 3)		ns
t _{h(AD-ALE)}	ALE signal output hold time (in relation to Address)		(Note 4)		ns
t _{d(AD-RD)}	RD signal output delay from the end of address		0		ns
t _{d(AD-WR)}	WR signal output delay from the end of address		0		ns
t _{dz(RD-AD)}	Address output floating start time			8	ns

Notes:

1. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

2. Calculated according to the BCLK frequency as follows:

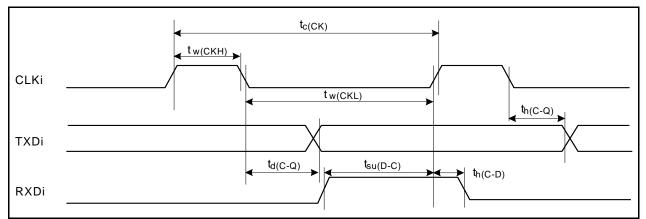

$$\frac{(n-0.5)\times 10^9}{f_{(BCLK)}} - 50[ns] \qquad \text{n is 2 for 2 waits setting, 3 for 3 waits setting.}$$

3. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns]$$

4. Calculated according to the BCLK frequency as follows:
$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 15[ns]$$

5. When using multiplexed bus, set $f_{(BCLK)}$ 12.5 MHz or less.

$V_{CC1} = V_{CC2} = 1.8 V$

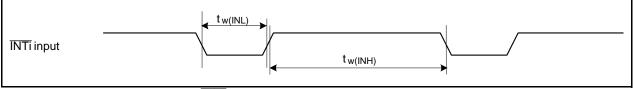

Timing Requirements

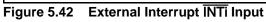
 $(V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.4.2.5 Serial Interface

Table 5.75Serial Interface

Symbol	Parameter	Standard		Unit
		Min.	Min. Max.	
t _{c(CK)}	CLKi input cycle time	800		ns
t _{w(CKH)}	CLKi input high pulse width	400		ns
t _{w(CKL)}	CLKi input low pulse width	400		ns
t _{d(C-Q)}	TXDi output delay time		240	ns
t _{h(C-Q)}	TXDi hold time	0		ns
t _{su(D-C)}	RXDi input setup time	200		ns
t _{h(C-D)}	RXDi input hold time	90		ns




Figure 5.41 Serial Interface

5.4.2.6 External Interrupt INTi Input

Table 5.76 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
	i didificici	Min.	Max.	Offic
t _{w(INH)}	INTi input high pulse width	1000		ns
t _{w(INL)}	INTi input low pulse width	1000		ns
tr(INT)	INTi input rising time		100	μs
tf(INT)	INTi input falling time		100	μs

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarkst, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milloadr Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrase 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-211-6503-1327 Renesas Electronics (Shangha) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-21-6325-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shangha) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-2757-1818, Fax: +86-2-1087-7880 Renesas Electronics Toking Con, Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-2457-1818, Fax: +86-2-1087-7880 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2868-9318, Fax: +852-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 107, No. 35, Fu Shing North Road, Taipei, Taiwan Tel: +862-24175-9600, Fax: +882 2-9175-9670 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit f06-102 Lyflux Innovation Centre Singapore 339949 Tel: +65-213-0200, Fax: +65-213-0300 Renesas Electronics Kalaysia Sdn.Bhd. Uni 400, Block B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3795-9390, Fax: +60-3795-9510 Renesas Electronics Kalaysia Sdn.Bhd. Uni 406, Block B, Menara Armcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3795-9390, Fax: +60-3795-9510