

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, I²C, SIO, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	85
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	31K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 26x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f363amdfa-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Description			
Timers	Timer A	16-bit timer x 5 Timer mode, event counter mode, one-shot timer mode, pulse width modulation (PWM) mode Event counter two-phase pulse signal processing (two-phase encoder input) x 3 Programmable output mode x 3			
	Timer B	16-bit timer × 6 Timer mode, event counter mode, pulse period measurement mode, pulse width measurement mode			
	Three-phase motor control timer functions	 Three-phase inverter control (timer A1, timer A2, timer A4, timer B2) On-chip dead time timer 			
	Real-time clock	 Count: seconds, minutes, hours, days of the week, months, years Periodic interrupt: 0.25 s, 0.5 s Automatic correction function 			
	PWM function	8 bits × 2			
	Remote control signal receiver	 2 circuits 4 wave pattern matchings (differentiate wave pattern for headers, data 0, data 1, and special data) 6-byte receive buffer (1 circuit only) Operating frequency of 32 kHz 			
Serial Interface	UART0 to UART2, UART5 to UART7	Clock synchronous/asynchronous × 6 channels I ² C-bus, IEBus, special mode 2 SIM (UART2)			
	SI/O3, SI/O4	Clock synchronization only x 2 channels			
Multi-master	I ² C-bus Interface	1 channel			
CEC Functio	ons (2)	CEC transmit/receive, arbitration lost detection, ACK automatic output, operation frequency of 32 kHz			
A/D Convert	er	10-bit resolution × 26 channels, including sample and hold function Conversion time: 2.15 μs			
D/A Convert	er	8-bit resolution × 2 circuits			
CRC Calcula	ator	CRC-CCITT ($X^{16} + X^{12} + X^5 + 1$), CRC-16 ($X^{16} + X^{15} + X^2 + 1$) compliant			
Flash Memo	ry	 Program and erase power supply voltage: 2.7 to 5.5 V Program and erase cycles: 1,000 times (program ROM 1, program ROM 2), 10,000 times (data flash) Program security: ROM code protect, ID code check 			
Debug Func	tions	On-chip debug, on-board flash rewrite, address match interrupt × 4			
Operation Fr	requency/Supply Voltage	5 MHz/VCC1 = 1.8 to 5.5 V, VCC2 = 1.8 V to VCC1 10 MHz/VCC1 = 2.1 to 5.5 V, VCC2 = 2.1 V to VCC1 20 MHz/VCC1 = 2.7 to 5.5 V, VCC2 = 2.7 V to VCC1			
Current Con	•	Described in Electrical Characteristics			
Operating Te	emperature	-20°C to 85°C, -40°C to 85°C ⁽¹⁾			
Package		100-pin QFP: PRQP0100JD-B (Previous package code: 100P6F-A) 100-pin LQFP: PLQP0100KB-A (Previous package code: 100P6Q-A) 100-pin LGA: PTLG0100KA-A (Previous package code: 100F0M)			

Table 1.2 Specifications for the 100-Pin Package (2/2)

Notes:

1. See Table 1.5 "Product List" for the operating temperature.

2. The CEC function indicates circuitry which supports the transmission and reception of CEC signals standardized by the High-Definition Multimedia Interface (HDMI). HDMI and High-Definition Multimedia Interface are registered trademarks of HDMI Licensing, LLC.

1.5 Pin Assignments

Figure 1.6 to Figure 1.9 show pin assignments. Table 1.6 to Table 1.9 list pin names.

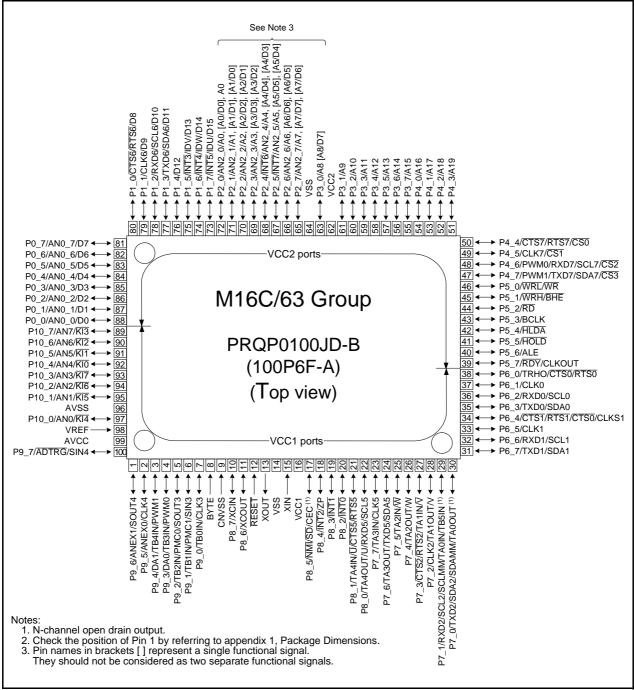


Figure 1.6 Pin Assignment for the 100-Pin Package

Die Ma		Deut	I/O Pin for Peripheral Function					
Pin No.	Control Pin	Port	Interrupt	Timer	Serial interface	A/D converter, D/A converter		
1		P9_5			CLK4	ANEX0		
2		P9_4		TB4IN/PWM1		DA1		
3		P9_3		TB3IN/PWM0		DA0		
4		P9_2		TB2IN/PMC0	SOUT3			
5		P9_0		TB0IN	CLK3			
6	CNVSS							
7	XCIN	P8_7						
8	XCOUT	P8_6						
9	RESET							
10	XOUT							
11	VSS							
12	XIN							
13	VCC1							
14		P8_5	NMI		CEC			
15		P8_4	INT2	ZP				
16		P8_3	INT1					
17		P8_2	INTO					
18		P8_1		TA4IN	CTS5/RTS5			
19		P8_0		TA4OUT	RXD5/SCL5			
20		P7_7		TA3IN	CLK5			
21		P7_6		TA3OUT	TXD5/SDA5			
22		P7_1		TA0IN/TB5IN	RXD2/SCL2/SCLMM			
23		P7_0		TA0OUT	TXD2/SDA2/SDAMM			
24		P6_7			TXD1/SDA1			
25		P6_6			RXD1/SCL1			
26		P6_5			CLK1			
27		P6_4			CTS1/RTS1/CTS0/			
28		P6_3			CLKS1 TXD0/SDA0			
20		P6_2			RXD0/SCL0			
30		P6_1			CLK0			
31		P6_0		TRHO	CTS0/RTS0			
32	CLKOUT	P5_7			0100/1100			
33	0_11001	P5_6						
34		P5_5						
35		P5_4						
36		P5_3						
37		P5_2						
38		P5_1						
39		P5_0						
40		P4_3						

Table 1.8 Pin Names for the 80-Pin Package (1/2)

Signal Name	Pin Name	I/O	Power Supply	Description
Power supply input	VCC1, VSS	Ι	-	Apply 1.8 to 5.5 V to the VCC1 pin and 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	Ι	VCC1	This is the power supply for the A/D and D/A converters. Connect the AVCC pin to VCC1, and connect the AVSS pin to VSS.
Reset input	RESET	Ι	VCC1	Driving this pin low resets the MCU.
CNVSS	CNVSS	I	VCC1	Input pin to switch processor modes. After a reset, to start operating in single-chip mode, connect the CNVSS pin to VSS via a resistor.
Main clock input	XIN	Ι	VCC1	I/O pins for the main clock oscillator. Connect a ceramic
Main clock output	XOUT	0	VCC1	resonator or crystal between pins XIN and XOUT. ⁽¹⁾ Input an external clock to XIN pin and leave XOUT pin open.
Sub clock input	XCIN	Ι	VCC1	I/O pins for a sub clock oscillator. Connect a crystal between
Sub clock output	XCOUT	0	VCC1	XCIN pin and XCOUT pin. ⁽¹⁾ Input an external clock to XCIN pin and leave XCOUT pin open.
Clock output	CLKOUT	0	VCC1	Outputs a clock with the same frequency as fC, f1, f8, or f32.
INT interrupt input	$\overline{\text{INT0}}$ to $\overline{\text{INT2}}$	Ι	VCC1	Input for the INT interrupt.
	INT6, INT7	Ι	VCC1	
NMI interrupt input	NMI	Ι	VCC1	Input for the $\overline{\rm NMI}$ interrupt.
Key input interrupt input	$\overline{KI0}$ to $\overline{KI7}$	Ι	VCC1	Input for the key input interrupt.
	TA0OUT, TA3OUT, TA4OUT	I/O	VCC1	I/O for timers A0, A3, and A4 (TA0OUT is N-channel open drain output).
Timer A	TAOIN, TA3IN, TA4IN	Ι	VCC1	Input for timers A0, A3, and A4.
	ZP	Ι	VCC1	Input for Z-phase.
Timer B	TB0IN, TB2IN to TB5IN	Ι	VCC1	Input for timers B0, and B2 to B5.
Real-time clock output	TRHO	0	VCC1	Output for the real-time clock.
PWM output	PWM0, PWM1	0	VCC1	PWM output.
Remote control signal receiver input	PMC0	I	VCC1	Input for the remote control signal receiver.

Table 1.13	Pin Functions for the 80-Pin Package (1/2)
------------	--

Note:

1. Contact the manufacturer of crystal/ceramic resonator regarding oscillation characteristics.

3. Address Space

3.1 Address Space

The M16C/63 Group has a 1 MB address space from 00000h to FFFFFh. Address space is expandable to 4 MB with the memory area expansion function. Addresses 40000h to BFFFFh can be used as external areas from bank 0 to bank 7. Figure 3.1 shows the Address Space. Areas that can be accessed vary depending on processor mode and the status of each control bit.

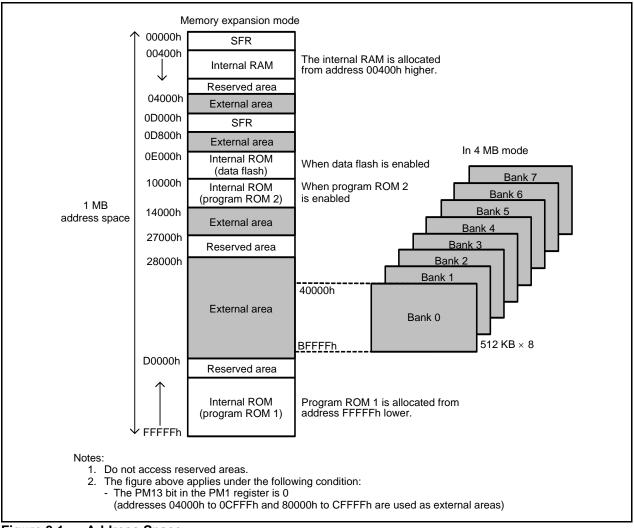


Figure 3.1 Address Space

Address	Register	Symbol	Reset Value
02A0h			
02A1h			
02A2h			
02A3h			
02A4h	UART7 Special Mode Register 4	U7SMR4	00h
02A5h	UART7 Special Mode Register 3	U7SMR3	000X 0X0Xb
02A6h	UART7 Special Mode Register 2	U7SMR2	X000 0000b
02A7h	UART7 Special Mode Register	U7SMR	X000 0000b
02A8h	UART7 Transmit/Receive Mode Register	U7MR	00h
02A9h	UART7 Bit Rate Register	U7BRG	XXh
02AAh	LIA DTZ Tronomit Duffer Desister	LIZTO	XXh
02ABh	UART7 Transmit Buffer Register	U7TB	XXh
02ACh	UART7 Transmit/Receive Control Register 0	U7C0	0000 1000b
02ADh	UART7 Transmit/Receive Control Register 1	U7C1	0000 0010b
02AEh			XXh
02AFh	UART7 Receive Buffer Register	U7RB –	XXh
02B0h	I2C0 Data Shift Register	S00	XXh
02B1h			
02B2h	I2C0 Address Register 0	S0D0	0000 000Xb
02B3h	I2C0 Control Register 0	S1D0	00h
02B4h	I2C0 Clock Control Register	\$20	00h
02B5h	I2C0 Start/Stop Condition Control Register	S2D0	0001 1010b
02B6h	I2C0 Control Register 1	S3D0	0011 0000b
02B7h	I2C0 Control Register 2	S4D0	00h
02B8h	I2C0 Status Register 0	S10	0001 000Xb
02B9h	I2C0 Status Register 1	S11	XXXX X000b
02BAh	I2C0 Address Register 1	S0D1	0000 000Xb
02BBh	I2C0 Address Register 2	S0D2	0000 000Xb
02BCh			
02BDh			
02BEh			
02BFh			
02C0h to			
02FFh			

Table 4.11SFR Information (11) (1)

Note:

1. The blank areas are reserved. No access is allowed.

Table 4.10			
Address	Register	Symbol	Reset Value
03C0h	A/D Register 0	AD0	XXXX XXXXb
03C1h		700	0000 00XXb
03C2h	A/D Register 1	AD1	XXXX XXXXb
03C3h			0000 00XXb
03C4h	A/D Register 2	AD2	XXXX XXXXb
03C5h		AD2	0000 00XXb
03C6h	A/D Register 3	AD3	XXXX XXXXb
03C7h	A/D Register 3	AD3	0000 00XXb
03C8h	A/D Register 4	AD4	XXXX XXXXb
03C9h	AD Register 4	AD4	0000 00XXb
03CAh	A/D Register 5	AD5	XXXX XXXXb
03CBh	A/D Register 5	AD3	0000 00XXb
03CCh	A/D Register 6 AD6		XXXX XXXXb
03CDh	A/D Register 6	AD6	0000 00XXb
03CEh	A/D Desister 7	4.0.7	XXXX XXXXb
03CFh	A/D Register 7	AD7	0000 00XXb
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2	ADCON2	0000 X00Xb
03D5h			
03D6h	A/D Control Register 0	ADCON0	0000 0XXXb
03D7h	A/D Control Register 1	ADCON1	0000 0000b
03D8h	D/A0 Register	DA0	00h
03D9h			
03DAh	D/A1 Register	DA1	00h
03DBh			
03DCh	D/A Control Register	DACON	00h
03DDh	5		
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E7h	Port P3 Direction Register	PD3	00h
03E8h	Port P4 Register	P4	XXh
03E9h	Port P5 Register	P5	XXh
03EAh	Port P4 Direction Register	PD4	00h
03EBh	Port P5 Direction Register	PD5	00h
03ECh	Port P6 Register	P6	XXh
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD0 PD7	00h
000111		101	X: Undefined

Table 4.16SFR Information (16) (1)

X: Undefined

Note:

1. The blank areas are reserved. No access is allowed.

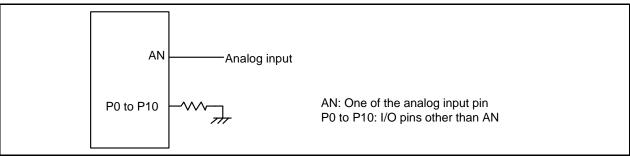


Figure 5.3 A/D Accuracy Measure Circuit

Table 5.7A/D Conversion Characteristics (2/2) (1)

 $AV_{CC} = V_{CC1} = V_{CC2} = V_{REF} = 1.8$ to 5.5 V, $V_{SS} = AV_{SS} = 0$ V at $T_{opr} = -20^{\circ}C$ to 85°C/-40°C to 85°C unless otherwise specified.

Symbol	Parameter	Measuring Condition		Unit		
Symbol	Falameter	Measuring Condition	Min.	Тур.	Max.	Onit
φAD	A/D operating clock frequency	$4.0 \text{ V} \le \text{V}_{\text{REF}} \le \text{AV}_{\text{CC}} \le 5.5 \text{ V}$	2		20	MHz
		$3.2~V \leq V_{REF} \leq AV_{CC} \leq 5.5~V$	2		16	MHz
		$3.0~\text{V} \leq \text{V}_{\text{REF}} \leq \text{AV}_{\text{CC}} \leq 5.5~\text{V}$	2		10	MHz
		$1.8~V \le V_{REF} \le AV_{CC} \le 5.5~V$	2		5	MHz
-	Tolerance level impedance			3		kΩ
D _{NL}	Differential non-linearity error	(4)			±1	LSB
-	Offset error	(4)			±3	LSB
-	Gain error	(4)			±3	LSB
t _{CONV}	10-bit conversion time	V _{CC1} = 5 V, ϕ AD = 20 MHz	2.15			μS
t _{SAMP}	Sampling time		0.75			μS
V _{REF}	Reference voltage		1.8		AV _{CC}	V
V _{IA}	Analog input voltage (2), (3)		0		V _{REF}	V

Notes:

1. Use when $AV_{CC} = V_{CC1} = V_{CC2}$.

2. Do not use A/D converter when $V_{CC1} > V_{CC2}$.

3. When analog input voltage is over reference voltage, the result of A/D conversion is 3FFh.

4. Flash memory rewrite disabled. Except for the analog input pin, set the pins to be measured as input ports and connect them to V_{SS}. See Figure 5.3 "A/D Accuracy Measure Circuit".

5.1.4 D/A Conversion Characteristics

Table 5.8 D/A Conversion Characteristics

 $V_{CC1} = AV_{CC} = V_{REF} = 3.0 \text{ to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified.}$

Symbol	Parameter	Measuring Condition		Unit			
Symbol	i arameter	Measuring Condition	Min.	Тур.	Max.	Onit	
-	Resolution				8	Bits	
-	Absolute Accuracy				2.5	LSB	
t _{SU}	Setup Time				3	μS	
R _O	Output Resistance		5	6	8.2	kΩ	
I _{VREF}	Reference Power Supply Input Current	See Notes ¹ and ²			1.5	mA	

Notes:

1. This applies when using one D/A converter, with the D/A register for the unused D/A converter set to 00h.

 The current consumption of the A/D converter is not included. Also, the I_{VREF} of the D/A converter will flow even if the ADSTBY bit in the ADCON1 register is 0 (A/D operation stopped (standby)).

5.2 Electrical Characteristics (V_{CC1} = V_{CC2} = 5 V)

5.2.1 Electrical Characteristics

$V_{CC1} = V_{CC2} = 5 V$

Table 5.19 Electrical Characteristics (1) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, \text{ f}_{(BCLK)} = 20 \text{ MHz unless otherwise specified.}$

Symbol		Paramete	r	Measuring	Star	Unit		
Symbol		Falamete		Condition	Min.	Тур.	Max.	Unit
V _{OH}	High output voltage	P6_0 to P6_7, P7_2 t P8_6, P8_7, P9_0 to	I _{OH} = -5 mA	V _{CC1} – 2.0		V _{CC1}	V	
			to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7	I _{OH} = -5 mA	V _{CC2} – 2.0		V _{CC2}	
V _{OH}	High output voltage		o P7_7, P8_0 to P8_4, P9_7, P10_0 to P10_7	I _{OH} = -200 μA	V _{CC1} - 0.3		V _{CC1}	V
			o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7	I _{OH} = -200 μA	V _{CC2} - 0.3		V _{CC2}	
V _{OH}	High output	voltage XOUT	HIGHPOWER	I _{OH} = -1 mA	$V_{CC1} - 2.0$		V _{CC1}	V
			LOWPOWER	I _{OH} = -0.5 mA	$V_{CC1} - 2.0$		V _{CC1}	
	High output	voltage XCOUT		With no load applied		1.5		V
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P9_0 to P9_7, P10_0	to P7_7, P8_0 to P8_7, to P10_7	I _{OL} = 5 mA			2.0	V
			to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7	I _{OL} = 5 mA			2.0	
V _{OL}	Low output voltage	P6_0 to P6_7, P7_0 to P9_0 to P9_7, P10_0	to P7_7, P8_0 to P8_7, to P10_7	I _{OL} = 200 μA			0.45	V
			o P1_7, P2_0 to P2_7, o P4_7, P5_0 to P5_7	I _{OL} = 200 μA			0.45	
V _{OL}	Low output	voltage XOUT	HIGHPOWER	I _{OL} = 1 mA			2.0	V
			LOWPOWER	I _{OL} = 0.5 mA			2.0	
	Low output v	voltage XCOUT		With no load applied		0		V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.

$V_{\rm CC1} = V_{\rm CC2} = 5 \text{ V}$

Table 5.20 Electrical Characteristics (2) ⁽¹⁾

 $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 20 \text{ MHz unless otherwise specified.}$

Symbol		Parameter	Measuring	Sta	Unit		
Symbol		Falameter	Condition	Min.	Тур.	Max.	Unit
V _{T+} - V _{T-}	Hysteresis	HOLD, RDY, TA0IN to TA4IN, TB0IN to TB5IN, INTO to INT7, NMI, ADTRG, CTS0 to CTS2, CTS5 to CTS7, SCL0 to SCL2, SCL5 to SCL7, SDA0 to SDA2, SDA5 to SDA7, CLK0 to CLK7, TA0OUT to TA4OUT, KI0 to KI7, RXD0 to RXD2, RXD5 to RXD7, SIN3, SIN4, SD, PMC0, PMC1, SCLMM, SDAMM, CEC, ZP, IDU, IDV, IDW		0.5		2.0	V
V _{T+} - V _{T-}	Hysteresis	RESET		0.5		2.5	V
IIH	High input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V _I = 5 V			5.0	μA
IIL	Low input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V _I = 0 V			-5.0	μA
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7	V _I = 0 V	30	50	170	kΩ
R _{fXIN}	Feedback re	esistance XIN			0.8		MΩ
R _{fXCIN}	Feedback re	esistance XCIN			8		MΩ
V _{RAM}	RAM retenti	on voltage	In stop mode	1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.

Table 5.21Electrical Characteristics (3) $V_{CC1} = V_{CC2} = 4.2 \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C} / -40^{\circ}\text{C to } 85^{\circ}\text{C}, f_{(BCLK)} = 20 \text{ MHz unless otherwise specified.}$

Symbol	Parameter	Measuring Condition			Standard		Unit
-				Min.	Тур.	Max.	Onit
I _{CC}	Power supply current	High-speed mode	f _(BCLK) = 20 MHz (no division)				
			XIN = 20 MHz (square wave)				
	In single-chip, mode,		125 kHz on-chip oscillator stopped		10.7		mA
	the output pin are		CM15 = 1 (drive capacity High)				
	open and other pins		A/D converter stopped				
	are V _{SS}		f _(BCLK) =20 MHz (no division)				
			XIN = 20 MHz (square wave)				
			125 kHz on-chip oscillator stopped		11.4		mA
			CM15 = 1 (drive capacity High)				
			A/D converter operating ⁽²⁾				
			$f_{(BCLK)} = 20 \text{ MHz}$				
			XIN = 20 MHz (square wave)		40.4		
			125 kHz on-chip oscillator stopped		10.1		mA
			CM15 = 0 (drive capacity Low)				
			A/D converter stopped				
			f _(BCLK) = 20 MHz (no division)				
			XIN = 20 MHz (square wave)				
			125 kHz on-chip oscillator stopped		9.1		mA
			CM15 = 1 (drive capacity High)				
			PCLKSTP1 = FF (peripheral clock stop)				
			f _(BCLK) = 20 MHz (no division)				
			XIN = 20 MHz (square wave)				
			125 kHz on-chip oscillator stopped		8.5		mA
			CM15 = 0 (drive capacity Low)		0.0		
			PCLKSTP1 = FF (peripheral clock stopped)				
		40 MHz on-chip	Main clock stopped				
		oscillator mode					
		Oscillator mode	40 MHz on-chip oscillator on,		9.0		mA
			divide-by-2 (f _(BCLK) = 20 MHz)				
		105111	125 kHz on-chip oscillator stopped				
		125 kHz on-chip	Main clock stopped				
		oscillator mode	40 MHz on-chip oscillator stopped,		450.0		μA
			125 kHz on-chip oscillator on, no division		100.0		μι
			FMR22 = 1 (slow read mode)				
		Low-power mode	$f_{(BCLK)} = 32 \text{ kHz}$				
			FMR22 = FMR23 = 1 (in low current consumption		00.0		
			read mode)		80.0		μA
			On flash memory ⁽¹⁾				
		Wait mode	$f_{(BCLK)} = 32 \text{ kHz}$				
			Main clock stopped				
			40 MHz on-chip oscillator stopped				
					FC		
			125 kHz on-chip oscillator on		5.6		μA
			PM25 = 1 (peripheral function clock fC operating)				
			$T_{opr} = 25^{\circ}C$				
			Real-time clock operating				
			$f_{(BCLK)} = 32 \text{ kHz}$				
			Main clock stopped				
			40 MHz on-chip oscillator stopped				
			125 kHz on-chip oscillator stopped		5.3		μA
			PM25 = 0 (peripheral function clock fC stopped)				
			$T_{opr} = 25^{\circ}C$				
		Stop mode			24		
			$T_{opr} = 25^{\circ}C$		2.4		μA
		During flash	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		20.0		mA
		memory program	V _{CC1} = 5.0 V		20.0		11174
		During flash	$f_{(BCLK)} = 10 \text{ MHz}, \text{ PM17} = 1 \text{ (one wait)}$		0.0.0		
		memory erase	$V_{CC1} = 5.0 V$		30.0		mA
	1	· · · ·					i i

This indicates the memory in which the program to be executed exists.

Notes: 1. This indicates the memory in which the prog. 2. A/D conversion is executed in repeat mode.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 5 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C to } 85^{\circ}\text{C}/-40^{\circ}\text{C to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.2.2.7 Multi-master I²C-bus

Table 5.34Multi-master I²C-bus

Cumhal	Deremeter	Standard (Clock Mode	Fast-r	node	Linit
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{BUF}	Bus free time	4.7		1.3		μS
t _{HD;STA}	Hold time in start condition	4.0		0.6		μS
t _{LOW}	Hold time in SCL clock 0 status	4.7		1.3		μS
t _R	SCL, SDA signals' rising time		1000	20 + 0.1 Cb	300	ns
t _{HD;DAT}	Data hold time	0		0	0.9	μS
t _{HIGH}	Hold time in SCL clock 1 status	4.0		0.6		μS
f _F	SCL, SDA signals' falling time		300	20 + 0.1 Cb	300	ns
t _{su;DAT}	Data setup time	250		100		ns
t _{su;STA}	Setup time in restart condition	4.7		0.6		μS
t _{su;STO}	Stop condition setup time	4.0		0.6		μS

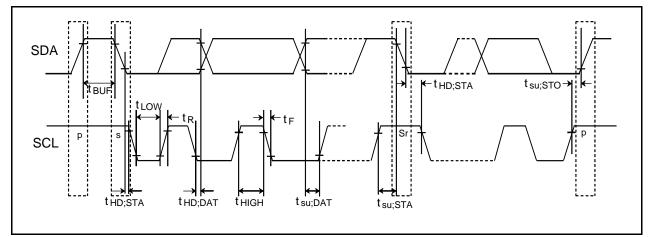


Figure 5.13 Multi-master I²C-bus

5.2.4 Switching Characteristics (Memory Expansion Mode and Microprocessor Mode)

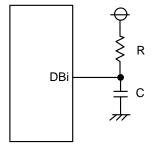
(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.1 In No Wait State Setting

Table 5.36 Memory Expansion Mode and Microprocessor Mode (in No Wait State Setting)

Cumbal	Parameter	Measuring	Stan	dard	Unit	
Symbol	Parameter	Condition	Min.	Max.		
t _{d(BCLK-AD)}	Address output delay time			25	ns	
t _{h(BCLK-AD)}	Address output hold time (in relation to BCLK)		0		ns	
t _{h(RD-AD)}	Address output hold time (in relation to RD)		0		ns	
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns	
t _{d(BCLK-CS)}	Chip select output delay time			25	ns	
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns	
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns	
t _{h(BCLK-ALE)}	ALE signal output hold time	See	-4		ns	
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.15		25	ns	
t _{h(BCLK-RD)}	RD signal output hold time		0		ns	
t _{d(BCLK-WR)}	WR signal output delay time			25	ns	
t _{h(BCLK} -WR)	WR signal output hold time		0		ns	
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns	
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) (3)		0		ns	
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns	
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns	

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 40[ns] \text{ f}_{(BCLK)} \text{ is 12.5 MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f_{(BCLK)}} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times \ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF $\times 1$ k $\Omega \times \ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

Switching Characteristics

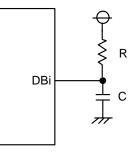
(V_{CC1} = V_{CC2} = 5 V, V_{SS} = 0 V, at T_{opr} = -20°C to 85°C/-40°C to 85°C unless otherwise specified)

5.2.4.5 In Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$, $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing External Area

Table 5.40Memory Expansion and Microprocessor Modes (in Wait State Setting $2\phi + 3\phi$, $2\phi + 4\phi$,
 $3\phi + 4\phi$, and $4\phi + 5\phi$, and When Inserting 1 to 3 Recovery Cycles and Accessing
External Area)

Symbol	Parameter	Measuring	Stan	dard	Unit
Symbol	Farameter	Condition	Min.	Max.	Unit
t _{d(BCLK-AD)}	Address output delay time			25	ns
t _{h(BCLK-AD})	Address output hold time (in relation to BCLK)		0		ns
t _{h(RD-AD})	Address output hold time (in relation to RD)		(Note 4)		ns
t _{h(WR-AD)}	Address output hold time (in relation to WR)		(Note 2)		ns
t _{d(BCLK-CS)}	Chip select output delay time			25	ns
t _{h(BCLK-CS)}	Chip select output hold time (in relation to BCLK)		0		ns
t _{d(BCLK-ALE)}	ALE signal output delay time			15	ns
t _{h(BCLK-ALE})	ALE signal output hold time	See	-4		ns
t _{d(BCLK-RD)}	RD signal output delay time	Figure 5.15		25	ns
t _{h(BCLK-RD)}	RD signal output hold time		0		ns
t _{d(BCLK-WR)}	WR signal output delay time			25	ns
t _{h(BCLK-WR)}	WR signal output hold time		0		ns
t _{d(BCLK-DB)}	Data output delay time (in relation to BCLK)			40	ns
t _{h(BCLK-DB)}	Data output hold time (in relation to BCLK) ⁽³⁾		0		ns
t _{d(DB-WR)}	Data output delay time (in relation to WR)		(Note 1)		ns
t _{h(WR-DB)}	Data output hold time (in relation to WR) ⁽³⁾		(Note 2)		ns

Notes:


1. Calculated according to the BCLK frequency as follows:

$$\frac{n \times 10^9}{f_{(BCLK)}} - 40[ns] \qquad \text{n is 3 for } 2\phi + 3\phi, 4 \text{ for } 2\phi + 4\phi, 4 \text{ for } 3\phi + 4\phi, \text{ and 5 for } 4\phi + 5\phi.$$

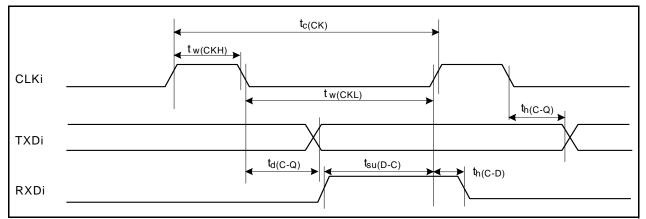
2. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} - 10[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR \times ln(1-V_{OL}/V_{CC2})$ by a circuit of the right figure. For example, when $V_{OL} = 0.2V_{CC2}$, C = 30 pF, R = 1 k Ω , hold time of output low level is t = -30 pF x 1 k $\Omega \times ln(1 - 0.2V_{CC2}/V_{CC2})$ = 6.7 ns.

4. Calculated according to the BCLK frequency as follows:

$$\frac{m \times 10^9}{f_{(BCLK)}} + 0[ns]$$
 m is 1 when 1 recovery cycle is inserted, 2 when 2 recovery cycles are inserted, and 3 when 3 recovery cycles are inserted.


Timing Requirements

 $(V_{CC1} = V_{CC2} = 3 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.3.2.5 Serial Interface

Table 5.53Serial Interface

Symbol	Parameter	Standard		Unit
Cymbol	i diameter	Min.	Max.	Onic
t _{c(CK)}	CLKi input cycle time	300		ns
t _{w(CKH)}	CLKi input high pulse width	150		ns
t _{w(CKL)}	CLKi input low pulse width	150		ns
t _{d(C-Q)}	TXDi output delay time		160	ns
t _{h(C-Q)}	TXDi hold time	0		ns
t _{su(D-C)}	RXDi input setup time	100		ns
t _{h(C-D)}	RXDi input hold time	90		ns

Figure 5.26 Serial Interface

5.3.2.6 External Interrupt INTi Input

Table 5.54 External Interrupt INTi Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Symbol Farameter	Min.	Max.	Offic
t _{w(INH)}	INTi input high pulse width	380		ns
t _{w(INL)}	INTi input low pulse width	380		ns

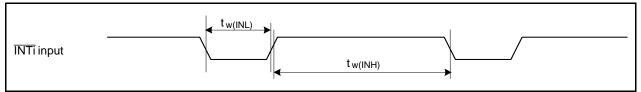


Figure 5.27 External Interrupt INTi Input

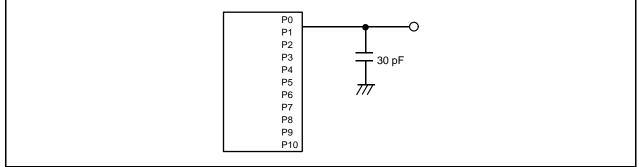


Figure 5.30 Ports P0 to P10 Measurement Circuit

Table 5.63 Electrical Characteristics (2) ⁽¹⁾

 $1.8 \text{ V} \le \text{V}_{CC1} = \text{V}_{CC2} < 2.7 \text{ V}$, $\text{V}_{SS} = 0 \text{ V}$ at $\text{T}_{opr} = -20$ to $85^{\circ}\text{C}/-40$ to 85°C , $f_{(BCLK)} = 5$ MHz unless otherwise specified.

Symbol		Parameter	Measuring Condition	St	andard		Unit
Symbol		Falameter	Measuring Condition	Min.	Тур.	yp. Max.	
I _{IL}	Low input current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7 XIN, RESET, CNVSS, BYTE	V ₁ = 0 V			-2.0	μΑ
R _{PULLUP}	Pull-up resistance	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7	V ₁ = 0 V	70	140	700	kΩ
R _{fXIN}	Feedback r	esistance XIN			0.8		MΩ
R _{fXCIN}	Feedback r	esistance XCIN			8		MΩ
V _{RAM}	RAM retent	ion voltage		1.8			V

Note:

1. When $V_{CC1} \neq V_{CC2}$, refer to 5 V, 3 V, or 1.8 V standard depending on the voltage.

Timing Requirements

 $(V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

Table 5.71	Timer A Input	(Two-Phase Pulse Input i	n Event Counter Mode)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Onit
t _{c(TA)}	TAiIN input cycle time	3		μS
t _{su(TAIN-TAOUT)}	TAiOUT input setup time	800		ns
t _{su(TAOUT-TAIN)}	TAilN input setup time	800		ns

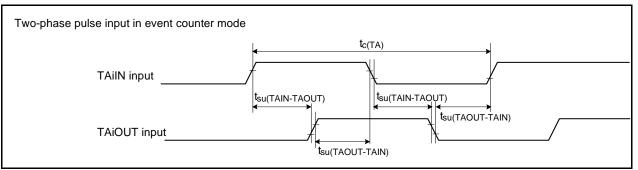
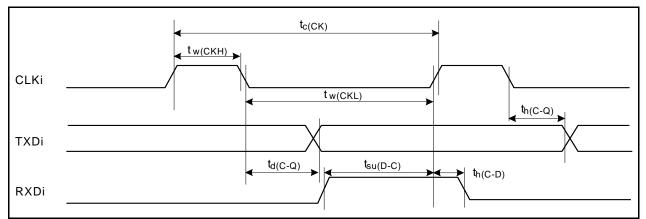


Figure 5.39 Timer A Input (Two-Phase Pulse Input in Event Counter Mode)

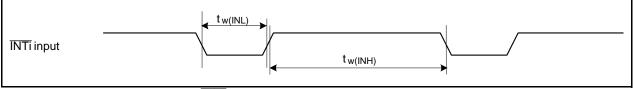

Timing Requirements

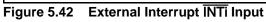
 $(V_{CC1} = V_{CC2} = 1.8 \text{ V}, V_{SS} = 0 \text{ V}, \text{ at } T_{opr} = -20^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}/-40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C} \text{ unless otherwise specified})$

5.4.2.5 Serial Interface

Table 5.75Serial Interface

Symbol	Parameter	Stan	dard	Unit
		Min.	Max.	Offic
t _{c(CK)}	CLKi input cycle time	800		ns
t _{w(CKH)}	CLKi input high pulse width	400		ns
t _{w(CKL)}	CLKi input low pulse width	400		ns
t _{d(C-Q)}	TXDi output delay time		240	ns
t _{h(C-Q)}	TXDi hold time	0		ns
t _{su(D-C)}	RXDi input setup time	200		ns
t _{h(C-D)}	RXDi input hold time	90		ns




Figure 5.41 Serial Interface

5.4.2.6 External Interrupt INTi Input

Table 5.76 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
	i didificici	Min.	Max.	Offic
t _{w(INH)}	INTi input high pulse width	1000		ns
t _{w(INL)}	INTi input low pulse width	1000		ns
tr(INT)	INTi input rising time		100	μs
tf(INT)	INTi input falling time		100	μs

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
- technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

Standard: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by vou.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations.
- It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-8000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarkst, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Milloadr Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804 Renesas Electronics Europe GmbH Arcadiastrase 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-11628-651-804 Renesas Electronics Furope GmbH Arcadiastrase 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-211-6503-1327 Renesas Electronics (Shangha) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679 Renesas Electronics (Shangha) Co., Ltd. Unit 204, 205, AZIA Center, No.1233 Lujiazu Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-2757-1818, Fax: +86-2-1687-7858 Renesas Electronics Hong Kong Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2868-9318, Fax: +852-2886-9022/9044 Renesas Electronics Taiwan Co., Ltd. 107, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +862-24175-9600, Fax: +882 2-9175-9670 Renesas Electronics Taiwan Co., Ltd. 80 Bendemeer Road, Unit #06-163, Hond. Unit 900-163, Shen, Taipei, Taiwan Tel: +852-24175-9600, Fax: +858 2-94175-9670 Renesas Electronics Malaysia Sdn.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3795-9390, Fax: +60-3795-9510