

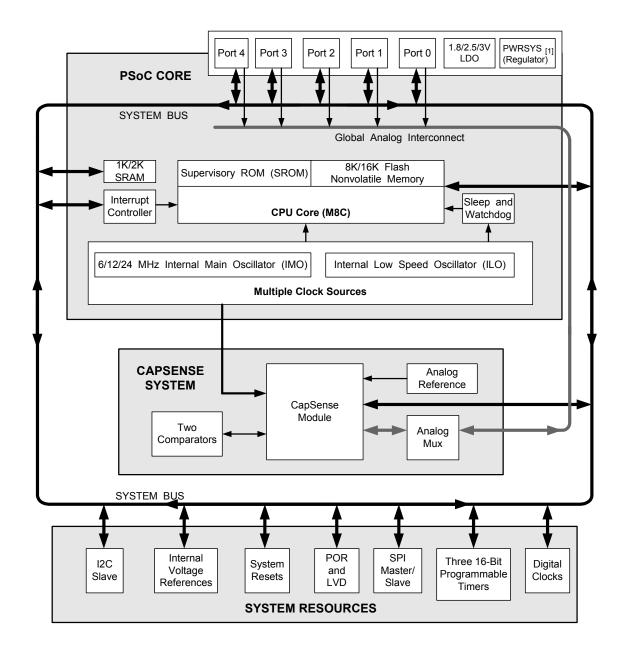
Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application charific microcontrollars are angineered to


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6A
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	13
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	16-UFQFN
Supplier Device Package	16-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20246as-24lkxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Note

1. Internal voltage regulator for internal circuitry

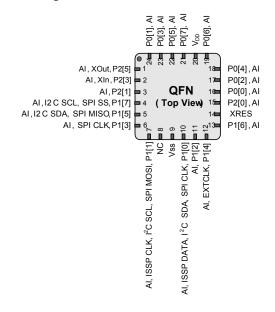
CY8C20336H, CY8C20446H

Contents

PSoC® Functional Overview	4
PSoC Core	
CapSense System	4
Haptics TS2000 Controller	4
Additional System Resources	
Getting Started	
Application Notes	5
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select User Modules	7
Configure User Modules	7
Organize and Connect	7
Generate, Verify, and Debug	7
Pinouts	8
24-Pin QFN	8
32-Pin QFN	
48-Pin QFN OCD	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	11
DC Chip-Level Specifications	
DC General Purpose I/O Specifications	
DC Analog Mux Bus Specifications	15
DC Low Power Comparator Specifications	15
Comparator User Module Electrical Specifications	
ADC Electrical Specifications	
DC POR and LVD Specifications	
DC Programming Specifications	17

AC Chip-Level Specifications	18
AC General Purpose I/O Specifications	19
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	
AC I2C Specifications	22
Packaging Information	
Thermal Impedances	28
Capacitance on Crystal Pins	28
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	
Development Kits	29
Evaluation Tools	29
Device Programmers	30
Accessories (Emulation and Programming)	30
Third Party Tools	
Build a PSoC Emulator into Your Board	30
Ordering Information	31
Ordering Code Definitions	31
Document Conventions	32
Acronyms Used	32
Units of Measure	32
Numeric Naming	32
Glossary	33
Reference Documents	33
Document History Page	34
Sales, Solutions, and Legal Information	35
Worldwide Sales and Design Support	
Products	
PSoC Solutions	35

Pinouts


The CY8C20336H/CY8C20446H PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, VSS, VDD, and XRES are not capable of digital I/O.

24-Pin QFN

Table 1. Pin Definitions - CY8C20336H [3, 4]

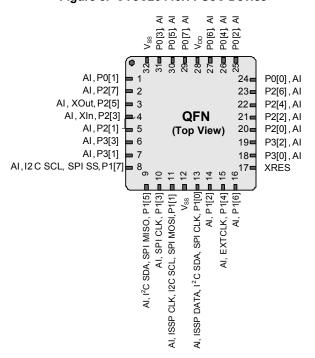
Pin	Ту	ре	N1	Daniel de la
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[5] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	Vss	Ground connection
10	IOHR	I	P1[0]	ISSP DATA ^[5] , I ² C SDA, SPI CLK
11	IOHR	I	P1[2]	
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	In	put	XRES	Active high external reset with internal pull down
15	I/O	I	P2[0]	
16	IOH	I	P0[0]	
17	IOH	I	P0[2]	
18	ЮН	I	P0[4]	
19	ЮН	I	P0[6]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	I	P0[1]	Integrating input
СР	Po	wer	V_{SS}	Center pad must be connected to ground

Figure 2. CY8C20336H PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- During power-up or reset event, device P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter any issues.
 The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR (Power On Reset).



32-Pin QFN

Table 2. Pin Definitions - CY8C20446H PSoC Device [6, 7]

Pin	Ту	ре		D
No.	Digital	Analog	Name	Description
1	IOH	ı	P0[1]	Integrating input
2	I/O	ı	P2[7]	
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	l	P2[1]	
6	I/O	ļ	P3[3]	
7	I/O	ļ	P3[1]	
8	IOHR	I	P1[7]	I ² C SCL, SPI SS
9	IOHR		P1[5]	I ² C SDA, SPI MISO
10	IOHR	I	P1[3]	SPI CLK.
11	IOHR	l	P1[1]	ISSP CLK ^[8] , I ² C SCL, SPI MOSI.
12	Po	wer	Vss	Ground connection.
13	IOHR	I	P1[0]	ISSP DATA ^[8] , I ² C SDA., SPI CLK
14	IOHR	Į	P1[2]	
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR	ļ	P1[6]	
17	In	put	XRES	Active high external reset with internal pull down
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	1	P2[4]	
23	I/O	I	P2[6]	
24	IOH	ı	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	ļ	P0[6]	
28	Po	wer	V_{DD}	Supply voltage
29	IOH		P0[7]	
30	IOH	ļ	P0[5]	
31	IOH	ļ	P0[3]	Integrating input
32	Po	wer	V_{SS}	Ground connection
СР	Po	wer	V _{SS}	Center pad must be connected to ground

Figure 3. CY8C20446H PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- During power-up or reset event, device P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter any issues.
 The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR (Power On Reset).

DC General Purpose I/O Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 1.71 V to 2.4 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 7. 3.0 V to 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	$I_{OH} \le 10~\mu A$, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	_	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH5}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	_	_	V
V _{OH7}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V_{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	-	V
V _{OH9}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	_	-	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V_{IL}	Input low voltage		_	_	0.80	V
V _{IH}	Input high voltage		2.00	-	_	V
V_{H}	Input hysteresis voltage		_	80	1	mV
I_{IL}	Input leakage (absolute value)		_	0.001	1	μА
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 8. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.40	_	_	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OH5A}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	\ \
V _{OH6A}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	_	_	V
V _{OL}	Low output voltage	I _{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage		-	_	0.72	V
V _{IH}	Input high voltage		1.40	-	_	V
V _H	Input hysteresis voltage		_	80	_	mV
I _{IL}	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 9. 1.71 V to 2.4 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	I_{OH} = 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 100 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.40	V
V_{IL}	Input low voltage		_	_	0.30 × V _{DD}	V
V _{IH}	Input high voltage		0.65 × V _{DD}	_	_	V

Document Number: 001-56223 Rev. *E

Table 9. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{H}	Input hysteresis voltage		_	80	_	mV
I _{IL}	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 10.DC Characteristics - USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	900	_	1575	Ω
Rusba	USB D+ pull-up resistance	While receiving traffic	1425	_	3090	Ω
Vohusb	Static output high		2.8	-	3.6	V
Volusb	Static output low		_	-	0.3	V
Vdi	Differential input sensitivity		0.2	_	_	V
Vcm	Differential input common mode range		0.8	_	2.5	V
Vse	Single-ended receiver threshold		0.8	_	2.0	V
Cin	Transceiver capacitance		_	_	50	pF
lio	High-Z state data line leakage	On D+ or D- line	-10	_	+10	μΑ
Rps2	PS/2 pull-up resistance		3000	5000	7000	Ω
Rext	External USB series resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 11. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus		_	_	800	Ω
R _{GND}	Resistance of initialization switch to V _{SS}		ı	_	800	Ω

The maximum pin voltage for measuring R_{SW} and R_{GND} is 1.8 $\mbox{\rm V}$

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 12. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.0	-	1.8	V
I_{LPC}	LPC supply current		-	10	40	μΑ
V _{OSLPC}	LPC voltage offset		-	2.5	30	mV

Document Number: 001-56223 Rev. *E Page 15 of 35

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 13. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50-mV overdrive	_	70	100	ns
Offset		Valid from 0.2 V to V _{DD} – 0.2 V	_	2.5	30	mV
Current		Average DC current, 50 mV overdrive	_	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	_	80	_	dB
FUNN	Supply voltage < 2 V	Power supply rejection ratio	_	40	_	dB
Input Range			0	=	1.5	V

ADC Electrical Specifications

Table 14.ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input	•	•				
V _{IN}	Input voltage range		0	_	VREFADC	V
C _{IIN}	Input capacitance		_	_	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference		•				
V _{REFADC}	ADC reference voltage		1.14	_	1.26	V
Conversion Rate)		l .	l .	.1	I.
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 18 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	5.85	_	ksps
DC Accuracy		•	l	l		
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	_	10	bits
DNL	Differential nonlinearity		-1	_	+2	LSB
INL	Integral nonlinearity		-2	_	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	_	+5	%FSR
Power		•	•	•	•	
I _{ADC}	Operating current		_	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	_	24	_	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	during startup, reset from the XRES pin, or reset from watchdog.	_	2.36	2.41	
V _{POR2}	2.60 V selected in PSoC Designer	reset nom watchdog.	-	2.60	2.66	
V _{POR3}	2.82 V selected in PSoC Designer		_	2.82	2.95	
V_{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V_{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[14]	2.71	2.78	
V_{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[15]	2.92	2.99	
V_{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[16]	3.02	3.09	
V_{LVD4}	3.13 V selected in PSoC Designer		3.06	3.13	3.20	
V_{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	
V_{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[17]	1.80	1.84	
V_{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 16. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply voltage for flash write operations		1.71	_	5.25	V
I _{DDP}	Supply current during programming or verify		_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See the appropriate DC General Purpose I/O Specifications on page 13	-	_	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on pages 15 or 16	V _{IH}	_	_	V
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	_	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	_	1.5	mA
V _{OLP}	Output low voltage during programming or verify		_	_	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on page 16. For V _{DD} > 3 V use V _{OH4} in Table 5 on page 11.	V _{OH}	_	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	_	_	-
Flash _{DR}	Flash data retention	Following maximum flash write cycles; ambient temperature of 55 °C	10	20	_	Years

^{14.} Always greater than 50 mV above V_{PPOR1} voltage for falling supply.

15. Always greater than 50 mV above V_{PPOR2} voltage for falling supply.

16. Always greater than 50 mV above V_{PPOR3} voltage for falling supply.

17. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24-MHz setting		22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12-MHz setting		11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6-MHz setting		5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency		0.75	_	25.20	MHz
F _{32K1}	ILO frequency		19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency		13	32	82	kHz
DC _{IMO}	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	_	_	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	-	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	_	_	μS

Table 19.AC Characteristics - USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{DRATE}	Full-speed data rate	Average bit rate	12 – 0.25%	12	12 + 0.25%	MHz
T _{JR1}	Receiver jitter tolerance	To next transition	-18.5	_	18.5	ns
T _{JR2}	Receiver jitter tolerance	To pair transition	-9	_	9	ns
T _{DJ1}	FS driver jitter	To next transition	-3.5	_	3.5	ns
T _{DJ2}	FS driver jitter	To pair transition	-4.0	_	4.0	ns
T _{FDEOP}	Source jitter for differential transition	To SE0 transition	-2	_	5	ns
T _{FEOPT}	Source SE0 interval of EOP		160	_	175	ns
T _{FEOPR}	Receiver SE0 interval of EOP		82	-		ns
T _{FST}	Width of SE0 interval during differential transition		_	_	14	ns

Table 20. AC Characteristics - USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{FR}	Transition rise time	50 pF	4	_	20	ns
T _{FF}	Transition fall time	50 pF	4	_	20	ns
T _{FRFM} ^[19]	Rise/fall time matching		90	_	111	%
Vcrs	Output signal crossover voltage		1.30	-	2.00	V

AC Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 21. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	_	1	100	ns

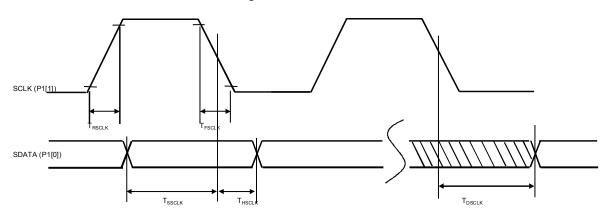
AC External Clock Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
	Frequency (external oscillator frequency)		0.75	_	25.20	MHz
	High period		20.60	_	5300	ns
	Low period		20.60	_	-	ns
	Power-up IMO to switch		150	1	_	μS

Note


Document Number: 001-56223 Rev. *E Page 20 of 35

^{19.} T_{FRFM} is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications. Signal integrity tests show an excellent eye diagram at 3.15 V.

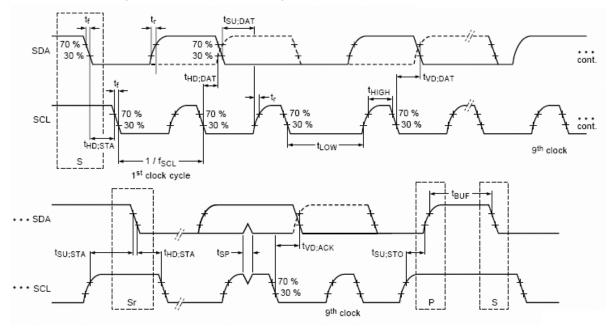
AC Programming Specifications

Figure 7. AC Waveform

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise time of SCLK		1	_	20	ns
T _{FSCLK}	Fall time of SCLK		1	_	20	ns
T _{SSCLK}	Data Setup time to falling edge of SCLK		40	_	_	ns
T _{HSCLK}	Data Hold time from falling edge of SCLK		40	_	_	ns
F _{SCLK}	Frequency of SCLK		0	_	8	MHz
T _{ERASEB}	Flash erase time (Block)		-	_	18	ms
T _{WRITE}	Flash block write time		-	_	25	ms
T _{DSCLK}	Data out delay from falling edge of SCLK	3.6 < V _{DD}	_	_	60	ns
T _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	_	85	ns
T _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	_	130	ns
T _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	_	_	μS
T _{XRES}	XRES Pulse Length		300	_	_	μS
T _{VDDWAIT}	V _{DD} stable to wait-and-poll hold off		0.1	_	1	ms
T _{VDDXRES}	V _{DD} stable to XRES assertion delay		14.27	_	_	ms
T _{POLL}	SDATA high pulse time		0.01	_	200	ms
T _{ACQ}	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.		3.20	-	19.60	ms
T _{XRESINI}	"Key window" time after an XRES event, based on eight ILO clocks		98	-	615	μS


AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description		Standard Mode		Fast Mode	
-	·	Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	_	0.6	-	μS
t_{LOW}	LOW period of the SCL clock	4.7	_	1.3	_	μS
t _{HIGH}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	-	μS
t _{HD;DAT}	Data hold time	0	3.45	0	0.9	μS
t _{SU;DAT}	Data setup time	250	_	100 ^[20]	_	ns
t _{SU;STO}	Setup time for STOP condition	4.0	_	0.6	_	μS
t _{BUF}	Bus-free time between a STOP and START condition	4.7	_	1.3	-	μS
t _{SP}	Pulse width of spikes are suppressed by the input filter.	_	_	0	50	ns

Figure 8. Definition for Timing for Fast/Standard Mode on the I²C Bus

Note

^{20.} A Fast-Mode I²C-bus device can be used in a Standard Mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

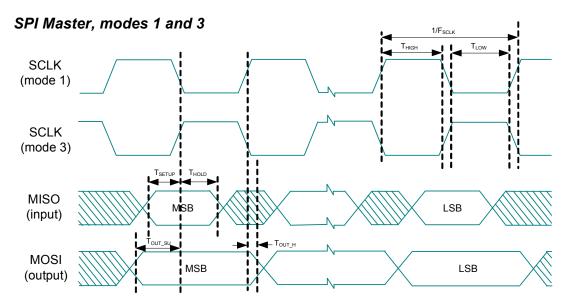


Figure 10. SPI Master Mode 1 and 3

Table 26. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	_	-	4	MHz
T _{LOW}	SCLK low time	_	42	_	_	ns
T _{HIGH}	SCLK high time	-	42	_	_	ns
T _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
T _{HOLD}	SCLK to MOSI hold time	-	50	_	_	ns
T _{SS_MISO}	SS high to MISO valid	-	_	_	153	ns
T _{SCLK_MISO}	SCLK to MISO valid	-	_	-	125	ns
T _{SS_HIGH}	SS high time	-	50	_	_	ns
T _{SS_CLK}	Time from SS low to first SCLK	_	2/SCLK	_	_	ns
T _{CLK SS}	Time from last SCLK to SS high	-	2/SCLK	-	-	ns

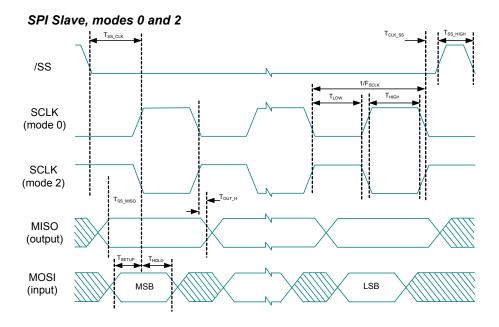
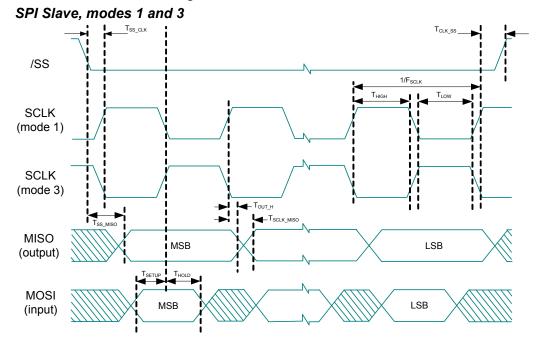



Figure 11. SPI Slave Mode 0 and 2

Development Tool Selection

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66A family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240-V power supply, Euro-Plug adapter
- iMAGEcraft C Compiler (Registration required)
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466A-24PXI 28-PDIP chip samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample
- 28-pin CY8C27443A-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3280-20x66 Universal CapSense Controller

The CY3280-20X66 CapSense Controller Kit is designed for easy prototyping and debug of CY8C20xx6A CapSense Family designs with pre-defined control circuitry and plug-in hardware. Programming hardware and an I2C-to-USB bridge are included for tuning and data acquisition.

The kit includes:

- CY3280-20x66 CapSense Controller board
- CY3240-I2USB bridge
- CY3210 MiniProg1 Programmer
- USB 2.0 retractable cable
- CY3280-20x66 Kit CD

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD

■ Getting Started Guide

■ USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Accessories (Emulation and Programming)

Table 30. Emulation and Programming Accessories

Part Number	Pin Package	Flex-Pod Kit ^[24]	Foot Kit ^[25]	Adapter ^[26]
CY8C20336H-24LQXI	24-pin QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 24
CY8C20446H-24LQXI	32-pin QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 26

Third Party Tools

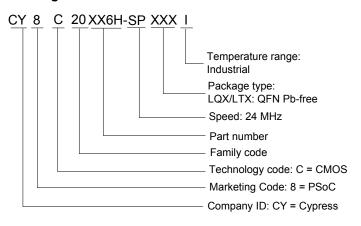
Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

Notes

- 24. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.
- 25. Foot kit includes surface mount feet that can be soldered to the target PCB.
- 26. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.
- 27. Dual-function digital I/O pins also connect to the common analog mux.
- 28. This part is available in limited quantities for in-circuit debugging during prototype development. It is not available in production volumes.


Ordering Information

The following table lists the CY8C20336H/CY8C20446H PSoC devices' key package features and ordering codes.

Table 31. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (KB)	SRAM (KB)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[27]	XRES Pin	USB
24-pin (4 × 4 × 0.6mm) QFN	CY8C20336H-24LQXI	8	1	1	20	20	Yes	No
32 pin (5 × 5 × 0.6 mm) QFN	CY8C20446H-24LQXI	16	2	1	28	28	Yes	No
48 pin (7 × 7 mm) QFN (OCD) ^[28]	CY8C20066A-24LTXI	32	2	1	36	36	Yes	Yes

Ordering Code Definitions

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description	
AC	alternating current	
ADC	analog-to-digital converter	
API	application programming interface	
CMOS	complementary metal oxide semiconductor	
CPU	central processing unit	
DAC	digital-to-analog converter	
DC	direct current	
EOP	end of packet	
FSR	full scale range	
GPIO	general purpose input/output	
GUI	graphical user interface	
I ² C	inter-integrated circuit	
ICE	in-circuit emulator	
IDAC	digital analog converter current	
ILO	internal low speed oscillator	
IMO	internal main oscillator	
I/O	input/output	
ISSP	in-system serial programming	
LCD	liquid crystal display	
LDO	low dropout (regulator)	
LSB	least-significant bit	
LVD	low voltage detect	
MCU	micro-controller unit	
MIPS	mega instructions per second	
MISO	master in slave out	
MOSI	master out slave in	
MSB	most-significant bit	
OCD	on-chip debugger	
POR	power on reset	
PPOR	precision power on reset	
PSRR	power supply rejection ratio	
PWRSYS	power system	
PSoC®	Programmable System-on-Chip	
SLIMO	slow internal main oscillator	
SRAM	static random access memory	
SNR	signal to noise ratio	
QFN	quad flat no-lead	
SCL	serial I ² C clock	
SDA	serial I ² C data	
SDATA	serial ISSP data	
SPI	serial peripheral interface	
SS	slave select	
SSOP	shrink small outline package	
TC	test controller	
USB	universal serial bus	
USB D+	USB Data +	
USB D-	USB Data-	
WLCSP	wafer level chip scale package	
XTAL	crystal	
A IAL	u yətai	

Units of Measure

Table 32 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Table 32. Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
dB	decibels	
fF	femto farad	
g	gram	
Hz	hertz	
KB	1024 bytes	
Kbit	1024 bits	
KHz	kilohertz	
Ksps	kilo samples per second	
kΩ	kilohm	
MHz	megahertz	
ΜΩ	megaohm	
μΑ	microampere	
μF	microfarad	
μН	microhenry	
μS	microsecond	
μW	microwatts	
mA	milli-ampere	
ms	milli-second	
mV	milli-volts	
nA	nanoampere	
ns	nanosecond	
nV	nanovolts	
Ω	ohm	
pA	picoampere	
pF	picofarad	
pp	peak-to-peak	
ppm	parts per million	
ps	picosecond	
sps	samples per second	
S	sigma: one standard deviation	
V	volts	
W	watt	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products PSoC Solutions

Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface **Lighting & Power Control** cypress.com/go/powerpsoc

cypress.com/go/plc

cypress.com/go/wireless

Memory cypress.com/go/memory Optical & Image Sensing cypress.com/go/image **PSoC** cypress.com/go/psoc **Touch Sensing** cypress.com/go/touch **USB Controllers** cypress.com/go/USB Wireless/RF

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-56223 Rev. *E

Revised November 27, 2012

Page 35 of 35