

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

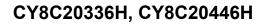
Application charific microcontrollars are angineered to

Details

Details	
Product Status	Active
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6A
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	20
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20346a-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



CY8C20336H, CY8C20446H

Contents

PSoC [®] Functional Overview	4
PSoC Core	4
CapSense System	4
Haptics TS2000 Controller	4
Additional System Resources	5
Getting Started	
Application Notes	5
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Development Tools	
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	
Select User Modules	
Configure User Modules	
Organize and Connect	
Generate, Verify, and Debug	7
Pinouts	-
24-Pin QFN	
32-Pin QFN	
48-Pin QFN OCD	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Chip-Level Specifications	
DC General Purpose I/O Specifications	
DC Analog Mux Bus Specifications	
DC Low Power Comparator Specifications	
Comparator User Module Electrical Specifications .	
ADC Electrical Specifications	
DC POR and LVD Specifications	
DC Programming Specifications	17

AC Chip-Level Specifications	18
AC General Purpose I/O Specifications	19
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	
AC I2C Specifications	
Packaging Information	
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	
Development Kits	
Evaluation Tools	
Device Programmers	30
Accessories (Emulation and Programming)	30
Third Party Tools	
Build a PSoC Emulator into Your Board	
Ordering Information	31
Ordering Code Definitions	
Document Conventions	
Acronyms Used	
Units of Measure	
Numeric Naming	
Glossary	33
Reference Documents	33
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	35
Products	
PSoC Solutions	

PSoC[®] Functional Overview

The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low-cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

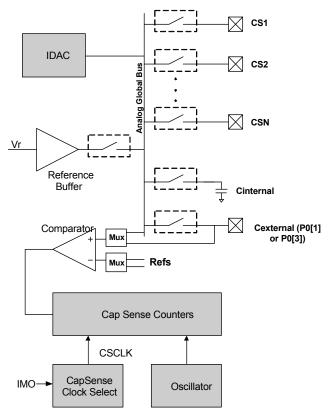
The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas:

- The core
- CapSense analog system
- System resources (including a full-speed USB port).

A common, versatile bus allows connection between the I/O and the analog system.

Each CY8C20336H/446H PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core


The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1-V or 1.2-V analog reference, which together support capacitive sensing of up to 28 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

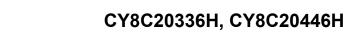
SmartSense™

SmartSense is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easyto-use and provides a robust noise immunity. It is the only autotuning solution that establishes, monitors, and maintains all required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.


Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Haptics TS2000 Controller

The CY8C20336H/CY8C20446H family of devices feature an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules.

Note 2. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I^2C + 1 pin for modulator capacitor.

Additional System Resources

System resources provide additional capability, such as configurable USB and I²C slave, SPI master/slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

These system resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For usage details, refer to the application note I2C Enhanced Slave Operation AN56007.
- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced poweron-reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

For in depth information, along with detailed programming details, see the $PSoC^{\mathbb{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

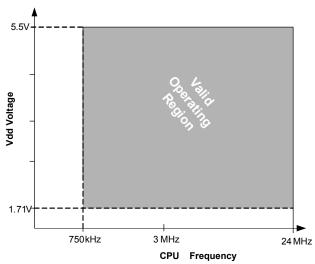
48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066A On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[9]

Pin No.	Digital	Analog	Name	Description			Fig	ure 4. C	SY8C20066A PSoC Device ৰ ৰৰ্ব ব্ৰৰৰ
1			OCDOE	OCD mode direction pin					Р0(1), AI Vss P0(3), AI P0(5), AI P0(7), AI OCDD OCDD OCDD P0(1), AI P0(0), AI P0(0), AI
2	I/O		P2[7]						
3	I/O	I	P2[5]	Crystal output (XOut)				OCDOE	
4	I/O	Ι	P2[3]	Crystal input (XIn)			AI, XC	Out, P2[5]	
5	I/O	I	P2[1]					In , P2[3] 🗖	
6	I/O	I	P4[3]					AI , P2[1] 🗖 AI , P4[3] 🗖	
7	I/O	Ι	P4[1]					AI , P4[1]	
8	I/O	1	P3[7]					AI, P3[7]	
9	I/O	1	P3[5]					AI, P3[5] 🗖 AI, P3[3] 🗖	9 28 P3[2],AI 10 27 P3[0],AI
10	I/O	I	P3[3]					AI, P3[1]	11 26 = XRES
11	I/O	I	P3[1]			AI, I2 C SC	L, SPI	SS, P1[7]	122 7 5 9 5 8 8 8 7 25 P1[6], Al
12	IOHR	I	P1[7]	I ² C SCL, SPI SS	1				P1[5] CCLK F1CLK P1[3] P1[1] Vss Vss Vss Vss P1[2] P1[4] P1[4]
13	IOHR	I	P1[5]	I ² C SDA, SPI MISO	1				I ² C SDA, SPI MISO, AI, P1[5] CCLK BPI CLK AI, P1[3] AI, ISSP CLK, I ² C SCL, SPI MOSI, P1[1] VIS D - 1 D -
14			CCLK	OCD CPU clock output	1				-K, A MOS Al
15			HCLK	OCD high speed clock output					A, SPI CI
16	IOHR	Ι	P1[3]	SPI CLK.					S SCL
17	IOHR	Ι	P1[1]	ISSP CLK ^[12] , I ² C SCL, SPI MOSI					°C SE
18	Pow	er	Vss	Ground connection					DATA
19	I/O		D+	USB D+					AI,
20	I/O		D-	USB D-					Ä
21	Pow	er	V _{DD}	Supply voltage					
22	IOHR	Ι	P1[0]	ISSP DATA ⁽¹²⁾ , I ² C SDA, SPI CLK					
23	IOHR	Ι	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)	37	IOH	Ι	P0[0]	
25	IOHR	-	P1[6]		38	IOH	Ι	P0[2]	
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	-	P0[4]	
27	I/O		P3[0]		40	IOH	Ι	P0[6]	
28	I/O	-	P3[2]		41	Pow	er	V _{DD}	Supply voltage
29	I/O		P3[4]		42			OCDO	OCD even data I/O
30	I/O		P3[6]		43			OCDE	OCD odd data output
31	I/O	Ι	P4[0]		44	IOH	Ι	P0[7]	
32	I/O	Ι	P4[2]		45	IOH	-	P0[5]	
33	I/O	Ι	P2[0]		46	IOH	Ι	P0[3]	Integrating input
34	I/O	Ι	P2[2]		47	Pow	er	V_{SS}	Ground connection
35	I/O	I	P2[4]		48	IOH	I	P0[1]	
36	I/O	I	P2[6]		СР	Pow	er	V_{SS}	Center pad must be connected to ground

Table 3. Pin Definitions	- CY8C20066A PSoC Device ^[10, 11]
--------------------------	--

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.


Notes

9. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.
 10. During power-up or reset event, device P1[1] and P1[0] may disturb the 1²C bus. Use alternate pins if you encounter any issues.
 11. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 12. These are the ISSP pins, which are not High Z at power on reset (POR).

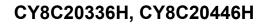
Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36H/46H PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

Figure 5. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.


Table 4. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V _{SS}		-0.5	Ι	+6.0	V
V _{IO}	DC input voltage		$V_{\rm SS} - 0.5$	Ι	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate		V _{SS} –0.5	Ι	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin		-25	Ι	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	_	-	200	mA

Operating Temperature

Table 5. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature		-40	_	+85	°C
Т _С	Commercial temperature range		0	-	70	°C
TJ		The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 28. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 6. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD} ^[13]	Supply voltage	Refer the table DC POR and LVD Specifications on page 17	1.71	-	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	3.32	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	1.86	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	_	1.13	1.80	mA
I _{SB0}	Deep sleep current	$V_{DD}\!\leq\!3.0$ V, T_{A} = 25 °C, I/O regulator turned off	-	0.10	0.50	μA
I _{SB1}	Standby current with POR, LVD, and sleep timer	$V_{DD}{\leq}3.0$ V, T_A = 25 °C, I/O regulator turned off	_	1.07	1.50	μA

Note

13. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 usec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.

DC General Purpose I/O Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 7.	3.0 V to	5.5 V DC	GPIO S	pecifications
----------	----------	----------	---------------	---------------

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
V _{OH5}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	_	_	V
V _{OH7}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	_	V
V _{OH9}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	_	_	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage		-	_	0.80	V
V _{IH}	Input high voltage		2.00	-	-	V
V _H	Input hysteresis voltage		-	80	-	mV
IIL	Input leakage (absolute value)			0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 8. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.40	-	-	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V
V _{OH5A}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	-	_	V
V _{OL}	Low output voltage	I_{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage		-	_	0.72	V
V _{IH}	Input high voltage		1.40	-	_	V
V _H	Input hysteresis voltage		_	80	-	mV
IIL	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 9. 1.71 V to 2.4 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	I_{OH} = 10 µA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	-	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 100 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	-	V
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.40	V
V _{IL}	Input low voltage		-	-	$0.30 \times V_{DD}$	V
V _{IH}	Input high voltage		$0.65 \times V_{DD}$	_	-	V

Table 9. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _H	Input hysteresis voltage		-	80	-	mV
IIL	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 10.DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	900	-	1575	Ω
Rusba	USB D+ pull-up resistance	While receiving traffic	1425	-	3090	Ω
Vohusb	Static output high		2.8	_	3.6	V
Volusb	Static output low		-	-	0.3	V
Vdi	Differential input sensitivity		0.2	-	-	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single-ended receiver threshold		0.8	-	2.0	V
Cin	Transceiver capacitance		-	-	50	pF
lio	High-Z state data line leakage	On D+ or D- line	-10	-	+10	μA
Rps2	PS/2 pull-up resistance		3000	5000	7000	Ω
Rext	External USB series resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 11. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus		_	-	800	Ω
R _{GND}	Resistance of initialization switch to $V_{\mbox{SS}}$		_	-	800	Ω

The maximum pin voltage for measuring R_{SW} and R_{GND} is 1.8 V

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 12. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.0	-	1.8	V
I _{LPC}	LPC supply current		-	10	40	μA
V _{OSLPC}	LPC voltage offset		-	2.5	30	mV

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 13. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50-mV overdrive	-	70	100	ns
Offset		Valid from 0.2 V to $V_{DD} - 0.2 V$	-	2.5	30	mV
Current		Average DC current, 50 mV overdrive	-	20	80	μΑ
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
FUN	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input Range			0	-	1.5	V

ADC Electrical Specifications

Table 14.ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range		0	-	VREFADC	V
C _{IIN}	Input capacitance		-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference		-				•
V _{REFADC}	ADC reference voltage		1.14	-	1.26	V
Conversion Rate	9					
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 18 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	5.85	_	ksps
DC Accuracy		-				•
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity		-1	-	+2	LSB
INL	Integral nonlinearity		-2	-	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power	· · ·	-	•		•	
I _{ADC}	Operating current		-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24-MHz setting		22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12-MHz setting		11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6-MHz setting		5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency		0.75	-	25.20	MHz
F _{32K1}	ILO frequency		19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency		13	32	82	kHz
DC _{IMO}	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	-	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	_	_	μS

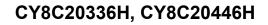
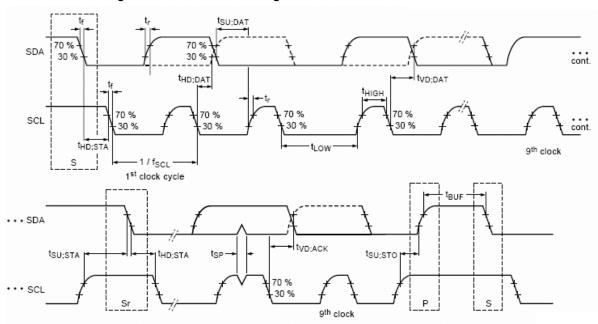

AC Programming Specifications

Figure 7. AC Waveform

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise time of SCLK		1	_	20	ns
T _{FSCLK}	Fall time of SCLK		1	-	20	ns
T _{SSCLK}	Data Setup time to falling edge of SCLK		40	-	-	ns
T _{HSCLK}	Data Hold time from falling edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	-	8	MHz
T _{ERASEB}	Flash erase time (Block)		-	-	18	ms
T _{WRITE}	Flash block write time		-	-	25	ms
T _{DSCLK}	Data out delay from falling edge of SCLK	$3.6 < V_{DD}$	-	-	60	ns
T _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
T _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	-	130	ns
T _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μS
T _{XRES}	XRES Pulse Length		300	_	_	μS
T _{VDDWAIT}	V _{DD} stable to wait-and-poll hold off		0.1	-	1	ms
T _{VDDXRES}	V _{DD} stable to XRES assertion delay		14.27	-	-	ms
T _{POLL}	SDATA high pulse time		0.01	_	200	ms
T _{ACQ}	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.		3.20	-	19.60	ms
T _{XRESINI}	"Key window" time after an XRES event, based on eight ILO clocks		98	-	615	μS



AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Characteristics of the I²C SDA and SCL Pins

Symbol	ymbol Description		Standard Mode		Fast Mode	
		Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS
t _{LOW}	LOW period of the SCL clock	4.7	-	1.3	_	μS
t _{HIGH}	HIGH period of the SCL clock	4.0	-	0.6	_	μS
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	_	μS
t _{HD;DAT}	Data hold time	0	3.45	0	0.9	μS
t _{SU;DAT}	Data setup time	250	_	100 ^[20]	I	ns
t _{SU;STO}	Setup time for STOP condition	4.0	_	0.6	I	μS
t _{BUF}	Bus-free time between a STOP and START condition	4.7	-	1.3	_	μS
t _{SP}	Pulse width of spikes are suppressed by the input filter.	_	_	0	50	ns

Note

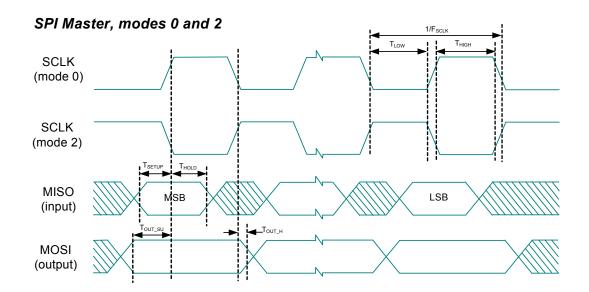

20. A Fast-Mode I²C-bus device can be used in a Standard Mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.



Table 25. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$V_{DD} \ge 2.4 V$ $V_{DD} < 2.4 V$	-	-	6	MHz
		V _{DD} < 2.4 V	-	—	3	
DC	SCLK duty cycle		-	50	-	%
T _{SETUP}	MISO to SCLK setup time	$\begin{array}{l} V_{DD} \geq 2.4 \text{ V} \\ V_{DD} < 2.4 \text{ V} \end{array}$	60	_	_	ns
		V _{DD} < 2.4 V	100	—	-	
T _{HOLD}	SCLK to MISO hold time		40	-	-	ns
T _{OUT_VAL}	SCLK to MOSI valid time		-	-	40	ns
T _{OUT_H}	MOSI high time		40	-	_	ns


Figure 9. SPI Master Mode 0 and 2



Figure 10. SPI Master Mode 1 and 3

Table 26. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
T _{LOW}	SCLK low time	-	42	-	-	ns
T _{HIGH}	SCLK high time	-	42	-	-	ns
T _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
T _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
T _{SS_MISO}	SS high to MISO valid	-	-	-	153	ns
T _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
T _{SS_HIGH}	SS high time	-	50	-	-	ns
T _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	-	-	ns
T _{CLK_SS}	Time from last SCLK to SS high	-	2/SCLK	_	_	ns

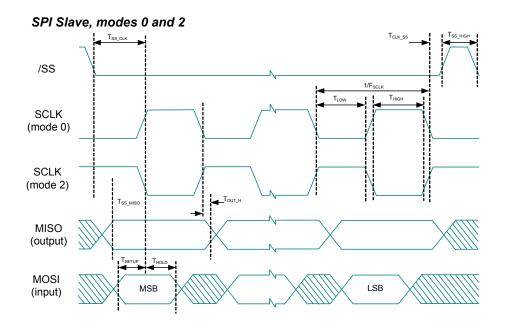
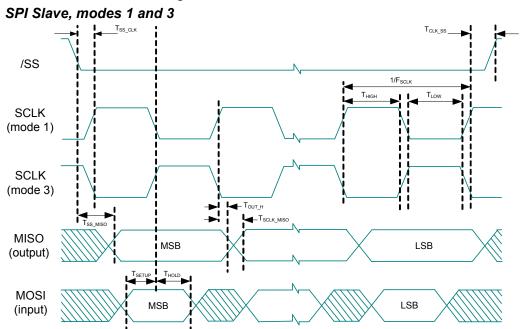



Figure 11. SPI Slave Mode 0 and 2

Thermal Impedances

Table 27. Thermal Impedances per Package

Package	Typical θ _{JA} ^[21]
24-QFN ^[22]	20.90 °C/W
32-QFN ^[22]	19.51 °C/W
48-QFN ^[22]	17.68 °C/W

Capacitance on Crystal Pins

Table 28. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32-pin QFN	3.2 pF
48-pin QFN	3.3 pF

Solder Reflow Peak Temperature

This table lists the minimum solder reflow peak temperature to achieve good solderability.

Table 29. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Peak Temperature
24-pin QFN	260 °C	30 s
32-pin QFN	260 °C	30 s
48-pin QFN	260 °C	30 s

Notes

21. T_J = T_A + Power x θ_{JA}.
22. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.
23. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications.

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Accessories (Emulation and Programming)

- Getting Started Guide
- USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Table 30. Emulation and Programming Accessories

Part Number	Pin Package	Flex-Pod Kit ^[24]	Foot Kit ^[25]	Adapter ^[26]
CY8C20336H-24LQXI	24-pin QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 24
CY8C20446H-24LQXI	32-pin QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 26

Third Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

Notes

25. Foot kit includes surface mount feet that can be soldered to the target PCB.

27. Dual-function digital I/O pins also connect to the common analog mux.

^{24.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

^{26.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

^{28.} This part is available in limited quantities for in-circuit debugging during prototype development. It is not available in production volumes.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CMOS	complementary metal oxide semiconductor
CPU	central processing unit
DAC	digital-to-analog converter
DC	direct current
EOP	end of packet
FSR	full scale range
GPIO	general purpose input/output
GUI	graphical user interface
l ² C	inter-integrated circuit
ICE	in-circuit emulator
IDAC	digital analog converter current
ILO	internal low speed oscillator
IMO	internal main oscillator
I/O	input/output
ISSP	in-system serial programming
LCD	liquid crystal display
LDO	low dropout (regulator)
LSB	least-significant bit
LVD	low voltage detect
MCU	micro-controller unit
MIPS	mega instructions per second
MISO	master in slave out
MOSI	master out slave in
MSB	most-significant bit
OCD	on-chip debugger
POR	power on reset
PPOR	precision power on reset
PSRR	power supply rejection ratio
PWRSYS	power system
PSoC®	Programmable System-on-Chip
SLIMO	slow internal main oscillator
SRAM	static random access memory
SNR	signal to noise ratio
QFN	quad flat no-lead
SCL	serial I ² C clock
SDA	serial I ² C data
SDATA	serial ISSP data
SPI	serial peripheral interface
SS	slave select
SSOP	shrink small outline package
TC	test controller
USB	universal serial bus
USB D+	USB Data +
USB D-	USB Data-
WLCSP	wafer level chip scale package
XTAL	crystal

Units of Measure

Table 32 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Table 32. Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
dB	decibels	
fF	femto farad	
g	gram	
Hz	hertz	
KB	1024 bytes	
Kbit	1024 bits	
KHz	kilohertz	
Ksps	kilo samples per second	
kΩ	kilohm	
MHz	megahertz	
MΩ	megaohm	
μΑ	microampere	
μF	microfarad	
μH	microhenry	
μS	microsecond	
μW	microwatts	
mA	milli-ampere	
ms	milli-second	
mV	milli-volts	
nA	nanoampere	
ns	nanosecond	
nV	nanovolts	
Ω	ohm	
рА	picoampere	
pF	picofarad	
рр	peak-to-peak	
ppm	parts per million	
ps	picosecond	
sps	samples per second	
S	sigma: one standard deviation	
V	volts	
W	watt	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
nterface	cypress.com/go/interface
ighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Vlemory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Fouch Sensing	cypress.com/go/touch
JSB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-56223 Rev. *E

Revised November 27, 2012

Page 35 of 35

PSoC Designer[™] is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I⁴C Patent Rights to use these components in an I⁴C system, provided that the system conforms to the I⁴C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.