

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	28
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20446h-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- □ Hardware and software I²C slaves and masters □ Full-speed USB 2.0
- D Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-toanalog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and guick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Pinouts

The CY8C20336H/CY8C20446H PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

24-Pin QFN

Table 1. Pin Definitions - CY8C20336H ^[3, 4]

Pin	Ту	pe	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	Ι	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[5] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	Vss	Ground connection
10	IOHR	I	P1[0]	ISSP DATA ^[5] , I ² C SDA, SPI CLK
11	IOHR	I	P1[2]	
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	In	put	XRES	Active high external reset with internal pull down
15	I/O	Ι	P2[0]	
16	IOH	I	P0[0]	
17	IOH	I	P0[2]	
18	IOH	I	P0[4]	
19	IOH	I	P0[6]	
20	Po	wer	V _{DD}	Supply voltage
21	IOH	Ι	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH	Ι	P0[1]	Integrating input
CP	Po	wer	V _{SS}	Center pad must be connected to ground

Figure 2. CY8C20336H PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- During power-up or reset event, device P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter any issues.
 The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR (Power On Reset).

48-Pin QFN OCD

The 48-pin QFN part is for the CY8C20066A On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit debugging.^[9]

Pin No.	Digital	Analog	Name	Description			Fig	ure 4. C	CY8C20066A PSoC Device ママママ マママママ ディーマングロン 旅行など
1			OCDOE	OCD mode direction pin					
2	I/O	I	P2[7]						
3	I/O	I	P2[5]	Crystal output (XOut)				AI, P2[7]	2 35 = P2[4],A
4	I/O		P2[3]	Crystal input (XIn)			AI, XC	out, P2[5] 🗖	3 34 = P2[2],AI
5	I/O		P2[1]				AI, X	In , P2[3]	4 33 P2[0], Al
6	I/O	I	P4[3]					AI, P2[1] AI, P4[3]	6 QFN 31 P4[2],AI
7	I/O	I	P4[1]					AI , P4[1] 🗖	7 (Top View) 30 P3[6],AI
8	I/O	I	P3[7]					AI, P3[7]	8 29 P3[4], Al
9	I/O	I	P3[5]					AI, P3[5] -	10 27 P3[2], Al
10	I/O	I	P3[3]					AI, P3[1] 🗖	11 26 – XRES
11	I/O	I	P3[1]		- F	AI, I2 C SC	L, SPI	SS, P1[7]	12 [∞] ≠ ^ω ^ω ^ω ^ω ^ω ^ω ^ω ^ω ^ω
12	IOHR	I	P1[7]	I ² C SCL, SPI SS					
13	IOHR	I	P1[5]	I ² C SDA, SPI MISO					
14			CCLK	OCD CPU clock output					SO, J MOS A A A A A A A A A A A A A A A A A A A
15			HCLK	OCD high speed clock output					N, A, SPICIMI
16	IOHR		P1[3]	SPI CLK.					A, S C SD C SD
17	IOHR	I	P1[1]	ISSP CLK ^[12] , I ² C SCL, SPI MOSI					(C SE 4) 12 C
18	Pow	er	Vss	Ground connection					DAT/
19	I/O		D+	USB D+					A, A,
20	I/O		D-	USB D-					AI,
21	Pow	er	V _{DD}	Supply voltage					
22	IOHR	-	P1[0]	ISSP DATA ⁽¹²⁾ , I ² C SDA, SPI CLK					
23	IOHR	Ι	P1[2]		Pin No.	Digital	Analog	Name	Description
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)	37	IOH	I	P0[0]	
25	IOHR		P1[6]		38	IOH	I	P0[2]	
26	Inpu	ut	XRES	Active high external reset with internal pull down	39	IOH	I	P0[4]	
27	I/O	Ι	P3[0]		40	IOH	I	P0[6]	
28	I/O	I	P3[2]		41	Pow	er	V _{DD}	Supply voltage
29	I/O	I	P3[4]		42			OCDO	OCD even data I/O
30	I/O	Ι	P3[6]		43			OCDE	OCD odd data output
31	I/O	Ι	P4[0]		44	IOH	I	P0[7]	
32	I/O	Ι	P4[2]		45	IOH	Ι	P0[5]	
33	I/O	Ι	P2[0]		46	IOH	Ι	P0[3]	Integrating input
34	I/O	Ι	P2[2]		47	Pow	er	V _{SS}	Ground connection
35	I/O	Ι	P2[4]		48	IOH	I	P0[1]	
36	I/O		P2[6]		CP	Pow	er	V _{SS}	Center pad must be connected to ground

Table 3.	Pin Definitions	- CY8C20066A	PSoC	Device	[10,	11]	
----------	------------------------	--------------	------	--------	------	-----	--

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

9. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.
 10. During power-up or reset event, device P1[1] and P1[0] may disturb the 1²C bus. Use alternate pins if you encounter any issues.
 11. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 12. These are the ISSP pins, which are not High Z at power on reset (POR).

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x36H/46H PSoC devices. For the latest electrical specifications, confirm that you have the most recent data sheet by visiting the web at http://www.cypress.com/psoc.

Figure 5. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 4. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	ů
V _{DD}	Supply voltage relative to V_{SS}		-0.5	-	+6.0	V
V _{IO}	DC input voltage		$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate		V _{SS} –0.5	-	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin		-25	-	+50	mA
ESD	Electrostatic discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	_	_	200	mA

Operating Temperature

Table 5. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature		-40	-	+85	°C
T _C	Commercial temperature range		0	-	70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. Refer the table Thermal Impedances per Package on page 28. The user must limit the power consumption to comply with this requirement.	-40	-	+100	°C

DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 6. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
V _{DD} ^[13]	Supply voltage	Refer the table DC POR and LVD Specifications on page 17	1.71	-	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	3.32	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	1.86	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.13	1.80	mA
I _{SB0}	Deep sleep current	$V_{DD}{\leq}3.0$ V, T_{A} = 25 °C, I/O regulator turned off	_	0.10	0.50	μA
I _{SB1}	Standby current with POR, LVD, and sleep timer	$V_{DD}{\leq}3.0$ V, T_{A} = 25 °C, I/O regulator turned off	_	1.07	1.50	μA

Note

13. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µsec, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 usec to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.

DC General Purpose I/O Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	_	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	-	_	V
V _{OH5}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I_{OH} < 10 μ A, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	_	V
V _{OH7}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	-	_	V
V _{OH9}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	_	_	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage		-	_	0.80	V
V _{IH}	Input high voltage		2.00	-	-	V
V _H	Input hysteresis voltage		_	80	_	mV
I _{IL}	Input leakage (absolute value)		_	0.001	1	μA
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 8. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.40	Ι	-	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	-	V
V _{OH5A}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	_	-	V
V _{OL}	Low output voltage	I _{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage		-	-	0.72	V
V _{IH}	Input high voltage		1.40	_	_	V
V _H	Input hysteresis voltage		_	80	_	mV
IIL	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 9. 1.71 V to 2.4 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	I_{OH} = 10 µA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	-	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 100 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	-	V
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.40	V
V _{IL}	Input low voltage		-	-	$0.30 \times V_{DD}$	V
V _{IH}	Input high voltage		$0.65 \times V_{DD}$	-	-	V

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 13. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50-mV overdrive	_	70	100	ns
Offset		Valid from 0.2 V to V_{DD} – 0.2 V	_	2.5	30	mV
Current		Average DC current, 50 mV overdrive	_	20	80	μA
DSDD	Supply voltage > 2 V	Power supply rejection ratio	_	80	-	dB
	Supply voltage < 2 V	Power supply rejection ratio	_	40	-	dB
Input Range			0	-	1.5	V

ADC Electrical Specifications

Table 14.ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range		0	-	VREFADC	V
C _{IIN}	Input capacitance		-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference	·					
V _{REFADC}	ADC reference voltage		1.14	_	1.26	V
Conversion Rate						
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 18 for accuracy	2.25	-	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	-	5.85	_	ksps
DC Accuracy			1	1		
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	_	10	bits
DNL	Differential nonlinearity		-1	-	+2	LSB
INL	Integral nonlinearity		-2	_	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power		·				
I _{ADC}	Operating current		-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer	V_{DD} must be greater than or equal to 1.71 V	1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	during startup, reset from the XRES pin, or reset from watchdog	-	2.36	2.41	
V _{POR2}	2.60 V selected in PSoC Designer	reset nom waterladg.	-	2.60	2.66	
V _{POR3}	2.82 V selected in PSoC Designer		-	2.82	2.95	
V _{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[14]	2.71	2.78	
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[15]	2.92	2.99	
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[16]	3.02	3.09	
V _{LVD4}	3.13 V selected in PSoC Designer		3.06	3.13	3.20	
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[17]	1.80	1.84	
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 16. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply voltage for flash write operations		1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify		_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See the appropriate DC General Purpose I/O Specifications on page 13	-	_	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on pages 15 or 16	V _{IH}	-	_	V
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify		_	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on page 16. For V_{DD} > 3 V use V_{OH4} in Table 5 on page 11.	V _{OH}	_	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum flash write cycles; ambient temperature of 55 °C	10	20	-	Years

Notes

- 14. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 15. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 16. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 17. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24-MHz setting		22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12-MHz setting		11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6-MHz setting		5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency		0.75	-	25.20	MHz
F _{32K1}	ILO frequency		19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency		13	32	82	kHz
DC _{IMO}	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	-	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	-	-	μS

AC General Purpose I/O Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F _{GPIO}	GPIO operating frequency	Normal strong mode port 0, 1	0	-	6 MHz for 1.71 V <v<sub>DD < 2.40 V 12 MHz for</v<sub>	MHz
			0	-	2.40 V < V _{DD} < 5.50 V	
T _{RISE23}	Rise time, strong mode, Cload = 50 pF ports 2 or 3	V _{DD} = 3.0 to 3.6 V, 10% – 90%	15	-	80	ns
T _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, ports 2 or 3	V _{DD} = 1.71 to 3.0 V, 10% – 90%	15	-	80	ns
T _{RISE01}	Rise time, strong mode, Cload = 50 pF ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% – 90% LDO enabled or disabled	10	-	50	ns
T _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% – 90% LDO enabled or disabled	10	-	80	ns
T _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% – 90%	10	-	50	ns
T _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% – 90%	10	_	70	ns

Figure 6. GPIO Timing Diagram

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Units
-		Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.	4.0	-	0.6	-	μS
t _{LOW}	LOW period of the SCL clock	4.7	-	1.3	-	μS
t _{HIGH}	HIGH period of the SCL clock	4.0	-	0.6	-	μS
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	-	μS
t _{HD;DAT}	Data hold time	0	3.45	0	0.9	μS
t _{SU;DAT}	Data setup time	250	-	100 ^[20]	-	ns
t _{SU;STO}	Setup time for STOP condition	4.0	-	0.6	-	μS
t _{BUF}	Bus-free time between a STOP and START condition	4.7	-	1.3	-	μS
t _{SP}	Pulse width of spikes are suppressed by the input filter.	_	-	0	50	ns

Note

20. A Fast-Mode I²C-bus device can be used in a Standard Mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{max} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Figure 10. SPI Master Mode 1 and 3

Table 26. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
T _{LOW}	SCLK low time	-	42	-	-	ns
T _{HIGH}	SCLK high time	-	42	-	-	ns
T _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
T _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
T _{SS_MISO}	SS high to MISO valid	-	-	-	153	ns
T _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
T _{SS_HIGH}	SS high time	-	50	-	-	ns
T _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	_	-	ns
T _{CLK_SS}	Time from last SCLK to SS high	-	2/SCLK	-	-	ns

Figure 11. SPI Slave Mode 0 and 2

Development Tool Selection

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66A family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240-V power supply, Euro-Plug adapter
- iMAGEcraft C Compiler (Registration required)
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466A-24PXI 28-PDIP chip samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample
- 28-pin CY8C27443A-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of bread-boarding space to meet all of your evaluation needs. The kit includes:

- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3280-20x66 Universal CapSense Controller

The CY3280-20X66 CapSense Controller Kit is designed for easy prototyping and debug of CY8C20xx6A CapSense Family designs with pre-defined control circuitry and plug-in hardware. Programming hardware and an I2C-to-USB bridge are included for tuning and data acquisition.

The kit includes:

- CY3280-20x66 CapSense Controller board
- CY3240-I2USB bridge
- CY3210 MiniProg1 Programmer
- USB 2.0 retractable cable
- CY3280-20x66 Kit CD

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module Cards
- MiniProg Programming Unit
- PSoC Designer Software CD
- Accessories (Emulation and Programming)

- Getting Started Guide
- USB 2.0 Cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 Programmer Unit
- PSoC ISSP Software CD
- 110 ~ 240 V Power Supply, Euro-Plug Adapter
- USB 2.0 Cable

Table 30. Emulation and Programming Accessories

Part Number	Pin Package	Flex-Pod Kit ^[24]	Foot Kit ^[25]	Adapter ^[26]
CY8C20336H-24LQXI	24-pin QFN	CY3250-20366QFN	CY3250-24QFN-FK	See note 24
CY8C20446H-24LQXI	32-pin QFN	CY3250-20466QFN	CY3250-32QFN-FK	See note 26

Third Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Build a PSoC Emulator into Your Board

For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748.

Notes

25. Foot kit includes surface mount feet that can be soldered to the target PCB.

27. Dual-function digital I/O pins also connect to the common analog mux.

^{24.} Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

^{26.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

^{28.} This part is available in limited quantities for in-circuit debugging during prototype development. It is not available in production volumes.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description		
AC	alternating current		
ADC	analog-to-digital converter		
API	application programming interface		
CMOS	complementary metal oxide semiconductor		
CPU	central processing unit		
DAC	digital-to-analog converter		
DC	direct current		
EOP	end of packet		
FSR	full scale range		
GPIO	general purpose input/output		
GUI	graphical user interface		
l ² C	inter-integrated circuit		
ICE	in-circuit emulator		
IDAC	digital analog converter current		
ILO	internal low speed oscillator		
IMO	internal main oscillator		
I/O	input/output		
ISSP	in-system serial programming		
LCD	liquid crystal display		
LDO	low dropout (regulator)		
LSB	least-significant bit		
LVD	low voltage detect		
MCU	micro-controller unit		
MIPS	mega instructions per second		
MISO	master in slave out		
MOSI	master out slave in		
MSB	most-significant bit		
OCD	on-chip debugger		
POR	power on reset		
PPOR	precision power on reset		
PSRR	power supply rejection ratio		
PWRSYS	power system		
PSoC®	Programmable System-on-Chip		
SLIMO	slow internal main oscillator		
SRAM	static random access memory		
SNR	signal to noise ratio		
QFN	quad flat no-lead		
SCL	serial I ² C clock		
SDA	serial I ² C data		
SDATA	serial ISSP data		
SPI	serial peripheral interface		
SS	slave select		
SSOP	shrink small outline package		
TC	test controller		
USB	universal serial bus		
USB D+	USB Data +		
USB D-	USB Data-		
WLCSP	wafer level chip scale package		
XTAL	crystal		
	-		

Units of Measure

Table 32 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Table 32. Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
dB	decibels			
fF	femto farad			
g	gram			
Hz	hertz			
KB	1024 bytes			
Kbit	1024 bits			
KHz	kilohertz			
Ksps	kilo samples per second			
kΩ	kilohm			
MHz	megahertz			
MΩ	megaohm			
μA	microampere			
μF	microfarad			
μH	microhenry			
μS	microsecond			
μW	microwatts			
mA	milli-ampere			
ms	milli-second			
mV	milli-volts			
nA	nanoampere			
ns	nanosecond			
nV	nanovolts			
Ω	ohm			
pА	picoampere			
pF	picofarad			
рр	peak-to-peak			
ppm	parts per million			
ps	picosecond			
sps	samples per second			
S	sigma: one standard deviation			
V	volts			
W	watt			

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non-linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip- flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch up current	Current at which the latch up test is conducted according to JESD78 standard (at 125 °C)
Power supply rejection ratio (PSRR)	The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Scan	The conversion of all sensor capacitances to digital values.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
Signal-to-noise ratio	The ratio between a capacitive finger signal and system noise.
SPI	Serial peripheral interface is a synchronous serial data link standard.

Reference Documents

■ Technical reference manual for CY8C20xx6 devices

■ In-system Serial Programming (ISSP) protocol for 20xx6 – AN2026C

Host Sourced Serial Programming for 20xx6 devices – AN59389

Document History Page

Document Title: CY8C20336H/CY8C20446H Haptics Enabled CapSense [®] Controller Document Number: 001-56223						
Revision	ECN	Origin of Change	Submission Date	Description of Change		
**	2787411	VZD/AESA	10/15/2009	New datasheet.		
*A	3016550	KEJO/KPOL	08/26/2010	Added CY8C20346H part. Updated 24-pin QFN and 32-pin QFN package diagrams. Content and format updated to match latest template.		
*В	3089844	JPM	11/18/10	In Table 26, modified T_{LOW} and T_{HIGH} min values to 42. Updated T_{SS_HIGH} min value to 50; removed max value.		
*C	3180479	YVA	02/23/11	Removed CY8C20346H part Changed title from CapSense Applications to Haptics Enabled CapSense Controller Updated Table 29 with Time at Maximum Temperature information		
*D	3638625	YLIU/BVI	06/06/2012	Updated F_{SCLK} parameter in the SPI Slave AC Specifications table Updated Getting Started and Designing with PSoC Designer sections. Included Development Tools. Updated Software under Development Tool Selection section. Updated F_{SCLK} parameter in the Table 26, "SPI Slave AC Specifications," on page 24. Changed t _{OUT_HIGH} to t _{OUT_H} in Table 25, "SPI Master AC Specifications," on page 23 Updated package diagrams: 001-13937 to *D 001-13191 to *F		
*E	3822568	DST	11/27/2012	Updated package diagrams: 001-13937 to *E 001-42168 to *E 001-13191 to *G		