Welcome to **E-XFL.COM** <u>Embedded - Microcontrollers - Application</u> <u>Specific</u>: Tailored Solutions for Precision and Performance Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications. What Are <u>Embedded - Microcontrollers - Application Specific</u>? Application enceific microcontrollars are angineered to | Details | | |-------------------------|---| | Product Status | Obsolete | | Applications | Capacitive Sensing | | Core Processor | M8C | | Program Memory Type | FLASH (32kB) | | Controller Series | CY8C20xx6A | | RAM Size | 2K x 8 | | Interface | I ² C, SPI | | Number of I/O | 28 | | Voltage - Supply | 1.71V ~ 5.5V | | Operating Temperature | -40°C ~ 85°C | | Mounting Type | Surface Mount | | Package / Case | 32-UFQFN Exposed Pad | | Supplier Device Package | 32-QFN (5x5) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20466as-24lqxi | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Logic Block Diagram** #### Note 1. Internal voltage regulator for internal circuitry ## PSoC® Functional Overview The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low-cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts. The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas: - The core - CapSense analog system - System resources (including a full-speed USB port). A common, versatile bus allows connection between the I/O and the analog system. Each CY8C20336H/446H PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the MCU and analog mux. #### **PSoC Core** The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor. ## CapSense System The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1-V or 1.2-V analog reference, which together support capacitive sensing of up to 28 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports. #### SmartSense™ SmartSense is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy-to-use and provides a robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties. Figure 1. CapSense System Block Diagram ## Analog Multiplexer System The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator. Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include: - Complex capacitive sensing interfaces, such as sliders and touchpads. - Chip-wide mux that allows analog input from any I/O pin. - Crosspoint connection between any I/O pin combinations. ## **Haptics TS2000 Controller** The CY8C20336H/CY8C20446H family of devices feature an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules. #### Note 2. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I^2C + 1 pin for modulator capacitor. ## **Additional System Resources** System resources provide additional capability, such as configurable USB and I²C slave, SPI master/slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C. These system resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here: - The I²C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock). - The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received. - The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For usage details, refer to the application note I2C Enhanced Slave Operation AN56007. - Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on-reset (POR) circuit eliminates the need for a system supervisor. - An internal reference provides an absolute reference for capacitive sensing. - A register-controlled bypass mode allows the user to disable the LDO regulator. ## **Getting Started** For in depth information, along with detailed programming details, see the PSoC® Technical Reference Manual. For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web. ## **Application Notes** Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs. ## **Development Kits** PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. #### **Training** Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs. #### **CYPros Consultants** Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site. ## **Solutions Library** Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly. ## **Technical Support** Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736. ## **Development Tools** PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes: - Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration - Extensive user module catalog - Integrated source-code editor (C and assembly) - Free C compiler with no size restrictions or time limits - Built-in debugger - In-circuit emulation - Built-in support for communication interfaces: - ☐ Hardware and software I²C slaves and masters - □ Full-speed USB 2.0 - □ Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7. ## **PSoC Designer Software Subsystems** ## Design Entry In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application. The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application. #### Code Generation Tools The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two. **Assemblers**. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing. C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality. #### Debugger PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest. #### Online Help System The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer. #### In-Circuit Emulator A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices. The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation. ## **Pinouts** The CY8C20336H/CY8C20446H PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, VSS, VDD, and XRES are not capable of digital I/O. #### 24-Pin QFN Table 1. Pin Definitions - CY8C20336H [3, 4] | Pin | Ту | ре | N1 | Daniel de la | |-----|---------|--------|----------|---| | No. | Digital | Analog | Name | Description | | 1 | I/O | I | P2[5] | Crystal output (XOut) | | 2 | I/O | I | P2[3] | Crystal input (XIn) | | 3 | I/O | I | P2[1] | | | 4 | IOHR | I | P1[7] | I ² C SCL, SPI SS | | 5 | IOHR | I | P1[5] | I ² C SDA, SPI MISO | | 6 | IOHR | I | P1[3] | SPI CLK | | 7 | IOHR | I | P1[1] | ISSP CLK ^[5] , I ² C SCL, SPI MOSI | | 8 | | | NC | No connection | | 9 | Po | wer | Vss | Ground connection | | 10 | IOHR | I | P1[0] | ISSP DATA ^[5] , I ² C SDA, SPI
CLK | | 11 | IOHR | I | P1[2] | | | 12 | IOHR | I | P1[4] | Optional external clock input (EXTCLK) | | 13 | IOHR | I | P1[6] | | | 14 | In | put | XRES | Active high external reset with internal pull down | | 15 | I/O | I | P2[0] | | | 16 | IOH | I | P0[0] | | | 17 | IOH | I | P0[2] | | | 18 | ЮН | I | P0[4] | | | 19 | ЮН | I | P0[6] | | | 20 | Po | wer | V_{DD} | Supply voltage | | 21 | IOH | I | P0[7] | | | 22 | IOH | I | P0[5] | | | 23 | IOH | I | P0[3] | Integrating input | | 24 | IOH | I | P0[1] | Integrating input | | СР | Po | wer | V_{SS} | Center pad must be connected to ground | Figure 2. CY8C20336H PSoC Device LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output. #### Notes - During power-up or reset event, device P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter any issues. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. These are the ISSP pins, which are not High Z at POR (Power On Reset). ## 32-Pin QFN Table 2. Pin Definitions - CY8C20446H PSoC Device [6, 7] | Pin | Ty | /pe | | | |-----|---------|------------|----------|---| | No. | Digital | Analog | Name | Description | | 1 | IOH | I | P0[1] | Integrating input | | 2 | I/O | Į | P2[7] | | | 3 | I/O | I | P2[5] | Crystal output (XOut) | | 4 | I/O | I | P2[3] | Crystal input (XIn) | | 5 | I/O | I | P2[1] | | | 6 | I/O | I | P3[3] | | | 7 | I/O | I | P3[1] | | | 8 | IOHR | Į | P1[7] | I ² C SCL, SPI SS | | 9 | IOHR | ļ | P1[5] | I ² C SDA, SPI MISO | | 10 | IOHR | I | P1[3] | SPI CLK. | | 11 | IOHR | ļ | P1[1] | ISSP CLK ^[8] , I ² C SCL, SPI MOSI. | | 12 | Po | wer | Vss | Ground connection. | | 13 | IOHR | l | P1[0] | ISSP DATA ^[8] , I ² C SDA., SPI CLK | | 14 | IOHR | ļ | P1[2] | | | 15 | IOHR | I | P1[4] | Optional external clock input (EXTCLK) | | 16 | IOHR | I | P1[6] | | | 17 | In | put | XRES | Active high external reset with internal pull down | | 18 | I/O | I | P3[0] | | | 19 | I/O | I | P3[2] | | | 20 | I/O | I | P2[0] | | | 21 | I/O | I | P2[2] | | | 22 | I/O | I | P2[4] | | | 23 | I/O | I | P2[6] | | | 24 | IOH | Į | P0[0] | | | 25 | IOH | ļ | P0[2] | | | 26 | IOH | ļ | P0[4] | | | 27 | IOH | ļ | P0[6] | | | 28 | Po | wer | V_{DD} | Supply voltage | | 29 | IOH | | P0[7] | | | 30 | IOH | Į | P0[5] | | | 31 | IOH | ļ | P0[3] | Integrating input | | 32 | Po | wer | V_{SS} | Ground connection | | СР | Ро | wer | V_{SS} | Center pad must be connected to ground | Figure 3. CY8C20446H PSoC Device **LEGEND** A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output. #### Notes - During power-up or reset event, device P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter any issues. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. These are the ISSP pins, which are not High Z at POR (Power On Reset). ## **Comparator User Module Electrical Specifications** The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V. **Table 13. Comparator User Module Electrical Specifications** | Symbol | Description | Conditions | Min | Тур | Max | Units | |-------------------|--------------------------|---|-----|-----|-----|-------| | T _{COMP} | Comparator response time | 50-mV overdrive | - | 70 | 100 | ns | | Offset | | Valid from 0.2 V to V _{DD} – 0.2 V | - | 2.5 | 30 | mV | | Current | | Average DC current, 50 mV overdrive | - | 20 | 80 | μA | | PSRR | Supply voltage > 2 V | Power supply rejection ratio | _ | 80 | - | dB | | FORK | Supply voltage < 2 V | Power supply rejection ratio | _ | 40 | - | dB | | Input Range | | | 0 | - | 1.5 | V | ## **ADC Electrical Specifications** ## **Table 14.ADC User Module Electrical Specifications** | Symbol | Description | Conditions | Min | Тур | Max | Units | |---------------------|------------------------------|---|------------------------|------------------------|------------------------|-------| | Input | • | • | | | • | | | V _{IN} | Input voltage range | | 0 | _ | VREFADC | V | | C _{IIN} | Input capacitance | | - | - | 5 | pF | | R _{IN} | Input resistance | Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution | 1/(500fF × data clock) | 1/(400fF × data clock) | 1/(300fF × data clock) | Ω | | Reference | | • | | | | | | V _{REFADC} | ADC reference voltage | | 1.14 | _ | 1.26 | V | | Conversion Rate | | | I. | I. | I. | | | F _{CLK} | Data clock | Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 18 for accuracy | 2.25 | - | 6 | MHz | | S8 | 8-bit sample rate | Data clock set to 6 MHz.
Sample Rate = 0.001/
(2^Resolution/Data clock) | - | 23.43 | _ | ksps | | S10 | 10-bit sample rate | Data clock set to 6 MHz.
Sample Rate = 0.001/
(2^Resolution/Data clock) | - | 5.85 | _ | ksps | | DC Accuracy | | • | • | • | | | | RES | Resolution | Can be set to 8-, 9-, or 10-bit | 8 | - | 10 | bits | | DNL | Differential nonlinearity | | -1 | - | +2 | LSB | | INL | Integral nonlinearity | | -2 | - | +2 | LSB | | E _{OFFSET} | Offset error | 8-bit resolution | 0 | 3.20 | 19.20 | LSB | | | | 10-bit resolution | 0 | 12.80 | 76.80 | LSB | | E _{GAIN} | Gain error | For any resolution | - 5 | - | +5 | %FSR | | Power | | • | | | | | | I _{ADC} | Operating current | | - | 2.10 | 2.60 | mA | | PSRR | Power supply rejection ratio | PSRR (V _{DD} > 3.0 V) | - | 24 | - | dB | | | | PSRR (V _{DD} < 3.0 V) | _ | 30 | _ | dB | ## **DC POR and LVD Specifications** The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 15. DC POR and LVD Specifications | Symbol | Description | Conditions | Min | Тур | Max | Units | |-------------------|----------------------------------|--|----------------------|------|------|-------| | V _{POR0} | 1.66 V selected in PSoC Designer | | 1.61 | 1.66 | 1.71 | V | | V _{POR1} | 2.36 V selected in PSoC Designer | during startup, reset from the XRES pin, or reset from watchdog. | _ | 2.36 | 2.41 | | | V _{POR2} | 2.60 V selected in PSoC Designer | | - | 2.60 | 2.66 | | | V _{POR3} | 2.82 V selected in PSoC Designer | | _ | 2.82 | 2.95 | | | V_{LVD0} | 2.45 V selected in PSoC Designer | | 2.40 | 2.45 | 2.51 | V | | V_{LVD1} | 2.71 V selected in PSoC Designer | | 2.64 ^[14] | 2.71 | 2.78 | | | V_{LVD2} | 2.92 V selected in PSoC Designer | | 2.85 ^[15] | 2.92 | 2.99 | | | V_{LVD3} | 3.02 V selected in PSoC Designer | | 2.95 ^[16] | 3.02 | 3.09 | | | V_{LVD4} | 3.13 V selected in PSoC Designer | | 3.06 | 3.13 | 3.20 | | | V_{LVD5} | 1.90 V selected in PSoC Designer | | 1.84 | 1.90 | 2.32 | | | V_{LVD6} | 1.80 V selected in PSoC Designer | | 1.75 ^[17] | 1.80 | 1.84 | | | V_{LVD7} | 4.73 V selected in PSoC Designer | | 4.62 | 4.73 | 4.83 | | ## **DC Programming Specifications** The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 16. DC Programming Specifications** | Symbol | Description | Conditions | Min | Тур | Max | Units | |-----------------------|---|--|-----------------|-----|------------------------|-------| | Vdd _{IWRITE} | Supply voltage for flash write operations | | 1.71 | _ | 5.25 | V | | I _{DDP} | Supply current during programming or verify | | _ | 5 | 25 | mA | | V _{ILP} | Input low voltage during programming or verify | See the appropriate DC General Purpose I/O Specifications on page 13 | - | _ | V _{IL} | V | | V _{IHP} | Input high voltage during programming or verify | See appropriate DC General Purpose I/O
Specifications on page 13 table on pages
15 or 16 | V _{IH} | _ | _ | V | | I _{ILP} | Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify | Driving internal pull-down resistor | - | _ | 0.2 | mA | | I _{IHP} | Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify | Driving internal pull-down resistor | - | _ | 1.5 | mA | | V _{OLP} | Output low voltage during programming or verify | | _ | _ | V _{SS} + 0.75 | V | | V _{OHP} | Output high voltage during programming or verify | See appropriate DC General Purpose I/O Specifications on page 13 table on page 16. For V _{DD} > 3 V use V _{OH4} in Table 5 on page 11. | V _{OH} | _ | V _{DD} | V | | Flash _{ENPB} | Flash write endurance | Erase/write cycles per block | 50,000 | _ | _ | - | | Flash _{DR} | Flash data retention | Following maximum flash write cycles; ambient temperature of 55 °C | 10 | 20 | _ | Years | ^{14.} Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 15. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 16. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 17. Always greater than 50 mV above V_{PPOR0} voltage for falling supply. ## **AC Chip-Level Specifications** The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. ## Table 17. AC Chip-Level Specifications | Symbol | Description | Conditions | Min | Тур | Max | Units | |------------------------|---|---|------|-----|-------|-------| | F _{IMO24} | IMO frequency at 24-MHz setting | | 22.8 | 24 | 25.2 | MHz | | F _{IMO12} | IMO frequency at 12-MHz setting | | 11.4 | 12 | 12.6 | MHz | | F _{IMO6} | IMO frequency at 6-MHz setting | | 5.7 | 6.0 | 6.3 | MHz | | F _{CPU} | CPU frequency | | 0.75 | _ | 25.20 | MHz | | F _{32K1} | ILO frequency | | 19 | 32 | 50 | kHz | | F _{32K_U} | ILO untrimmed frequency | | 13 | 32 | 82 | kHz | | DC _{IMO} | Duty cycle of IMO | | 40 | 50 | 60 | % | | DC _{ILO} | ILO duty cycle | | 40 | 50 | 60 | % | | SR _{POWER_UP} | Power supply slew rate | V _{DD} slew rate during power-up | _ | _ | 250 | V/ms | | T _{XRST} | External reset pulse width at power-up | After supply voltage is valid | 1 | _ | - | ms | | T _{XRST2} | External reset pulse width after power-up ^[18] | Applies after part has booted | 10 | _ | _ | μS | ## **AC General Purpose I/O Specifications** The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 18. AC GPIO Specifications | Symbol | Description | Conditions | Min | Тур | Max | Units | |----------------------|---|---|-----|-----|--|-------| | F _{GPIO} | GPIO operating frequency | Normal strong mode port 0, 1 | 0 | _ | 6 MHz for
1.71 V <v<sub>DD < 2.40 V
12 MHz for</v<sub> | MHz | | | | | 0 | _ | 2.40 V < V _{DD} < 5.50 V | | | T _{RISE23} | Rise time, strong mode, Cload = 50 pF ports 2 or 3 | V _{DD} = 3.0 to 3.6 V, 10% – 90% | 15 | _ | 80 | ns | | T _{RISE23L} | Rise time, strong mode low supply,
Cload = 50 pF, ports 2 or 3 | V _{DD} = 1.71 to 3.0 V, 10% – 90% | 15 | _ | 80 | ns | | T _{RISE01} | Rise time, strong mode, Cload = 50 pF ports 0 or 1 | V _{DD} = 3.0 to 3.6 V, 10% – 90%
LDO enabled or disabled | 10 | - | 50 | ns | | T _{RISE01L} | Rise time, strong mode low supply,
Cload = 50 pF, ports 0 or 1 | V _{DD} = 1.71 to 3.0 V, 10% – 90%
LDO enabled or disabled | 10 | - | 80 | ns | | T _{FALL} | Fall time, strong mode, Cload = 50 pF all ports | V _{DD} = 3.0 to 3.6 V, 10% – 90% | 10 | - | 50 | ns | | T _{FALLL} | Fall time, strong mode low supply,
Cload = 50 pF, all ports | V _{DD} = 1.71 to 3.0 V, 10% – 90% | 10 | _ | 70 | ns | Figure 6. GPIO Timing Diagram ## **AC Programming Specifications** Figure 7. AC Waveform The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. **Table 23. AC Programming Specifications** | Symbol | Description | Conditions | Min | Тур | Max | Units | |----------------------|--|---|-------|-----|-------|-------| | T _{RSCLK} | Rise time of SCLK | | 1 | _ | 20 | ns | | T _{FSCLK} | Fall time of SCLK | | 1 | _ | 20 | ns | | T _{SSCLK} | Data Setup time to falling edge of SCLK | | 40 | _ | _ | ns | | T _{HSCLK} | Data Hold time from falling edge of SCLK | | 40 | _ | _ | ns | | F _{SCLK} | Frequency of SCLK | | 0 | _ | 8 | MHz | | T _{ERASEB} | Flash erase time (Block) | | _ | _ | 18 | ms | | T _{WRITE} | Flash block write time | | _ | _ | 25 | ms | | T _{DSCLK} | Data out delay from falling edge of SCLK | 3.6 < V _{DD} | _ | _ | 60 | ns | | T _{DSCLK3} | Data out delay from falling edge of SCLK | $3.0 \le V_{DD} \le 3.6$ | _ | _ | 85 | ns | | T _{DSCLK2} | Data out delay from falling edge of SCLK | $1.71 \le V_{DD} \le 3.0$ | _ | _ | 130 | ns | | T _{XRST3} | External reset pulse width after power-up | Required to enter programming mode when coming out of sleep | 300 | _ | _ | μS | | T _{XRES} | XRES Pulse Length | | 300 | - | _ | μS | | T _{VDDWAIT} | V _{DD} stable to wait-and-poll hold off | | 0.1 | _ | 1 | ms | | T _{VDDXRES} | V _{DD} stable to XRES assertion delay | | 14.27 | _ | _ | ms | | T _{POLL} | SDATA high pulse time | | 0.01 | _ | 200 | ms | | T _{ACQ} | "Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks. | | 3.20 | _ | 19.60 | ms | | T _{XRESINI} | "Key window" time after an XRES event, based on eight ILO clocks | | 98 | _ | 615 | μS | ## AC I²C Specifications The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges. Table 24. AC Characteristics of the I²C SDA and SCL Pins | Symbol | Description | | Standard
Mode | | Fast Mode | | |---------------------|--|-----|------------------|---------------------|-----------|-----| | - | · | Min | Max | Min | Max | | | f _{SCL} | SCL clock frequency | 0 | 100 | 0 | 400 | kHz | | t _{HD;STA} | Hold time (repeated) START condition. After this period, the first clock pulse is generated. | 4.0 | _ | 0.6 | - | μS | | t_{LOW} | LOW period of the SCL clock | 4.7 | _ | 1.3 | _ | μS | | t _{HIGH} | HIGH period of the SCL clock | 4.0 | - | 0.6 | - | μS | | t _{SU;STA} | Setup time for a repeated START condition | 4.7 | - | 0.6 | - | μS | | t _{HD;DAT} | Data hold time | 0 | 3.45 | 0 | 0.9 | μS | | t _{SU;DAT} | Data setup time | 250 | _ | 100 ^[20] | _ | ns | | t _{SU;STO} | Setup time for STOP condition | 4.0 | _ | 0.6 | _ | μS | | t _{BUF} | Bus-free time between a STOP and START condition | 4.7 | _ | 1.3 | - | μS | | t _{SP} | Pulse width of spikes are suppressed by the input filter. | _ | _ | 0 | 50 | ns | Figure 8. Definition for Timing for Fast/Standard Mode on the I²C Bus ## Note ^{20.} A Fast-Mode I²C-bus device can be used in a Standard Mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released. Figure 11. SPI Slave Mode 0 and 2 ## **Thermal Impedances** ## Table 27. Thermal Impedances per Package | Package | Typical θ _{JA} ^[21] | |------------------------|---| | 24-QFN ^[22] | 20.90 °C/W | | 32-QFN ^[22] | 19.51 °C/W | | 48-QFN ^[22] | 17.68 °C/W | ## **Capacitance on Crystal Pins** ## Table 28. Typical Package Capacitance on Crystal Pins | Package | Package Capacitance | |------------|---------------------| | 32-pin QFN | 3.2 pF | | 48-pin QFN | 3.3 pF | ## **Solder Reflow Peak Temperature** This table lists the minimum solder reflow peak temperature to achieve good solderability. Table 29. Solder Reflow Peak Temperature | Package | Maximum Peak Temperature | Time at Maximum Peak Temperature | |------------|--------------------------|----------------------------------| | 24-pin QFN | 260 °C | 30 s | | 32-pin QFN | 260 °C | 30 s | | 48-pin QFN | 260 °C | 30 s | ^{21.} T_J = T_A + Power x θ_{JA}. 22. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane. 23. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 °C with Sn-Pb or 245 ± 5 °C with Sn-Ag-Cu paste. Refer to the solder manufacturer specifications. ## **Development Tool Selection** #### Software #### PSoC Designer At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com. #### PSoC Programmer Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com. ### **Development Kits** All development kits are sold at the Cypress Online Store. ## CY3215-DK Basic Development Kit The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes: - PSoC Designer software CD - ICE-Cube In-Circuit Emulator - ICE Flex-Pod for CY8C29x66A family - Cat-5 adapter - Mini-Eval programming board - 110 ~ 240-V power supply, Euro-Plug adapter - iMAGEcraft C Compiler (Registration required) - ISSP cable - USB 2.0 cable and Blue Cat-5 cable - Two CY8C29466A-24PXI 28-PDIP chip samples ## **Evaluation Tools** All evaluation tools are sold at the Cypress Online Store. #### CY3210-MiniProg1 The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes: - MiniProg Programming Unit - MiniEval Socket Programming and Evaluation Board - 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample - 28-pin CY8C27443A-24PXI PDIP PSoC Device Sample - PSoC Designer Software CD - Getting Started Guide - USB 2.0 Cable #### CY3210-PSoCEval1 The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes: - Evaluation Board with LCD Module - MiniProg Programming Unit - 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample (2) - PSoC Designer Software CD - Getting Started Guide - USB 2.0 Cable ## CY3280-20x66 Universal CapSense Controller The CY3280-20X66 CapSense Controller Kit is designed for easy prototyping and debug of CY8C20xx6A CapSense Family designs with pre-defined control circuitry and plug-in hardware. Programming hardware and an I2C-to-USB bridge are included for tuning and data acquisition. The kit includes: - CY3280-20x66 CapSense Controller board - CY3240-I2USB bridge - CY3210 MiniProg1 Programmer - USB 2.0 retractable cable - CY3280-20x66 Kit CD ## **Device Programmers** All device programmers are purchased from the Cypress Online Store. ### CY3216 Modular Programmer The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes: - Modular Programmer Base - Three Programming Module Cards - MiniProg Programming Unit - PSoC Designer Software CD # ■ Getting Started Guide ■ USB 2.0 Cable CY3207ISSP In-System Serial Programmer (ISSP) The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes: - CY3207 Programmer Unit - PSoC ISSP Software CD - 110 ~ 240 V Power Supply, Euro-Plug Adapter - USB 2.0 Cable Accessories (Emulation and Programming) Table 30. Emulation and Programming Accessories | Part Number | Pin Package | Flex-Pod Kit ^[24] | Foot Kit ^[25] | Adapter ^[26] | |-------------------|-------------|------------------------------|--------------------------|-------------------------| | CY8C20336H-24LQXI | 24-pin QFN | CY3250-20366QFN | CY3250-24QFN-FK | See note 24 | | CY8C20446H-24LQXI | 32-pin QFN | CY3250-20466QFN | CY3250-32QFN-FK | See note 26 | ## **Third Party Tools** Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards. #### **Build a PSoC Emulator into Your Board** For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC device, refer Application Note "Debugging - Build a PSoC Emulator into Your Board - AN2323" at http://www.cypress.com/?rID2748. #### Notes - 24. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods. - 25. Foot kit includes surface mount feet that can be soldered to the target PCB. - 26. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com. - 27. Dual-function digital I/O pins also connect to the common analog mux. - 28. This part is available in limited quantities for in-circuit debugging during prototype development. It is not available in production volumes. ## **Document Conventions** ## **Acronyms Used** The following table lists the acronyms that are used in this document. | Acronym | Description | | | | |------------------|--|--|--|--| | AC | alternating current | | | | | ADC | analog-to-digital converter | | | | | API | application programming interface | | | | | CMOS | complementary metal oxide semiconductor | | | | | CPU | central processing unit | | | | | DAC | digital-to-analog converter | | | | | DC | direct current | | | | | EOP | end of packet | | | | | FSR | full scale range | | | | | GPIO | general purpose input/output | | | | | GUI | graphical user interface | | | | | I ² C | inter-integrated circuit | | | | | ICE | in-circuit emulator | | | | | IDAC | digital analog converter current | | | | | ILO | internal low speed oscillator | | | | | IMO | internal main oscillator | | | | | I/O | input/output | | | | | ISSP | in-system serial programming | | | | | LCD | liquid crystal display | | | | | LDO | low dropout (regulator) | | | | | LSB | least-significant bit | | | | | LVD | low voltage detect | | | | | MCU | micro-controller unit | | | | | MIPS | mega instructions per second | | | | | MISO | master in slave out | | | | | MOSI | master out slave in | | | | | MSB | most-significant bit | | | | | OCD | on-chip debugger | | | | | POR | power on reset | | | | | PPOR | precision power on reset | | | | | PSRR | power supply rejection ratio | | | | | PWRSYS | power system | | | | | PSoC® | Programmable System-on-Chip | | | | | SLIMO | slow internal main oscillator | | | | | SRAM | static random access memory | | | | | SNR | signal to noise ratio | | | | | QFN | quad flat no-lead | | | | | SCL | serial I ² C clock | | | | | SDA | serial I ² C data | | | | | SDATA | serial ISSP data | | | | | SPI | serial ISSP data serial peripheral interface | | | | | SS | slave select | | | | | SSOP | shrink small outline package | | | | | TC | test controller | | | | | USB | universal serial bus | | | | | USB D+ | USB Data + | | | | | USB D- | USB Data- | | | | | WLCSP | wafer level chip scale package | | | | | XTAL | crystal | | | | | A IAL | u yətai | | | | ## **Units of Measure** Table 32 lists all the abbreviations used to measure the PSoC devices. ## **Numeric Naming** Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal. Table 32. Units of Measure | Symbol | Unit of Measure | | |--------|-------------------------------|--| | °C | degree Celsius | | | dB | decibels | | | fF | femto farad | | | g | gram | | | Hz | hertz | | | KB | 1024 bytes | | | Kbit | 1024 bits | | | KHz | kilohertz | | | Ksps | kilo samples per second | | | kΩ | kilohm | | | MHz | megahertz | | | ΜΩ | megaohm | | | μΑ | microampere | | | μF | microfarad | | | μН | microhenry | | | μS | microsecond | | | μW | microwatts | | | mA | milli-ampere | | | ms | milli-second | | | mV | milli-volts | | | nA | nanoampere | | | ns | nanosecond | | | nV | nanovolts | | | Ω | ohm | | | pA | picoampere | | | pF | picofarad | | | рр | peak-to-peak | | | ppm | parts per million | | | ps | picosecond | | | sps | samples per second | | | S | sigma: one standard deviation | | | V | volts | | | W | watt | | ## Glossary **Crosspoint connection**Connection between any GPIO combination via analog multiplexer bus. Differential non-linearity Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step. Hold time Hold time is the time following a clock event during which the data input to a latch or flip- flop must remain stable in order to guarantee that the latched data is correct. It is a serial multi-master bus used to connect low speed peripherals to MCU. Integral nonlinearity It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level. Latch up current Current at which the latch up test is conducted according to JESD78 standard (at 125 °C) Power supply rejection ratio (PSRR) The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device. Scan The conversion of all sensor capacitances to digital values. Setup time Period required to prepare a device, machine, process, or system for it to be ready to function. **Signal-to-noise ratio**The ratio between a capacitive finger signal and system noise. SPI Serial peripheral interface is a synchronous serial data link standard. ## **Reference Documents** ■ Technical reference manual for CY8C20xx6 devices ■ In-system Serial Programming (ISSP) protocol for 20xx6 – AN2026C ■ Host Sourced Serial Programming for 20xx6 devices – AN59389 # **Document History Page** | Document | Document Title: CY8C20336H/CY8C20446H Haptics Enabled CapSense [®] Controller Document Number: 001-56223 | | | | |----------|---|---------------------|--------------------|--| | Revision | ECN | Origin of
Change | Submission
Date | Description of Change | | ** | 2787411 | VZD/AESA | 10/15/2009 | New datasheet. | | *A | 3016550 | KEJO/KPOL | 08/26/2010 | Added CY8C20346H part. Updated 24-pin QFN and 32-pin QFN package diagrams. Content and format updated to match latest template. | | *B | 3089844 | JPM | 11/18/10 | In Table 26, modified T_{LOW} and T_{HIGH} min values to 42. Updated T_{SS_HIGH} min value to 50; removed max value. | | *C | 3180479 | YVA | 02/23/11 | Removed CY8C20346H part Changed title from CapSense Applications to Haptics Enabled CapSense Controller Updated Table 29 with Time at Maximum Temperature information | | *D | 3638625 | YLIU/BVI | 06/06/2012 | Updated F _{SCLK} parameter in the SPI Slave AC Specifications table Updated Getting Started and Designing with PSoC Designer sections. Included Development Tools. Updated Software under Development Tool Selection section. Updated F _{SCLK} parameter in the Table 26, "SPI Slave AC Specifications," on page 24. Changed t _{OUT_HIGH} to t _{OUT_H} in Table 25, "SPI Master AC Specifications," on page 23 Updated package diagrams: 001-13937 to *D 001-13191 to *F | | *E | 3822568 | DST | 11/27/2012 | Updated package diagrams:
001-13937 to *E
001-42168 to *E
001-13191 to *G | ## Sales, Solutions, and Legal Information ## Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. **Products PSoC Solutions** Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface cypress.com/go/interface **Lighting & Power Control** cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/wireless Memory cypress.com/go/memory Optical & Image Sensing cypress.com/go/image **PSoC** cypress.com/go/psoc **Touch Sensing** cypress.com/go/touch **USB Controllers** cypress.com/go/USB Wireless/RF psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5 © Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-56223 Rev. *E Revised November 27, 2012 Page 35 of 35