E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

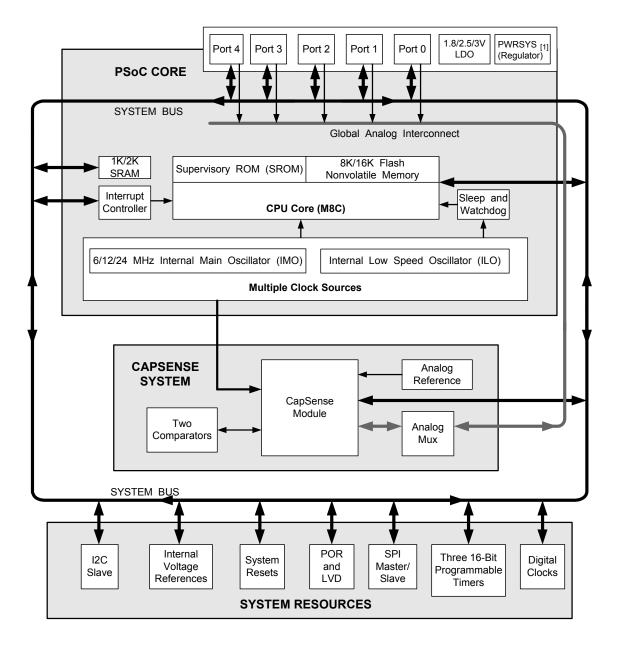
Embedded - Microcontrollers - Application Specific

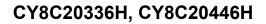
represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details


2 0 14110	
Product Status	Discontinued at Digi-Key
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (8kB)
Controller Series	CY8C20xx6A
RAM Size	1K x 8
Interface	I ² C, SPI
Number of I/O	36
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20536a-24pvxi


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

PSoC[®] Functional Overview

The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low-cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

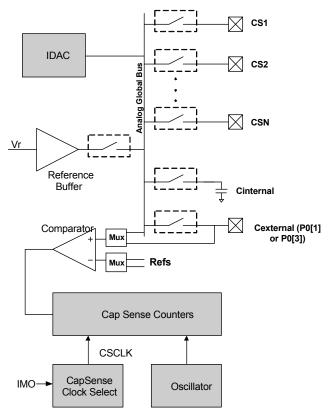
The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas:

- The core
- CapSense analog system
- System resources (including a full-speed USB port).

A common, versatile bus allows connection between the I/O and the analog system.

Each CY8C20336H/446H PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core


The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1-V or 1.2-V analog reference, which together support capacitive sensing of up to 28 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

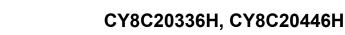
SmartSense™

SmartSense is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easyto-use and provides a robust noise immunity. It is the only autotuning solution that establishes, monitors, and maintains all required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.


Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Haptics TS2000 Controller

The CY8C20336H/CY8C20446H family of devices feature an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules.

Note 2. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I^2C + 1 pin for modulator capacitor.

Additional System Resources

System resources provide additional capability, such as configurable USB and I²C slave, SPI master/slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

These system resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For usage details, refer to the application note I2C Enhanced Slave Operation AN56007.
- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced poweron-reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

For in depth information, along with detailed programming details, see the $PSoC^{\mathbb{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

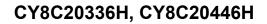
Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants


Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

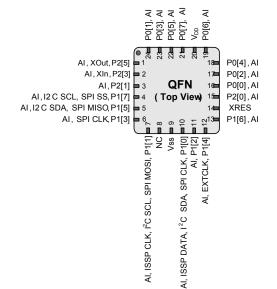
Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Pinouts


The CY8C20336H/CY8C20446H PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

24-Pin QFN

Table 1. Pin Definitions - CY8C20336H ^[3, 4]

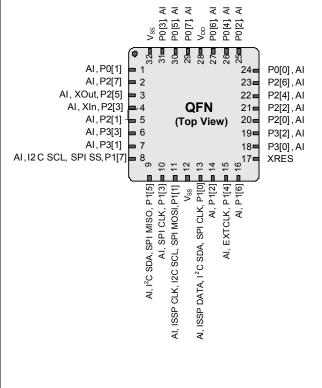
Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[5] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	Vss	Ground connection
10	IOHR	I	P1[0]	ISSP DATA ^[5] , I ² C SDA, SPI CLK
11	IOHR	I	P1[2]	
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	In	put	XRES	Active high external reset with internal pull down
15	I/O	-	P2[0]	
16	IOH	Ι	P0[0]	
17	IOH	Ι	P0[2]	
18	IOH	-	P0[4]	
19	IOH	Ι	P0[6]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH		P0[1]	Integrating input
CP	Po	wer	V _{SS}	Center pad must be connected to ground

Figure 2. CY8C20336H PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- During power-up or reset event, device P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter any issues.
 The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR (Power On Reset).



32-Pin QFN

Table 2. Pin Definitions - CY8C20446H PSoC Device [6, 7]

Pin	Τv	/pe		
No.	Digital	Analog	Name	Description
1	IOH		P0[1]	Integrating input
2	I/O	I	P2[7]	
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P2[1]	
6	I/O	I	P3[3]	
7	I/O	I	P3[1]	
8	IOHR	I	P1[7]	I ² C SCL, SPI SS
9	IOHR	I	P1[5]	I ² C SDA, SPI MISO
10	IOHR	I	P1[3]	SPI CLK.
11	IOHR	I	P1[1]	ISSP CLK ^[8] , I ² C SCL, SPI MOSI.
12	Po	wer	Vss	Ground connection.
13	IOHR	I	P1[0]	ISSP DATA ^[8] , I ² C SDA., SPI CLK
14	IOHR	I	P1[2]	
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR	I	P1[6]	
17	In	put	XRES	Active high external reset with internal pull down
18	I/O	I	P3[0]	
19	I/O	I	P3[2]	
20	I/O	I	P2[0]	
21	I/O	I	P2[2]	
22	I/O	I	P2[4]	
23	I/O	I	P2[6]	
24	IOH	Ι	P0[0]	
25	IOH	I	P0[2]	
26	IOH	I	P0[4]	
27	IOH	Ι	P0[6]	
28	Po	wer	V_{DD}	Supply voltage
29	IOH	I	P0[7]	
30	IOH	Ι	P0[5]	
31	IOH	I	P0[3]	Integrating input
32	Po	wer	V _{SS}	Ground connection
СР	Po	wer	V _{SS}	Center pad must be connected to ground

Figure 3. CY8C20446H PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- Buring power-up or reset event, device P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter any issues.
 The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR (Power On Reset).

DC General Purpose I/O Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 7.	3.0 V to	5.5 V DC	GPIO S	pecifications
----------	----------	----------	---------------	---------------

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor		4	5.60	8	kΩ
V _{OH1}	High output voltage port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage port 2 or 3 pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
V _{OH3}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH4}	High output voltage port 0 or 1 pins with LDO regulator disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
V _{OH5}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	_	_	V
V _{OH7}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	_	V
V _{OH9}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	_	_	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage		-	_	0.80	V
V _{IH}	Input high voltage		2.00	-	-	V
V _H	Input hysteresis voltage		-	80	-	mV
IIL	Input leakage (absolute value)			0.001	1	μΑ
C _{PIN}	Pin capacitance	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 9. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _H	Input hysteresis voltage		-	80	-	mV
IIL	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF

Table 10.DC Characteristics – USB Interface

Symbol	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance	With idle bus	900	-	1575	Ω
Rusba	USB D+ pull-up resistance	While receiving traffic	1425	-	3090	Ω
Vohusb	Static output high		2.8	_	3.6	V
Volusb	Static output low		-	-	0.3	V
Vdi	Differential input sensitivity		0.2	-	-	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single-ended receiver threshold		0.8	-	2.0	V
Cin	Transceiver capacitance		-	-	50	pF
lio	High-Z state data line leakage	On D+ or D- line	-10	-	+10	μA
Rps2	PS/2 pull-up resistance		3000	5000	7000	Ω
Rext	External USB series resistor	In series with each USB pin	21.78	22.0	22.22	Ω

DC Analog Mux Bus Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 11. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{SW}	Switch resistance to common analog bus		_	-	800	Ω
R _{GND}	Resistance of initialization switch to $V_{\mbox{SS}}$		_	-	800	Ω

The maximum pin voltage for measuring R_{SW} and R_{GND} is 1.8 V

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 12. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.0	-	1.8	V
I _{LPC}	LPC supply current		-	10	40	μA
V _{OSLPC}	LPC voltage offset		-	2.5	30	mV

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 13. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50-mV overdrive	-	70	100	ns
Offset		Valid from 0.2 V to $V_{DD} - 0.2 V$	-	2.5	30	mV
Current		Average DC current, 50 mV overdrive	-	20	80	μΑ
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
FUN	Supply voltage < 2 V	Power supply rejection ratio	-	40	100 100 .5 30 .00 80 .00 -	dB
Input Range			0	-	1.5	V

ADC Electrical Specifications

Table 14.ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range		0	-	VREFADC	V
C _{IIN}	Input capacitance		-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference		-				•
V _{REFADC}	ADC reference voltage		1.14	-	1.26	V
Conversion Rate	9					
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 18 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	5.85	_	ksps
DC Accuracy		-				•
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity		-1	-	+2	LSB
INL	Integral nonlinearity		-2	-	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power	· · ·	-	•		•	
I _{ADC}	Operating current		-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	during startup, reset from the XRES pin, or reset from watchdog.	-	2.36	2.41	
V _{POR2}	2.60 V selected in PSoC Designer	reset nom waterledg.	-	2.60	2.66	
V _{POR3}	2.82 V selected in PSoC Designer		-	2.82	2.95	
V _{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[14]	2.71	2.78	
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[15]	2.92	2.99	
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[16]	3.02	3.09	
V _{LVD4}	3.13 V selected in PSoC Designer		3.06	3.13	3.20	
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[17]	1.80	1.84	
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 16. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply voltage for flash write operations		1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify		_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See the appropriate DC General Purpose I/O Specifications on page 13	-	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on pages 15 or 16	V _{IH}	-	-	V
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify		-	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on page 16. For $V_{DD} > 3 V$ use V_{OH4} in Table 5 on page 11.	V _{OH}	_	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum flash write cycles; ambient temperature of 55 °C	10	20	_	Years

Notes

- 14. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 15. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 16. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 17. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24-MHz setting		22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12-MHz setting		11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6-MHz setting		5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency		0.75	-	25.20	MHz
F _{32K1}	ILO frequency		19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency		13	32	82	kHz
DC _{IMO}	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	-	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	_	_	μS

Table 19.AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{DRATE}	Full-speed data rate	Average bit rate	12 – 0.25%	12	12 + 0.25%	MHz
T _{JR1}	Receiver jitter tolerance	To next transition	-18.5	-	18.5	ns
T _{JR2}	Receiver jitter tolerance	To pair transition	-9	-	9	ns
T _{DJ1}	FS driver jitter	To next transition	-3.5	-	3.5	ns
T _{DJ2}	FS driver jitter	To pair transition	-4.0	-	4.0	ns
T _{FDEOP}	Source jitter for differential transition	To SE0 transition	-2	-	5	ns
T _{FEOPT}	Source SE0 interval of EOP		160	-	175	ns
T _{FEOPR}	Receiver SE0 interval of EOP		82	-		ns
T _{FST}	Width of SE0 interval during differential transition		-	_	14	ns

Table 20. AC Characteristics – USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{FR}	Transition rise time	50 pF	4	-	20	ns
T _{FF}	Transition fall time	50 pF	4	-	20	ns
T _{FRFM} ^[19]	Rise/fall time matching		90	-	111	%
Vcrs	Output signal crossover voltage		1.30	-	2.00	V

AC Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 21. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	_	100	ns

AC External Clock Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency (external oscillator frequency)		0.75	-	25.20	MHz
	High period		20.60	-	5300	ns
	Low period		20.60	-	-	ns
	Power-up IMO to switch		150	_	_	μS

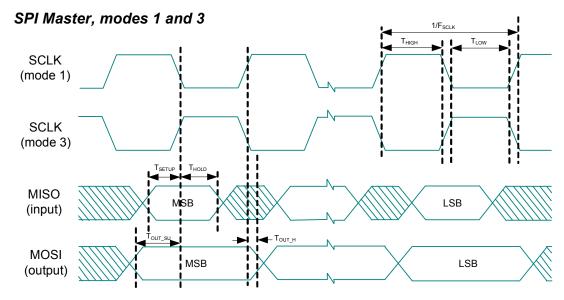
Note

 T_{FRFM} is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications. Signal integrity tests show an excellent eye diagram at 3.15 V.

AC Programming Specifications

Figure 7. AC Waveform

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.


Table 23. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise time of SCLK		1	_	20	ns
T _{FSCLK}	Fall time of SCLK		1	-	20	ns
T _{SSCLK}	Data Setup time to falling edge of SCLK		40	-	-	ns
T _{HSCLK}	Data Hold time from falling edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	-	8	MHz
T _{ERASEB}	Flash erase time (Block)		-	-	18	ms
T _{WRITE}	Flash block write time		-	-	25	ms
T _{DSCLK}	Data out delay from falling edge of SCLK	$3.6 < V_{DD}$	-	-	60	ns
T _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
T _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	-	130	ns
T _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μS
T _{XRES}	XRES Pulse Length		300	_	_	μS
T _{VDDWAIT}	V _{DD} stable to wait-and-poll hold off		0.1	-	1	ms
T _{VDDXRES}	V _{DD} stable to XRES assertion delay		14.27	-	-	ms
T _{POLL}	SDATA high pulse time		0.01	_	200	ms
T _{ACQ}	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.		3.20	-	19.60	ms
T _{XRESINI}	"Key window" time after an XRES event, based on eight ILO clocks		98	-	615	μS

Figure 10. SPI Master Mode 1 and 3

Table 26. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
T _{LOW}	SCLK low time	-	42	-	-	ns
T _{HIGH}	SCLK high time	-	42	-	-	ns
T _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
T _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
T _{SS_MISO}	SS high to MISO valid	-	-	-	153	ns
T _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
T _{SS_HIGH}	SS high time	-	50	-	-	ns
T _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	-	-	ns
T _{CLK_SS}	Time from last SCLK to SS high	-	2/SCLK	_	_	ns

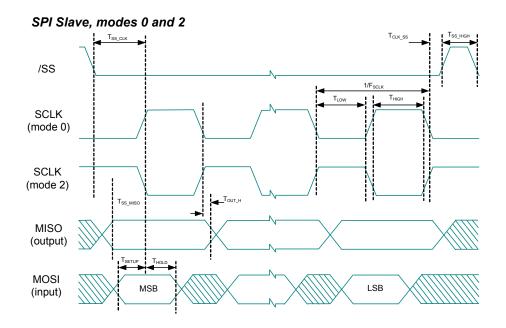
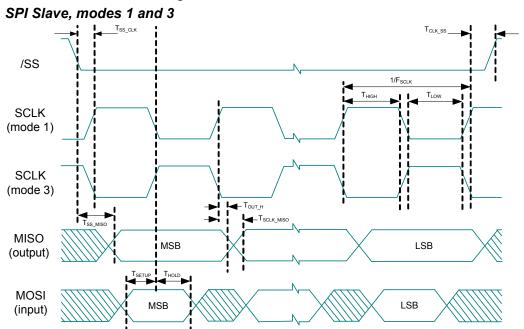



Figure 11. SPI Slave Mode 0 and 2

BOTTOM VIEW

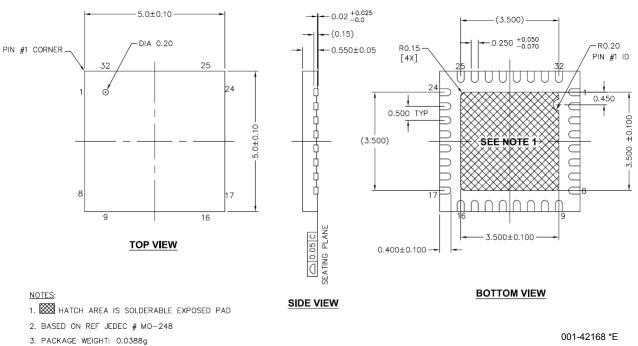
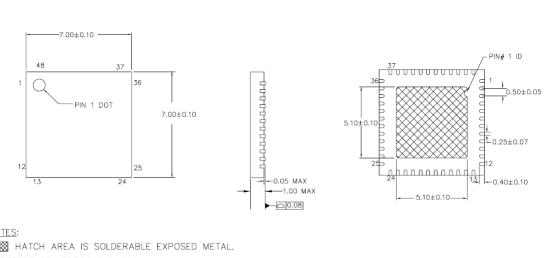



Figure 14. 32-Pin (5 × 5 × 0.55 mm) QFN

4. DIMENSIONS ARE IN MILLIMETERS

TOP VIEW

Figure 15. 48-Pin (7 × 7 × 1.0 mm) QFN SIDE VIEW

NOTES:

- 1. 🐼 HATCH AREA IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC#: MO-220

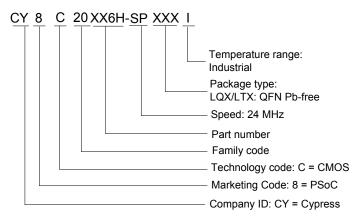
3. PACKAGE WEIGHT: 13 \pm 1 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13191 *G

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.


Ordering Information

The following table lists the CY8C20336H/CY8C20446H PSoC devices' key package features and ordering codes.

Table 31. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (KB)	SRAM (KB)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[27]	XRES Pin	USB
24-pin (4 × 4 × 0.6mm) QFN	CY8C20336H-24LQXI	8	1	1	20	20	Yes	No
32 pin (5 × 5 × 0.6 mm) QFN	CY8C20446H-24LQXI	16	2	1	28	28	Yes	No
48 pin (7 × 7 mm) QFN (OCD) ^[28]	CY8C20066A-24LTXI	32	2	1	36	36	Yes	Yes

Ordering Code Definitions

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non-linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip- flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch up current	Current at which the latch up test is conducted according to JESD78 standard (at 125 $^\circ$ C)
Power supply rejection ratio (PSRR) The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Scan	The conversion of all sensor capacitances to digital values.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
Signal-to-noise ratio	The ratio between a capacitive finger signal and system noise.
SPI	Serial peripheral interface is a synchronous serial data link standard.

Reference Documents

■ Technical reference manual for CY8C20xx6 devices

■ In-system Serial Programming (ISSP) protocol for 20xx6 – AN2026C

Host Sourced Serial Programming for 20xx6 devices – AN59389

Document History Page

	t Title: CY80 t Number: 0		0446H Haptics	Enabled CapSense [®] Controller
Revision	ECN	Origin of Change	Submission Date	Description of Change
**	2787411	VZD/AESA	10/15/2009	New datasheet.
*A	3016550	KEJO/KPOL	08/26/2010	Added CY8C20346H part. Updated 24-pin QFN and 32-pin QFN package diagrams. Content and format updated to match latest template.
*В	3089844	JPM	11/18/10	In Table 26, modified T_{LOW} and T_{HIGH} min values to 42. Updated $T_{SS\ HIGH}$ min value to 50; removed max value.
*C	3180479	YVA	02/23/11	Removed CY8C20346H part Changed title from CapSense Applications to Haptics Enabled CapSense Controller Updated Table 29 with Time at Maximum Temperature information
*D	3638625	YLIU/BVI	06/06/2012	Updated F_{SCLK} parameter in the SPI Slave AC Specifications table Updated Getting Started and Designing with PSoC Designer sections. Included Development Tools. Updated Software under Development Tool Selection section. Updated F_{SCLK} parameter in the Table 26, "SPI Slave AC Specifications," on page 24. Changed t _{OUT_HIGH} to t _{OUT_H} in Table 25, "SPI Master AC Specifications," on page 23 Updated package diagrams: 001-13937 to *D 001-13191 to *F
*E	3822568	DST	11/27/2012	Updated package diagrams: 001-13937 to *E 001-42168 to *E 001-13191 to *G

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
nterface	cypress.com/go/interface
ighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2009-2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-56223 Rev. *E

Revised November 27, 2012

Page 35 of 35

PSoC Designer[™] is a trademark and PSoC® and CapSense® are registered trademarks of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I⁴C Patent Rights to use these components in an I⁴C system, provided that the system conforms to the I⁴C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.