

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

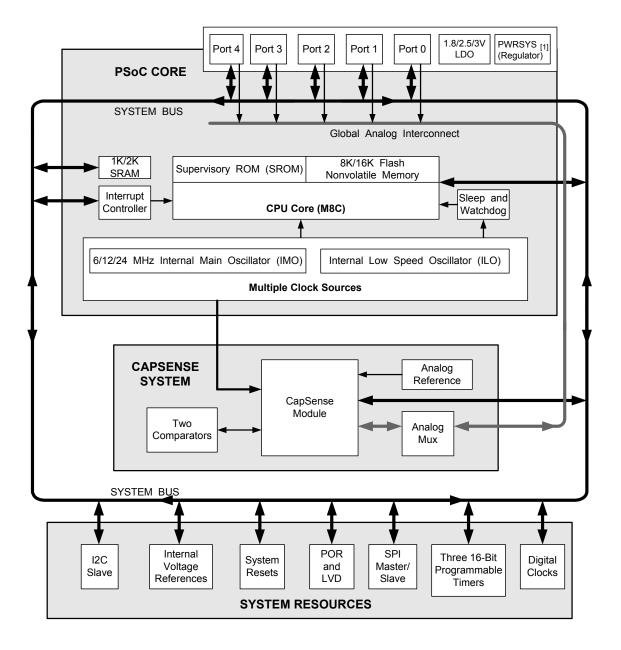
represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

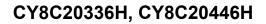
XF


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx6A
RAM Size	2K x 8
Interface	I²C, SPI, USB
Number of I/O	36
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20646a-24ltxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram



CY8C20336H, CY8C20446H

Contents

PSoC [®] Functional Overview	4
PSoC Core	4
CapSense System	4
Haptics TS2000 Controller	4
Additional System Resources	5
Getting Started	
Application Notes	5
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Development Tools	
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	
Select User Modules	
Configure User Modules	
Organize and Connect	
Generate, Verify, and Debug	7
Pinouts	-
24-Pin QFN	
32-Pin QFN	
48-Pin QFN OCD	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Chip-Level Specifications	
DC General Purpose I/O Specifications	
DC Analog Mux Bus Specifications	
DC Low Power Comparator Specifications	
Comparator User Module Electrical Specifications .	
ADC Electrical Specifications	
DC POR and LVD Specifications	
DC Programming Specifications	17

AC Chip-Level Specifications	18
AC General Purpose I/O Specifications	19
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	21
AC I2C Specifications	
Packaging Information	
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	
Development Kits	
Evaluation Tools	
Device Programmers	30
Accessories (Emulation and Programming)	30
Third Party Tools	
Build a PSoC Emulator into Your Board	
Ordering Information	31
Ordering Code Definitions	31
Document Conventions	
Acronyms Used	
Units of Measure	
Numeric Naming	
Glossary	33
Reference Documents	33
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	35
Products	
PSoC Solutions	

PSoC[®] Functional Overview

The PSoC family consists of on-chip controller devices, which are designed to replace multiple traditional microcontroller unit (MCU)-based components with one, low-cost single-chip programmable component. A PSoC device includes configurable analog and digital blocks, and programmable interconnect. This architecture allows the user to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

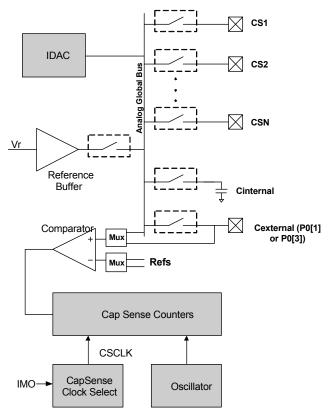
The architecture for this device family, as shown in the Logic Block Diagram on page 2, consists of three main areas:

- The core
- CapSense analog system
- System resources (including a full-speed USB port).

A common, versatile bus allows connection between the I/O and the analog system.

Each CY8C20336H/446H PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 28 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core


The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1-V or 1.2-V analog reference, which together support capacitive sensing of up to 28 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins are completed quickly and easily across multiple ports.

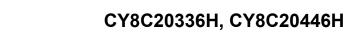
SmartSense™

SmartSense is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easyto-use and provides a robust noise immunity. It is the only autotuning solution that establishes, monitors, and maintains all required tuning parameters. SmartSense allows engineers to go from prototyping to mass production without re-tuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.


Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Haptics TS2000 Controller

The CY8C20336H/CY8C20446H family of devices feature an easy-to-use Haptics controller resource with up to 14 different effects. These effects are available for use with three different, selectable ERM modules.

Note 2. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I^2C + 1 pin for modulator capacitor.

Additional System Resources

System resources provide additional capability, such as configurable USB and I²C slave, SPI master/slave communication interface, three 16-bit programmable timers, and various system resets supported by the M8C.

These system resources provide additional capability useful to complete systems. Additional resources include low voltage detection and power on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For usage details, refer to the application note I2C Enhanced Slave Operation AN56007.
- Low voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced poweron-reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

For in depth information, along with detailed programming details, see the $PSoC^{\mathbb{R}}$ Technical Reference Manual.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

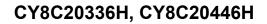
Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants


Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

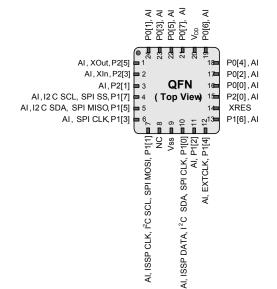
Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Pinouts


The CY8C20336H/CY8C20446H PSoC device is available in a variety of packages which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

24-Pin QFN

Table 1. Pin Definitions - CY8C20336H ^[3, 4]

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[5] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	Vss	Ground connection
10	IOHR	I	P1[0]	ISSP DATA ^[5] , I ² C SDA, SPI CLK
11	IOHR	I	P1[2]	
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	In	put	XRES	Active high external reset with internal pull down
15	I/O	-	P2[0]	
16	IOH	Ι	P0[0]	
17	IOH	Ι	P0[2]	
18	IOH	-	P0[4]	
19	IOH	Ι	P0[6]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[5]	
23	IOH	I	P0[3]	Integrating input
24	IOH		P0[1]	Integrating input
CP	Po	wer	V _{SS}	Center pad must be connected to ground

Figure 2. CY8C20336H PSoC Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- During power-up or reset event, device P1[1] and P1[0] may disturb the l²C bus. Use alternate pins if you encounter any issues.
 The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not High Z at POR (Power On Reset).

Comparator User Module Electrical Specifications

The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 13. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50-mV overdrive	-	70	100	ns
Offset		Valid from 0.2 V to $V_{DD} - 0.2 V$	-	2.5	30	mV
Current		Average DC current, 50 mV overdrive	-	20	80	μΑ
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
FUN	Supply voltage < 2 V	Power supply rejection ratio	-	40	Image: 100 0 100 5 30 0 80 0 –	dB
Input Range			0	-	1.5	V

ADC Electrical Specifications

Table 14.ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range		0	-	VREFADC	V
C _{IIN}	Input capacitance		-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference		-				•
V _{REFADC}	ADC reference voltage		1.14	-	1.26	V
Conversion Rate	9					
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 18 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. Sample Rate = 0.001/ (2^Resolution/Data clock)	_	5.85	_	ksps
DC Accuracy		-				•
RES	Resolution	Can be set to 8-, 9-, or 10-bit	8	-	10	bits
DNL	Differential nonlinearity		-1	-	+2	LSB
INL	Integral nonlinearity		-2	-	+2	LSB
E _{OFFSET}	Offset error	8-bit resolution	0	3.20	19.20	LSB
		10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power	· · ·	-	•		•	
I _{ADC}	Operating current		-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	during startup, reset from the XRES pin, or reset from watchdog.	-	2.36	2.41	
V _{POR2}	2.60 V selected in PSoC Designer		-	2.60	2.66	
V _{POR3}	2.82 V selected in PSoC Designer		-	2.82	2.95	
V _{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[14]	2.71	2.78	
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[15]	2.92	2.99	
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[16]	3.02	3.09	
V _{LVD4}	3.13 V selected in PSoC Designer		3.06	3.13	3.20	
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[17]	1.80	1.84	
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 16. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Vdd _{IWRITE}	Supply voltage for flash write operations		1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify		_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See the appropriate DC General Purpose I/O Specifications on page 13	-	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on pages 15 or 16	V _{IH}	-	-	V
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify		-	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate DC General Purpose I/O Specifications on page 13 table on page 16. For $V_{DD} > 3 V$ use V_{OH4} in Table 5 on page 11.	V _{OH}	_	V _{DD}	V
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum flash write cycles; ambient temperature of 55 °C	10	20	_	Years

Notes

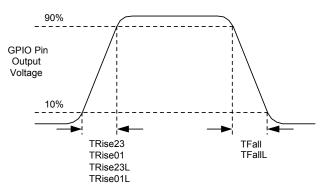
- 14. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 15. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 16. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 17. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 17. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24-MHz setting		22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12-MHz setting		11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6-MHz setting		5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency		0.75	-	25.20	MHz
F _{32K1}	ILO frequency		19	32	50	kHz
F _{32K_U}	ILO untrimmed frequency		13	32	82	kHz
DC _{IMO}	Duty cycle of IMO		40	50	60	%
DC _{ILO}	ILO duty cycle		40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	-	250	V/ms
T _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
T _{XRST2}	External reset pulse width after power-up ^[18]	Applies after part has booted	10	_	_	μS


AC General Purpose I/O Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F _{GPIO}	GPIO operating frequency	Normal strong mode port 0, 1	0	-	6 MHz for	MHz
					1.71 V <v<sub>DD < 2.40 V 12 MHz for</v<sub>	
			0	-	2.40 V < V _{DD} < 5.50 V	
T _{RISE23}	Rise time, strong mode, Cload = 50 pF ports 2 or 3	V _{DD} = 3.0 to 3.6 V, 10% – 90%	15	-	80	ns
T _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, ports 2 or 3	V _{DD} = 1.71 to 3.0 V, 10% – 90%	15	-	80	ns
T _{RISE01}	Rise time, strong mode, Cload = 50 pF ports 0 or 1	V_{DD} = 3.0 to 3.6 V, 10% – 90% LDO enabled or disabled	10	_	50	ns
T _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, ports 0 or 1	V_{DD} = 1.71 to 3.0 V, 10% – 90% LDO enabled or disabled	10	-	80	ns
T _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% – 90%	10	_	50	ns
T _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% – 90%	10	_	70	ns

Figure 6. GPIO Timing Diagram

Table 19.AC Characteristics – USB Data Timings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{DRATE}	Full-speed data rate	Average bit rate	12 – 0.25%	12	12 + 0.25%	MHz
T _{JR1}	Receiver jitter tolerance	To next transition	-18.5	-	18.5	ns
T _{JR2}	Receiver jitter tolerance	To pair transition	-9	-	9	ns
T _{DJ1}	FS driver jitter	To next transition	-3.5	-	3.5	ns
T _{DJ2}	FS driver jitter	To pair transition	-4.0	-	4.0	ns
T _{FDEOP}	Source jitter for differential transition	To SE0 transition	-2	-	5	ns
T _{FEOPT}	Source SE0 interval of EOP		160	-	175	ns
T _{FEOPR}	Receiver SE0 interval of EOP		82	-		ns
T _{FST}	Width of SE0 interval during differential transition		-	_	14	ns

Table 20. AC Characteristics – USB Driver

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{FR}	Transition rise time	50 pF	4	-	20	ns
T _{FF}	Transition fall time	50 pF	4	-	20	ns
T _{FRFM} ^[19]	Rise/fall time matching		90	-	111	%
Vcrs	Output signal crossover voltage		1.30	-	2.00	V

AC Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 21. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
T _{LPC}		50 mV overdrive does not include offset voltage.	-	_	100	ns

AC External Clock Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. AC External Clock Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency (external oscillator frequency)		0.75	-	25.20	MHz
	High period		20.60	-	5300	ns
	Low period		20.60	-	-	ns
	Power-up IMO to switch		150	_	_	μS

Note

 T_{FRFM} is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications. Signal integrity tests show an excellent eye diagram at 3.15 V.

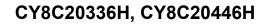
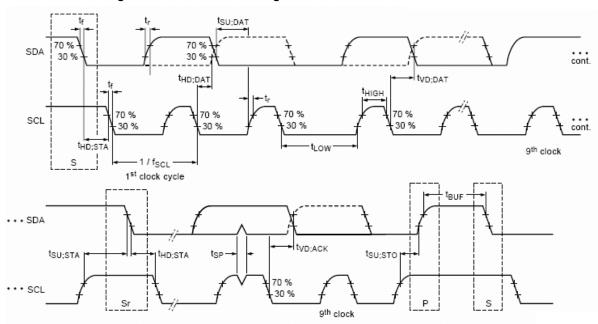

AC Programming Specifications

Figure 7. AC Waveform

The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 23. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{RSCLK}	Rise time of SCLK		1	_	20	ns
T _{FSCLK}	Fall time of SCLK		1	-	20	ns
T _{SSCLK}	Data Setup time to falling edge of SCLK		40	-	-	ns
T _{HSCLK}	Data Hold time from falling edge of SCLK		40	-	-	ns
F _{SCLK}	Frequency of SCLK		0	-	8	MHz
T _{ERASEB}	Flash erase time (Block)		-	-	18	ms
T _{WRITE}	Flash block write time		-	-	25	ms
T _{DSCLK}	Data out delay from falling edge of SCLK	$3.6 < V_{DD}$	-	-	60	ns
T _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
T _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	-	130	ns
T _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μS
T _{XRES}	XRES Pulse Length		300	_	_	μS
T _{VDDWAIT}	V _{DD} stable to wait-and-poll hold off		0.1	-	1	ms
T _{VDDXRES}	V _{DD} stable to XRES assertion delay		14.27	-	-	ms
T _{POLL}	SDATA high pulse time		0.01	_	200	ms
T _{ACQ}	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.		3.20	-	19.60	ms
T _{XRESINI}	"Key window" time after an XRES event, based on eight ILO clocks		98	-	615	μS



AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Standard Mode		Fast Mode		Units	
		Min	Max	Min	Max		
f _{SCL}	SCL clock frequency	0	100	0	400	kHz	
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated.		-	0.6	-	μS	
t _{LOW}	LOW period of the SCL clock	4.7	-	1.3	_	μS	
t _{HIGH}	HIGH period of the SCL clock	4.0	-	0.6	_	μS	
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	_	μS	
t _{HD;DAT}	Data hold time	0	3.45	0	0.9	μS	
t _{SU;DAT}	Data setup time	250	_	100 ^[20]	I	ns	
t _{SU;STO}	Setup time for STOP condition	4.0	_	0.6	I	μS	
t _{BUF}	Bus-free time between a STOP and START condition	4.7	-	1.3	_	μS	
t _{SP}	Pulse width of spikes are suppressed by the input filter.	_	_	0	50	ns	

Note

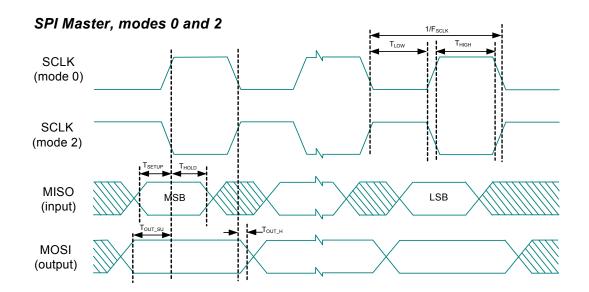
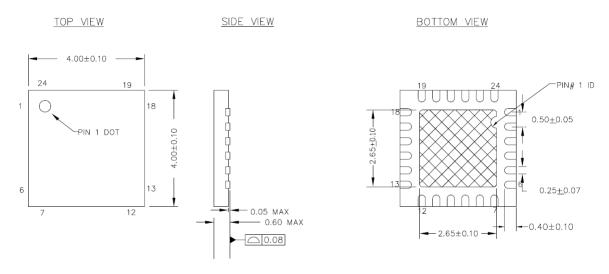

20. A Fast-Mode I²C-bus device can be used in a Standard Mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 25. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{l} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	-	-	6	MHz
		V _{DD} < 2.4 V	-	-	3	
DC	SCLK duty cycle		-	50	-	%
T _{SETUP}	MISO to SCLK setup time	$\begin{array}{l} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	60	-	_	ns
		V _{DD} < 2.4 V	100	-	-	
T _{HOLD}	SCLK to MISO hold time		40	-	-	ns
T _{OUT_VAL}	SCLK to MOSI valid time		-	-	40	ns
T _{OUT_H}	MOSI high time		40	_	_	ns

Figure 9. SPI Master Mode 0 and 2



Packaging Information

This section illustrates the packaging specifications for the CY8C20336H/CY8C20446H PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

Figure 13. 24-Pin (4 × 4 × 0.55 mm) QFN

<u>NOTES</u> :

- 1. 💥 HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT : 29 \pm 3 mg
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 *E

Development Tool Selection

Software

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer. Utilized by thousands of PSoC developers, this robust software has been facilitating PSoC designs for over half a decade. PSoC Designer is available free of charge at http://www.cypress.com.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube In-Circuit Emulator and PSoC MiniProg. PSoC Programmer is available free of charge at http://www.cypress.com.

Development Kits

All development kits are sold at the Cypress Online Store.

CY3215-DK Basic Development Kit

The CY3215-DK is for prototyping and development with PSoC Designer. This kit supports in-circuit emulation and the software interface enables users to run, halt, and single step the processor and view the content of specific memory locations. PSoC Designer supports the advance emulation features also. The kit includes:

- PSoC Designer software CD
- ICE-Cube In-Circuit Emulator
- ICE Flex-Pod for CY8C29x66A family
- Cat-5 adapter
- Mini-Eval programming board
- 110 ~ 240-V power supply, Euro-Plug adapter
- iMAGEcraft C Compiler (Registration required)
- ISSP cable
- USB 2.0 cable and Blue Cat-5 cable
- Two CY8C29466A-24PXI 28-PDIP chip samples

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg Programming Unit
- MiniEval Socket Programming and Evaluation Board
- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample
- 28-pin CY8C27443A-24PXI PDIP PSoC Device Sample
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

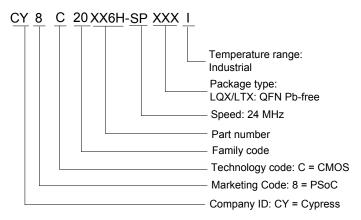
- Evaluation Board with LCD Module
- MiniProg Programming Unit
- 28-pin CY8C29466A-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer Software CD
- Getting Started Guide
- USB 2.0 Cable

CY3280-20x66 Universal CapSense Controller

The CY3280-20X66 CapSense Controller Kit is designed for easy prototyping and debug of CY8C20xx6A CapSense Family designs with pre-defined control circuitry and plug-in hardware. Programming hardware and an I2C-to-USB bridge are included for tuning and data acquisition.

The kit includes:

- CY3280-20x66 CapSense Controller board
- CY3240-I2USB bridge
- CY3210 MiniProg1 Programmer
- USB 2.0 retractable cable
- CY3280-20x66 Kit CD


Ordering Information

The following table lists the CY8C20336H/CY8C20446H PSoC devices' key package features and ordering codes.

Table 31. PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (KB)	SRAM (KB)	CapSense Blocks	Digital I/O Pins	Analog Inputs ^[27]	XRES Pin	USB
24-pin (4 × 4 × 0.6mm) QFN	CY8C20336H-24LQXI	8	1	1	20	20	Yes	No
32 pin (5 × 5 × 0.6 mm) QFN	CY8C20446H-24LQXI	16	2	1	28	28	Yes	No
48 pin (7 × 7 mm) QFN (OCD) ^[28]	CY8C20066A-24LTXI	32	2	1	36	36	Yes	Yes

Ordering Code Definitions

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CMOS	complementary metal oxide semiconductor
CPU	central processing unit
DAC	digital-to-analog converter
DC	direct current
EOP	end of packet
FSR	full scale range
GPIO	general purpose input/output
GUI	graphical user interface
l ² C	inter-integrated circuit
ICE	in-circuit emulator
IDAC	digital analog converter current
ILO	internal low speed oscillator
IMO	internal main oscillator
I/O	input/output
ISSP	in-system serial programming
LCD	liquid crystal display
LDO	low dropout (regulator)
LSB	least-significant bit
LVD	low voltage detect
MCU	micro-controller unit
MIPS	mega instructions per second
MISO	master in slave out
MOSI	master out slave in
MSB	most-significant bit
OCD	on-chip debugger
POR	power on reset
PPOR	precision power on reset
PSRR	power supply rejection ratio
PWRSYS	power system
PSoC®	Programmable System-on-Chip
SLIMO	slow internal main oscillator
SRAM	static random access memory
SNR	signal to noise ratio
QFN	quad flat no-lead
SCL	serial I ² C clock
SDA	serial I ² C data
SDATA	serial ISSP data
SPI	serial peripheral interface
SS	slave select
SSOP	shrink small outline package
TC	test controller
USB	universal serial bus
USB D+	USB Data +
USB D-	USB Data-
WLCSP	wafer level chip scale package
XTAL	crystal

Units of Measure

Table 32 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Table 32. Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
dB	decibels			
fF	femto farad			
g	gram			
Hz	hertz			
KB	1024 bytes			
Kbit	1024 bits			
KHz	kilohertz			
Ksps	kilo samples per second			
kΩ	kilohm			
MHz	megahertz			
MΩ	megaohm			
μΑ	microampere			
μF	microfarad			
μH	microhenry			
μS	microsecond			
μW	microwatts			
mA	milli-ampere			
ms	milli-second			
mV	milli-volts			
nA	nanoampere			
ns	nanosecond			
nV	nanovolts			
Ω	ohm			
рА	picoampere			
pF	picofarad			
рр	peak-to-peak			
ppm	parts per million			
ps	picosecond			
sps	samples per second			
S	sigma: one standard deviation			
V	volts			
W	watt			

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non-linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip- flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch up current	Current at which the latch up test is conducted according to JESD78 standard (at 125 $^\circ$ C)
Power supply rejection ratio (PSRR) The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Scan	The conversion of all sensor capacitances to digital values.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
Signal-to-noise ratio	The ratio between a capacitive finger signal and system noise.
SPI	Serial peripheral interface is a synchronous serial data link standard.

Reference Documents

■ Technical reference manual for CY8C20xx6 devices

■ In-system Serial Programming (ISSP) protocol for 20xx6 – AN2026C

Host Sourced Serial Programming for 20xx6 devices – AN59389

Document History Page

	Document Title: CY8C20336H/CY8C20446H Haptics Enabled CapSense [®] Controller Document Number: 001-56223						
Revision	ECN	Origin of Change	Submission Date	Description of Change			
**	2787411	VZD/AESA	10/15/2009	New datasheet.			
*A	3016550	KEJO/KPOL	08/26/2010	Added CY8C20346H part. Updated 24-pin QFN and 32-pin QFN package diagrams. Content and format updated to match latest template.			
*В	3089844	JPM	11/18/10	In Table 26, modified T_{LOW} and T_{HIGH} min values to 42. Updated $T_{SS\ HIGH}$ min value to 50; removed max value.			
*C	3180479	YVA	02/23/11	Removed CY8C20346H part Changed title from CapSense Applications to Haptics Enabled CapSense Controller Updated Table 29 with Time at Maximum Temperature information			
*D	3638625	YLIU/BVI	06/06/2012	Updated F_{SCLK} parameter in the SPI Slave AC Specifications table Updated Getting Started and Designing with PSoC Designer sections. Included Development Tools. Updated Software under Development Tool Selection section. Updated F_{SCLK} parameter in the Table 26, "SPI Slave AC Specifications," on page 24. Changed t _{OUT_HIGH} to t _{OUT_H} in Table 25, "SPI Master AC Specifications," on page 23 Updated package diagrams: 001-13937 to *D 001-13191 to *F			
*E	3822568	DST	11/27/2012	Updated package diagrams: 001-13937 to *E 001-42168 to *E 001-13191 to *G			