

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atuc128d3-a2ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Configuration Summary

Table 2-1.Configuration Summary

Feature	ATUC128/64D3	ATUC128/64D4		
Flash	128/64KB	128/64KB		
SRAM	16KB	16KB		
Package	TQFP64, QFN64	TQFP48, QFN48		
GPIO	51	35		
FS USB Device	1			
Hi-drive pins	4			
External Interrupts	9	7		
TWI Master/Slave	1/	1		
USART	3			
Peripheral DMA Channels	7			
SPI	1			
Asynchronous Timers	1			
Timer/Counter Channels	3			
PWM channels	7	,		
Inter-IC Sound	1			
Frequency Meter	1			
Watchdog Timer	1			
Power Manager	1			
Oscillators	2x Phase Locked Loop 80-240 MHz (PLL) 1x Crystal Oscillator 0.4-20 MHz (OSC0) 1x Crystal Oscillator 32 KHz (OSC32K) 1x RC Oscillator 120MHz (RC120M) 1x RC Oscillator 115 kHz (RCSYS)			
10-bit ADC channels	8	6		
Capacitive Touch Sensor supported	25	17		
Glue Logic Control Inputs/Outputs	16/4	14/4		
JTAG	1			
aWire	1			
Max Frequency	Max Frequency 48 MHz			

Note: On QFN packages, the exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed signals

Each GPIO line can be assigned to one of the peripheral functions. The following table describes the peripheral signals multiplexed to the GPIO lines.

49 nin	64 nin									
Package	Package	PIN	GPIO	Supply	Pad Type	А	В	С	D	Other Functions
3	3	PA00	0	VDDIO	Normal I/O	SPI - MISO	PWMA - PWMA[1]	GLOC - IN[0]	CAT - CSB[0]	JTAG-TDI
4	4	PA01	1	VDDIO	Normal I/O	SPI - MOSI	PWMA - PWMA[2]	GLOC - IN[1]	CAT - CSA[1]	JTAG-TDO
5	5	PA02	2	VDDIO	Normal I/O	SPI - SCK	PWMA - PWMA[3]	GLOC - IN[2]	CAT - CSB[1]	JTAG-TMS
7	9	PA03	3	VDDANA	Analog I/O	PKGANA - ADCIN0	SCIF - GCLK[0]	GLOC - IN[5]	CAT - CSB[2]	
8	10	PA04	4	VDDANA	Analog I/O	PKGANA - ADCIN1	SCIF - GCLK[1]	GLOC - IN[6]	CAT - CSA[3]	

 Table 3-1.
 Multiplexed Signals on I/O Pins

5. Processor and Architecture

Rev: 2.1.2.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the AVR32 architecture. A summary of the programming model, and instruction set is presented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical Reference Manual.

5.1 Features

- 32-bit load/store AVR32A RISC architecture
 - 15 general-purpose 32-bit registers
 - 32-bit Stack Pointer, Program Counter and Link Register reside in register file
 - Fully orthogonal instruction set
 - Privileged and unprivileged modes enabling efficient and secure operating systems
 - Innovative instruction set together with variable instruction length ensuring industry leading code density
 - DSP extension with saturating arithmetic, and a wide variety of multiply instructions
- · 3-stage pipeline allowing one instruction per clock cycle for most instructions
 - Byte, halfword, word, and double word memory access
 - Multiple interrupt priority levels

5.2 AVR32 Architecture

AVR32 is a new, high-performance 32-bit RISC microprocessor architecture, designed for costsensitive embedded applications, with particular emphasis on low power consumption and high code density. In addition, the instruction set architecture has been tuned to allow a variety of microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been compiled and analyzed to achieve the best code density in its class. In addition to lowering the memory requirements, a compact code size also contributes to the core's low power characteristics. The processor supports byte and halfword data types without penalty in code size and performance.

Memory load and store operations are provided for byte, halfword, word, and double word data with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely linked to the architecture and is able to exploit code optimization features, both for size and speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes. As an example, instructions with immediates often have a compact format with a smaller immediate, and an extended format with a larger immediate. In this way, the compiler is able to use the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a compact format with two operands as well as an extended format with three operands. The larger format increases performance, allowing an addition and a data move in the same instruction in a single cycle. Load and store instructions have several different formats in order to reduce code size and speed up execution.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

5.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced On-Chip Debug (OCD) system, and no caches. Java acceleration hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and I/O controller ports. This local bus has to be enabled by writing a one to the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the CPU Local Bus section in the Memories chapter.

Figure 5-1 on page 22 displays the contents of AVR32UC.

5.4 Programming Model

5.4.1 Register File Configuration

The AVR32UC register file is shown below.

Figure 5-3. The AVR32UC Register File

5.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 5-4 and Figure 5-5. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T, and L bits, while the upper halfword contains information about the mode and state the processor executes in. Refer to the *AVR32 Architecture Manual* for details.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the *retd* instruction.

5.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

Reg #	Address	Name	Function
0	0	SR	Status Register
1	4	EVBA	Exception Vector Base Address
2	8	ACBA	Application Call Base Address
3	12	CPUCR	CPU Control Register
4	16	ECR	Exception Cause Register
5	20	RSR_SUP	Unused in AVR32UC
6	24	RSR_INT0	Unused in AVR32UC
7	28	RSR_INT1	Unused in AVR32UC
8	32	RSR_INT2	Unused in AVR32UC
9	36	RSR_INT3	Unused in AVR32UC
10	40	RSR_EX	Unused in AVR32UC
11	44	RSR_NMI	Unused in AVR32UC
12	48	RSR_DBG	Return Status Register for Debug mode
13	52	RAR_SUP	Unused in AVR32UC
14	56	RAR_INT0	Unused in AVR32UC
15	60	RAR_INT1	Unused in AVR32UC
16	64	RAR_INT2	Unused in AVR32UC
17	68	RAR_INT3	Unused in AVR32UC
18	72	RAR_EX	Unused in AVR32UC
19	76	RAR_NMI	Unused in AVR32UC
20	80	RAR_DBG	Return Address Register for Debug mode
21	84	JECR	Unused in AVR32UC
22	88	JOSP	Unused in AVR32UC
23	92	JAVA_LV0	Unused in AVR32UC
24	96	JAVA_LV1	Unused in AVR32UC
25	100	JAVA_LV2	Unused in AVR32UC
26	104	JAVA_LV3	Unused in AVR32UC
27	108	JAVA_LV4	Unused in AVR32UC

Table 5-3. System Registers

contains information allowing the core to resume operation in the previous execution mode. This concludes the event handling.

5.5.3 Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The *scall* instruction is designed so that privileged routines can be called from any context. This facilitates sharing of code between different execution modes. The *scall* mechanism is designed so that a minimal execution cycle overhead is experienced when performing supervisor routine calls from time-critical event handlers.

The *scall* instruction behaves differently depending on which mode it is called from. The behaviour is detailed in the instruction set reference. In order to allow the *scall* routine to return to the correct context, a return from supervisor call instruction, *rets*, is implemented. In the AVR32UC CPU, *scall* and *rets* uses the system stack to store the return address and the status register.

5.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the Debug Exception handler. By default, Debug mode executes in the exception context, but with dedicated Return Address Register and Return Status Register. These dedicated registers remove the need for storing this data to the system stack, thereby improving debuggability. The Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers in all contexts, while retaining full privileges.

Debug mode is exited by executing the *retd* instruction. This returns to the previous context.

5.5.5 Entry Points for Events

Several different event handler entry points exist. In AVR32UC, the reset address is 0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and *scall* have a dedicated space relative to EVBA where their event handler can be placed. This speeds up execution by removing the need for a jump instruction placed at the program address jumped to by the event hardware. All other exceptions have a dedicated event routine entry point located relative to EVBA. The handler routine address identifies the exception source directly.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector offset is specified by an interrupt controller. The programmer must make sure that none of the autovector offsets interfere with the placement of other code. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security considerations, the event handlers should be located in non-writeable flash memory.

If several events occur on the same instruction, they are handled in a prioritized way. The priority ordering is presented in Table 5-4 on page 32. If events occur on several instructions at different locations in the pipeline, the events on the oldest instruction are always handled before any events on any younger instruction, even if the younger instruction has events of higher priority than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

8. Electrical Characteristics

8.1 Disclaimer

All values in this chapter are preliminary and subject to change without further notice.

8.2 Absolute Maximum Ratings*

Table 8-1. Absolute Maximum Ratings

Operating temperature40°C to +85°C
Storage temperature60°C to +150°C
Voltage on input pins (except for 5V pins) with respect to ground0.3V to $V_{VDD}{}^{(2)}$ +0.3V
Voltage on 5V tolerant ⁽¹⁾ pins with respect to ground0.3V to 5.5V
Total DC output current on all I/O pins - VDDIO 152mA
Total DC output current on all I/O pins - VDDANA 152mA
Maximum operating voltage VDDCORE 1.95V
Maximum operating voltage VDDIO, VDDIN

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Notes: 1. 5V tolerant pins, see Section 3.2 "Peripheral Multiplexing on I/O lines" on page 8

2. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3.2 on page 8 for details.

8.3 Supply Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to 85°C, unless otherwise specified and are certified for a junction temperature up to $T_J = 100^{\circ}C$.

		Voltage				
Symbol	Parameter	Min	Max	Unit		
V _{VDDIO}	DC supply peripheral I/Os	3.0	3.6	V		
V _{VDDIN}	DC supply internal regulator, 3.3V single supply mode	3.0	3.6	V		
V _{VDDCORE}	DC supply core	1.65	1.95	V		
V _{VDDANA}	Analog supply voltage	3.0	3.6	V		
V _{ADVREFP}	Analog reference voltage	2.6	V _{VDDANA}	V		

Table 8-2.Supply Characteristics

8.4 Maximum Clock Frequencies

These parameters are given in the following conditions:

• V_{VDDCORE} = 1.65 to 1.95V

8.5.1 Peripheral Power Consumption

The values in Table 8-5 are measured values of power consumption under the following conditions.

- Operating conditions external core supply (Figure 8-1)
 - $-V_{VDDIN} = 3.3V$
 - $V_{VDDCORE}$ = 1.8V, supplied by the internal regulator
 - Corresponds to the 3.3V + 1.8V dual supply mode , please refer to the Supply and Startup Considerations section for more details
- TA = 25°C
- Oscillators
 - OSC0 on external clock running
 - PLL running at 48MHz with OSC0 as reference
- Clocks
 - OSC0 external clock used as main clock source
 - CPU, HSB, and PB clocks undivided

Table 8-21. Decoupling Requirements

Symbol	Parameter	Condition	Тур	Techno.	Units
C _{IN2}	Input regulator capacitor 2		4.7	X7R	nF
C _{OUT1}	Output regulator capacitor 1		470	NPO	nF
C _{OUT2}	Output regulator capacitor 2		2.2	X7R	μF

8.9.2 ADC Characteristics

Parameter	Conditions	Min.	Тур.	Max.	Unit
ADC Clock Frequency	10-bit resolution mode			5	MHz
	8-bit resolution mode			8	MHz
Startup Time	Return from Idle Mode			20	μs
Track and Hold Acquisition Time		600			ns
Conversion Time	ADC Clock = 5 MHz			2	μs
	ADC Clock = 8 MHz			1.25	μs
Throughput Rate	ADC Clock = 5 MHz			384 ⁽¹⁾	kSPS
	ADC Clock = 8 MHz			533 ⁽²⁾	kSPS

1. Corresponds to 13 clock cycles: 3 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

2. Corresponds to 15 clock cycles: 5 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

Table 8-23.ADC Power Consumption

Parameter	Conditions	Min.	Тур.	Max.	Unit
Current Consumption on VDDANA ⁽¹⁾	On 13 samples with ADC clock = 5 MHz			1.25	mA

1. Including internal reference input current

Table 8-24. Analog Inputs

Parameter	Conditions	Min.	Тур.	Max.	Unit
Input Voltage Range		0		VDDANA	V
Input Leakage Current				1	μA
Input Capacitance			7		pF
Input Resistance			370	810	Ohm

Table 8-25. Transfer Characteristics in 8-bit mode

Parameter	Conditions	Min.	Тур.	Max.	Unit
Resolution			8		Bit
Abaduta Acquiració	ADC Clock = 5 MHz			0.8	LSB
Absolute Accuracy	ADC Clock = 8 MHz			1.5	LSB
Integral Non-linearity	ADC Clock = 5 MHz		0.35	0.5	LSB
	ADC Clock = 8 MHz		0.5	1.0	LSB

VDDCORE

In dual supply configuration, the power up sequence must be carefully managed to ensure a safe startup of the device in all conditions.

The power up sequence must ensure that the internal logic is safely powered when the internal reset (Power On Reset) is released and that the internal Flash logic is safely powered when the CPU fetch the first instructions.

Therefore VDDCORE rise rate (VDDRR) must be equal or superior to 2.5V/ms and VDDIO must reach VDDIO mini value before 500 us (< TRST + TSSU1) after VDDCORE has reached V_{POR+} min value.

9. Mechanical Characteristics

9.1 Thermal Considerations

9.1.1 Thermal Data

Table 9-1 summarizes the thermal resistance data depending on the package.

Symbol	Parameter	Condition	Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP48	65.1	CAN
θ_{JC}	Junction-to-case thermal resistance		TQFP48	23.4	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	QFN48	29.2	0.001
θ_{JC}	Junction-to-case thermal resistance		QFN48	2.7	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP64	63.1	C 0.01
θ_{JC}	Junction-to-case thermal resistance		TQFP64	23.0	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	QFN64	26.9	0.001
θ_{JC}	Junction-to-case thermal resistance		QFN64	2.7	·C/W

 Table 9-1.
 Thermal Resistance Data

9.1.2 Junction Temperature

The average chip-junction temperature, T_J, in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$

2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$

where:

- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 9-1.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 9-1.
- θ_{HEAT SINK} = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the Section 8.5 on page 38.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

Figure 9-4. QFN-64 package drawing

DRAWINGS NOT SCALED

Notes : 1. This drawing is for general information only. Refer to JEDEC Drawing MO-220, Variation VMMD-4, for proper dimensions, tolerances, datums, etc. 2. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has the optical radius on the other end of the terminal, the dimension should not be measured in that radius area.

Weight		200 mg
Table 9-12.	Package Characteristics	
Moisture Sensitivity Level		Jedec J-STD-20D-MSL3

Table 9-13.Package Reference

JEDEC Drawing Reference	M0-220
JESD97 Classification	e3

9.3 Soldering Profile

Table 9-14 gives the recommended soldering profile from J-STD-20.

Table 9-14.	Soldering Profile
-------------	-------------------

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/s max
Preheat Temperature 175°C ±25°C	150°C min, 200°C max
Temperature Maintained Above 217°C	60-150 s
Time within 5.C of Actual Peak Temperature	30 s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max
Time 25 C to Peak Temperature	8 minutes max

A maximum of three reflow passes is allowed per component.

11.1.2 TWIS

1. Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus. **Fix/Workaround**

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

11.1.3 PWMA

1. The SR.READY bit cannot be cleared by writing to SCR.READY

The Ready bit in the Status Register will not be cleared when writing a one to the corresponding bit in the Status Clear register. The Ready bit will be cleared when the Busy bit is set.

Fix/Workaround

Disable the Ready interrupt in the interrupt handler when receiving the interrupt. When an operation that triggers the Busy/Ready bit is started, wait until the ready bit is low in the Status Register before enabling the interrupt.

11.2 Rev. B

11.2.1 Power Manager

1. TWIS may not wake the device from sleep mode

If the CPU is put to a sleep mode (except Idle and Frozen) directly after a TWI Start condition, the CPU may not wake upon a TWIS address match. The request is NACKed. **Fix/Workaround**

When using the TWI address match to wake the device from sleep, do not switch to sleep modes deeper than Frozen. Another solution is to enable asynchronous EIC wake on the TWIS clock (TWCK) or TWIS data (TWD) pins, in order to wake the system up on bus events.

11.2.2 SPI

1. SPI disable does not work in SLAVE mode SPI disable does not work in SLAVE mode.

Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

PCS field in receive data register is inaccurate The PCS field in the SPI_RDR register does not accurately indicate from which slave the received data is read. Fix/Workaround None.

SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0 When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI

module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

4. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

5. SPI bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

6. Timer Counter

7. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

TWIS 11.2.3

1. Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus.

Fix/Workaround

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

11.2.4 **PWMA**

1. The SR.READY bit cannot be cleared by writing to SCR.READY

The Ready bit in the Status Register will not be cleared when writing a one to the corresponding bit in the Status Clear register. The Ready bit will be cleared when the Busy bit is set.

Fix/Workaround

Disable the Ready interrupt in the interrupt handler when receiving the interrupt. When an operation that triggers the Busy/Ready bit is started, wait until the ready bit is low in the Status Register before enabling the interrupt.

11.3 Rev. A

11.3.1 GPIO

1. Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

11.3.2 Power Manager

1. Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

2. Requesting clocks in idle sleep modes will mask all other PB clocks than the requested

In idle or frozen sleep mode, all the PB clocks will be frozen if the TWIS or the AST needs to wake the CPU up.

Fix/Workaround

Disable the TWIS or the AST before entering idle or frozen sleep mode.

3. SPI

 SPI disable does not work in SLAVE mode SPI disable does not work in SLAVE mode.
 Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

5. PCS field in receive data register is inaccurate

The PCS field in the SPI_RDR register does not accurately indicate from which slave the received data is read. **Fix/Workaround**

None.

6. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

7. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

12. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. A - 11/2009

1. Initial revision.

12.2 Rev. B - 04/2011

1. Minor.

12.3 Rev. C - 07/2011

1. Final revision.

12.4 Rev. D - 11/2011

- 1. Adding errata for silicon Revision C .
- 2. Fixed PLLOPT field description in SCIF chapter

	8.7	Oscillator Characteristics	44
	8.8	Flash Characteristics	46
	8.9	Analog Characteristics	47
	8.10	USB Transceiver Characteristics	52
9	Mecha	nical Characteristics	53
	9.1	Thermal Considerations	53
	9.2	Package Drawings	54
	9.3	Soldering Profile	58
10	Orderii	ng Information	59
11	Errata		60
	11.1	Rev. C	60
	11.2	Rev. B	61
	11.3	Rev. A	63
12	Datash	neet Revision History	66
	12.1	Rev. A – 11/2009	66
	10.0		66
	12.2	Rev. B – 04/2011	
	12.2 12.3	Rev. B – 04/2011 Rev. C – 07/2011	
	12.2 12.3 12.4	Rev. B – 04/2011 Rev. C – 07/2011 Rev. D – 11/2011	66 66

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr32@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.