

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atuc128d3-z2ur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Configuration Summary

Table 2-1.Configuration Summary

Feature	ATUC128/64D3	ATUC128/64D4		
Flash	128/64KB	128/64KB		
SRAM	16KB	16KB		
Package	TQFP64, QFN64	TQFP48, QFN48		
GPIO	51	35		
FS USB Device	1			
Hi-drive pins	4			
External Interrupts	9	7		
TWI Master/Slave	1/	1		
USART	3			
Peripheral DMA Channels	7			
SPI	1			
Asynchronous Timers	1			
Timer/Counter Channels	3			
PWM channels	7			
Inter-IC Sound	1			
Frequency Meter	1			
Watchdog Timer	1			
Power Manager	1			
Oscillators	2x Phase Locked Loop 80-240 MHz (PLL) 1x Crystal Oscillator 0.4-20 MHz (OSC0) 1x Crystal Oscillator 32 KHz (OSC32K) 1x RC Oscillator 120MHz (RC120M) 1x RC Oscillator 115 kHz (RCSYS)			
10-bit ADC channels	8 6			
Capacitive Touch Sensor supported	25	17		
Glue Logic Control Inputs/Outputs	16/4	14/4		
JTAG	1			
aWire	1			
Max Frequency	48 MHz			

UC3D

3.2.4 Oscillator Pinout

The oscillators are not mapped to the normal GPIO functions and their muxings are controlled by registers in the System Control Interface (SCIF). Please refer to the SCIF chapter for more information about this.

Table 3-4. Oscillator Pinout

48-pin Package	64-pin Package	Pin	Oscillator Function
30	39	PA18	XIN0
31	40	PA19	XOUT0
22	30	PA11	XIN32
23	31	PA12	XOUT32

3.2.5 Other Functions

The functions listed in Table 3-5 are not mapped to the normal GPIO functions. The aWire DATA pin will only be active after the aWire is enabled. The aWire DATAOUT pin will only be active after the aWire is enabled and the 2-pin mode command has been sent.

Table 3-5. Other Functions

48-Pin Package	64-Pin Package	Pin	Function
47	63	RESET_N	aWire DATA
2	2	PB12	aWire DATAOUT

4. Signal Descriptions

The following table gives details on signal name classified by peripheral.

Signal Name	Function	Туре	Active Level	Comments			
aWire - AW							
DATA	aWire data	I/O					
DATAOUT	aWire data output for 2-pin mode	I/O					
External Interrupt Controller - EIC							
NMI	Non-Maskable Interrupt	Input					
EXTINT8 - EXTINT1	External interrupt	Input					
	JTAG modu	ile - JTAG					
ТСК	Test Clock	Input					
TDI	Test Data In	Input					
TDO	Test Data Out	Output					
TMS	Test Mode Select	Input					
	Power Man	ager - PM					
RESET_N	Reset	Input	Low				
	Basic Pulse Width Modula	ation Controller	- PWMA				
PWMA6 - PWMA0	PWMA channel waveforms	Output					
	System Control I	nterface - SCIF					
GCLK2 - GCLK0	Generic clock	Output					
XINO	Oscillator 0 XIN Pin	Analog					
XOUT0	Oscillator 0 XOUT Pin	Analog					
XIN32	32K Oscillator XIN Pin	Analog					
XOUT32	32K Oscillator XOUT Pin	Analog					
	Serial Peripheral	Interface - SPI					
MISO	Master In Slave Out	I/O					
MOSI	Master Out Slave In	I/O					
NPCS3 - NPCS0	SPI Peripheral Chip Select	I/O	Low				
SCK	Clock	I/O					
	Timer/Cou	nter - TC					
A0	Channel 0 Line A	I/O					
A1	Channel 1 Line A	I/O					

Table 4-1.Signal Descriptions List

-						
A2	Channel 2 Line A	I/O				
B0	Channel 0 Line B I/O					
B1	Channel 1 Line B	B I/O				
B2	Channel 2 Line B	I/O				
CLK0	Channel 0 External Clock Input	Input				
CLK1	Channel 1 External Clock Input	Input				
CLK2	Channel 2 External Clock Input	Input				
Two Wire Interface Master- TWIM						
TWCK	Two-wire Serial Clock					
TWD	Two-wire Serial Data					
	Two Wire Interface S	Slave- TWIS				
TWCK	Two-wire Serial Clock					
TWD	Two-wire Serial Data					
	Universal Synchronous/Asynchronous R	eceiver/Trans	smitter - USA	RT0/1/2		
CLK Clock I/O						
CTS	Clear To Send	Input	Low			
RTS	Request To Send	Output	Low			
RXD	Receive Data	Input				
TXD	Transmit Data	Output				
	Universal Serial Bus 2.0 Full Speed Interface - USBC					
DM	DM for USB FS					
DP	DP for USB FS					
VBUS	VBUS					
	IIS Controller	- IISC				
IBCK	IIS Serial Clock	I/O				
ISDI	IIS Serial Data In	Input				
ISDO	IIS Serial Data Out	Output				
IWS	IIS Word Select	I/O				
IMCK	IIS Master Clock	Output				
	Capacitive Touch Se	ensor - CAT				
CSA24 - CSA0	Capacitive Sensor Group A	I/O				
CSB24 - CSB0	Capacitive Sensor Group B	I/O				
SYNC	Synchronize signal	Input				
	Glue Logic Control	ler - GLOC				
IN15 - IN0	Inputs to lookup tables	Input				
OUT3 - OUT0	Outputs from lookup tables	Output				
ADC controller interface - ADCIFD						

 Table 4-1.
 Signal Descriptions List

EXTTRIG	ADCIFD EXTTRIG	Input	
AD7 - AD0	AD0 ADC Inputs		
	Power		
VDDIO	Digital I/O Power Supply	Power Input	3.0 V to 3.6V.
VDDANA	Analog Power Supply	Power Input	3.0 V to 3.6V
ADVREF	Analog Reference Voltage	Power Input	2.6 V to 3.6 V
VDDCORE	Core Power Supply	Power Input	1.65 V to 1.95 V
VDDIN	Voltage Regulator Input	Power Input	3.0 V to 3.6V
VDDOUT Voltage Regulator Output		Power Output	1.65 V to 1.95V
GNDANA	Analog Ground	Ground	
GND	Ground	Ground	
	General Purpose I/O pin	- GPIOA, GPIOB	
PA31 - PA00	General Purpose I/O Controller GPIO A	I/O	
PB18 - PB00	General Purpose I/O Controller GPIO B	I/O	

Table 4-1. Signal Descriptions List

4.1 I/O Line Considerations

4.1.1 JTAG Pins

The JTAG is enabled if TCK is low while the RESET_N pin is released. The TCK, TMS, and TDI pins have pull-up resistors when JTAG is enabled. TDO pin is an output, driven at VDDIO, and has no pull-up resistor. These JTAG pins can be used as GPIO pins and muxed with peripherals when the JTAG is disabled.

4.1.2 RESET_N Pin

The RESET_N pin is a schmitt input and integrates a programmable pull-up resistor to VDDIO. As the product integrates a power-on reset detector, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

The RESET_N pin is also used for the aWire debug protocol. When the pin is used for debugging, it must not be driven by the application.

4.1.3 TWI Pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike-filtering. When used as GPIO pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

4.1.4 GPIO Pins

All the I/O lines integrate a pull-up resistor. Programming of this pull-up resistor is performed

Figure 5-2. The AVR32UC Pipeline

5.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

5.3.2.1 Interrupt Handling

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

5.3.2.2 Java Support

AVR32UC does not provide Java hardware acceleration.

5.3.2.3 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other instructions require aligned addresses.

Instruction	Supported Alignment
ld.d	Word
st.d	Word

5.3.2.4 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented Instruction Exception if executed:

- All SIMD instructions
- · All coprocessor instructions if no coprocessors are present
- retj, incjosp, popjc, pushjc
- tlbr, tlbs, tlbw
- cache

5.3.2.5 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist. The device described in this datasheet uses CPU revision 3.

The Architecture Revision field in the CONFIG0 system register identifies which architecture revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Table 5-5. System Registers (Continued)				
Reg #	Address	Name	Function	
28	112	JAVA_LV5	Unused in AVR32UC	
29	116	JAVA_LV6	Unused in AVR32UC	
30	120	JAVA_LV7	Unused in AVR32UC	
31	124	JTBA	Unused in AVR32UC	
32	128	JBCR	Unused in AVR32UC	
33-63	132-252	Reserved	Reserved for future use	
64	256	CONFIG0	Configuration register 0	
65	260	CONFIG1	Configuration register 1	
66	264	COUNT	Cycle Counter register	
67	268	COMPARE	Compare register	
68	272	TLBEHI	Unused in AVR32UC	
69	276	TLBELO	Unused in AVR32UC	
70	280	PTBR	Unused in AVR32UC	
71	284	TLBEAR	Unused in AVR32UC	
72	288	MMUCR	Unused in AVR32UC	
73	292	TLBARLO	Unused in AVR32UC	
74	296	TLBARHI	Unused in AVR32UC	
75	300	PCCNT	Unused in AVR32UC	
76	304	PCNT0	Unused in AVR32UC	
77	308	PCNT1	Unused in AVR32UC	
78	312	PCCR	Unused in AVR32UC	
79	316	BEAR	Bus Error Address Register	
90-102	360-408	Reserved	Reserved for future use	
103-111	412-444	Reserved	Reserved for future use	
112-191	448-764	Reserved	Reserved for future use	
192-255	768-1020	IMPL	IMPLEMENTATION DEFINED	

 Table 5-3.
 System Registers (Continued)

5.5 Exceptions and Interrupts

In the AVR32 architecture, events are used as a common term for exceptions and interrupts. AVR32UC incorporates a powerful event handling scheme. The different event sources, like Illegal Op-code and interrupt requests, have different priority levels, ensuring a well-defined behavior when multiple events are received simultaneously. Additionally, pending events of a higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed to an event handler at an address specified in Table 5-4 on page 32. Most of the handlers are placed sequentially in the code space starting at the address specified by EVBA, with four bytes between each handler. This gives ample space for a jump instruction to be placed there, jump-ing to the event routine itself. A few critical handlers have larger spacing between them, allowing

contains information allowing the core to resume operation in the previous execution mode. This concludes the event handling.

5.5.3 Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The *scall* instruction is designed so that privileged routines can be called from any context. This facilitates sharing of code between different execution modes. The *scall* mechanism is designed so that a minimal execution cycle overhead is experienced when performing supervisor routine calls from time-critical event handlers.

The *scall* instruction behaves differently depending on which mode it is called from. The behaviour is detailed in the instruction set reference. In order to allow the *scall* routine to return to the correct context, a return from supervisor call instruction, *rets*, is implemented. In the AVR32UC CPU, *scall* and *rets* uses the system stack to store the return address and the status register.

5.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the Debug Exception handler. By default, Debug mode executes in the exception context, but with dedicated Return Address Register and Return Status Register. These dedicated registers remove the need for storing this data to the system stack, thereby improving debuggability. The Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers in all contexts, while retaining full privileges.

Debug mode is exited by executing the *retd* instruction. This returns to the previous context.

5.5.5 Entry Points for Events

Several different event handler entry points exist. In AVR32UC, the reset address is 0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and *scall* have a dedicated space relative to EVBA where their event handler can be placed. This speeds up execution by removing the need for a jump instruction placed at the program address jumped to by the event hardware. All other exceptions have a dedicated event routine entry point located relative to EVBA. The handler routine address identifies the exception source directly.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector offset is specified by an interrupt controller. The programmer must make sure that none of the autovector offsets interfere with the placement of other code. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security considerations, the event handlers should be located in non-writeable flash memory.

If several events occur on the same instruction, they are handled in a prioritized way. The priority ordering is presented in Table 5-4 on page 32. If events occur on several instructions at different locations in the pipeline, the events on the oldest instruction are always handled before any events on any younger instruction, even if the younger instruction has events of higher priority than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04			
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50			
14	EVBA+0x18			
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60			
25	EVBA+0x70			
26	EVBA+0x3C			
27	EVBA+0x40			
28	EVBA+0x44			

 Table 5-4.
 Priority and Handler Addresses for Events

8.7 Oscillator Characteristics

8.7.1 Oscillator 0 (OSC0) Characteristics

8.7.1.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN.

Table 8-10. Digital Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN clock frequency				50	MHz
t _{CPXIN}	XIN clock duty cycle		40		60	%

8.7.1.2 Crystal Oscillator Characteristics

The following table describes the characteristics for the oscillator when a crystal is connected between XIN and XOUT as shown in Figure 8-2. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can be found in the crystal datasheet. The capacitance of the external capacitors (C_{LEXT}) can then be computed as follows:

$$C_{\text{LEXT}} = 2(C_{\text{L}} - C_{\text{i}}) - C_{\text{PCB}}$$

where C_{PCB} is the capacitance of the PCB.

Table 8-11. Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
1/(t _{CPMAIN})	Crystal oscillator frequency		0.4		20	MHz		
CL	Crystal load capacitance		6		18	pF		
C _i	Internal equivalent load capacitance			1.7		pF		
		400 KHz Resonator SCIF.OSCCTRL.GAIN = 0 ⁽¹⁾		198				
		2 MHz Quartz SCIF.OSCCTRL.GAIN = 0 ⁽¹⁾		4666				
		8 MHz Quartz SCIF.OSCCTRL.GAIN = 1 ⁽¹⁾	GAIN = 1 ⁽¹⁾ 975	975				
t _{startup}	Startup time	12 MHz Quartz SCIF.OSCCTRL.GAIN = 2 ⁽¹⁾		615		μs		
		16 MHz Quartz SCIF.OSCCTRL.GAIN = 2 ⁽¹⁾		1106				
		20 MHz Quartz SCIF.OSCCTRL.GAIN = 3 ⁽¹⁾		1109				

Notes: 1. Please refer to the SCIF chapter for details.

Figure 8-2. Oscillator Connection

8.7.2 32KHz Crystal Oscillator (OSC32K) Characteristics

8.7.2.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN32.

Table 8-12. Digital Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN32 clock frequency			32.768	5000	KHz
t _{CPXIN}	XIN32 clock duty cycle		40		60	%

Figure 8-2 and the equation above also applies to the 32KHz oscillator connection. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can then be found in the crystal datasheet.

Table 8-13. 32 KHz Crystal Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
1/(t _{CP32KHz})	Crystal oscillator frequency			32.768	5000	KHz
t _{sT}	Startup time	R _S = 50kOhm, C _L = 9pF		2		S
CL	Crystal load capacitance		6		15	pF
C _i	Internal equivalent load capacitance			1.4		pF

8.9.4 Reset Sequence

Table 8-29. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDRR}	VDDCORE rise rate to ensure power- on-reset		2.5			V/ms
V _{DDFR}	VDDCORE fall rate to ensure power- on-reset		0.01		400	V/ms
V _{POR+}	Rising threshold voltage: voltage up to which device is kept under reset by POR on rising VDDCORE	Rising VDDCORE: V _{RESTART} -> V _{POR+}	1.4	1.55	1.65	V
V _{POR-}	Falling threshold voltage: voltage when POR resets device on falling VDDCORE	Falling VDDCORE: 1.8V -> V _{POR+}	1.2	1.3	1.4	V
V _{RESTART}	On falling VDDCORE, voltage must go down to this value before supply can rise again to ensure reset signal is released at V _{POR+}	Falling VDDCORE: 1.8V -> V _{RESTART}	-0.1		0.5	V
T _{POR}	Minimum time with VDDCORE < V _{POR-}	Falling VDDCORE: 1.8V -> 1.1V		15		μs
T _{RST}	Time for reset signal to be propagated to system			200	400	μs
T _{SSU1}	Time for Cold System Startup: Time for CPU to fetch its first instruction (RCosc not calibrated)		480		960	μs
T _{SSU2}	Time for Hot System Startup: Time for CPU to fetch its first instruction (RCosc calibrated)			420		μs

Figure 8-3. MCU Cold Start-Up RESET_N tied to VDDIN

UC3D

VDDCORE

In dual supply configuration, the power up sequence must be carefully managed to ensure a safe startup of the device in all conditions.

The power up sequence must ensure that the internal logic is safely powered when the internal reset (Power On Reset) is released and that the internal Flash logic is safely powered when the CPU fetch the first instructions.

Therefore VDDCORE rise rate (VDDRR) must be equal or superior to 2.5V/ms and VDDIO must reach VDDIO mini value before 500 us (< TRST + TSSU1) after VDDCORE has reached V_{POR+} min value.

9.3 Soldering Profile

Table 9-14 gives the recommended soldering profile from J-STD-20.

Table 9-14.	Soldering Profile
-------------	-------------------

Profile Feature	Green Package		
Average Ramp-up Rate (217°C to Peak)	3°C/s max		
Preheat Temperature 175°C ±25°C	150°C min, 200°C max		
Temperature Maintained Above 217°C	60-150 s		
Time within 5.C of Actual Peak Temperature	30 s		
Peak Temperature Range	260°C		
Ramp-down Rate	6°C/s max		
Time 25 C to Peak Temperature	8 minutes max		

A maximum of three reflow passes is allowed per component.

10. Ordering Information

Table 10-1.Ordering Information

Device	Ordering Code	Carrier Type	Package	Package Type	Temperature Operating Range	
	ATUC128D3-A2UT	Tray	TQFP 64			
	ATUC128D3-A2UR	Tape & Reel	TQFP 64			
ATUC 12803	ATUC128D3-Z2UT	Tray	QFN 64			
	ATUC128D3-Z2UR	Tape & Reel	QFN 64	IESD07 Clossification E2	Industrial (40 C to 85 C)	
	ATUC128D4-AUT	Tray	TQFP 48	JESD97 Classification ES		
	ATUC128D4-AUR	Tape & Reel	TQFP 48			
ATUC 12804	ATUC128D4-Z1UT	Tray	QFN 48			
	ATUC128D4-Z1UR	Tape & Reel	QFN 48			
	ATUC64D3-A2UT	Tray	TQFP 64			
	ATUC64D3-A2UR	Tape & Reel	TQFP 64			
ATUC64D3	ATUC64D3-Z2UT	Tray	QFN 64			
	ATUC64D3-Z2UR	Tape & Reel	QFN 64	IESD07 Classification E2	Industrial (40 C to 95 C)	
	ATUC64D4-AUT	Tray	TQFP 48			
	ATUC64D4-AUR	Tape & Reel	TQFP 48			
AT 0C04D4	ATUC64D4-Z1UT	Tray	QFN 48			
	ATUC64D4-Z1UR	Tape & Reel	QFN 48			

11. Errata

11.1 Rev. C

11.1.1 SPI

1. SPI disable does not work in SLAVE mode

SPI disable does not work in SLAVE mode. Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

2. PCS field in receive data register is inaccurate

The PCS field in the SPI_RDR register does not accurately indicate from which slave the received data is read.

Fix/Workaround None.

3. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

4. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

5. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

6. Timer Counter

7. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

4. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

5. SPI bad serial clock generation on 2nd chip select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

6. Timer Counter

7. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

TWIS 11.2.3

1. Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus.

Fix/Workaround

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

11.2.4 **PWMA**

1. The SR.READY bit cannot be cleared by writing to SCR.READY

The Ready bit in the Status Register will not be cleared when writing a one to the corresponding bit in the Status Clear register. The Ready bit will be cleared when the Busy bit is set.

Fix/Workaround

Disable the Ready interrupt in the interrupt handler when receiving the interrupt. When an operation that triggers the Busy/Ready bit is started, wait until the ready bit is low in the Status Register before enabling the interrupt.

11.3.3 Timer Counter

1. Channel chaining skips first pulse for upper channel

When chaining two channels using the Block Mode Register, the first pulse of the clock between the channels is skipped.

Fix/Workaround

Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle for the upper channel. After the dummy cycle has been generated, indicated by the SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real values.

11.3.4 TWIS

1. TWIS stretch on Address match error

When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD at the same time. This can cause a TWI timing violation. **Fix/Workaround**None.

2. Clearing the NAK bit before the BTF bit is set locks up the TWI bus

When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Register (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus.

Fix/Workaround

Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.

3. CAT

4. CAT module does not terminate QTouch burst on detect

The CAT module does not terminate a QTouch burst when the detection voltage is reached on the sense capacitor. This can cause the sense capacitor to be charged more than necessary. Depending on the dielectric absorption characteristics of the capacitor, this can lead to unstable measurements.

Fix/Workaround

Use the minimum possible value for the MAX field in the ATCFG1, TG0CFG1, and TG1CFG1 registers.

11.3.5 PWMA

1. The SR.READY bit cannot be cleared by writing to SCR.READY

The Ready bit in the Status Register will not be cleared when writing a one to the corresponding bit in the Status Clear register. The Ready bit will be cleared when the Busy bit is set.

Fix/Workaround

Disable the Ready interrupt in the interrupt handler when receiving the interrupt. When an operation that triggers the Busy/Ready bit is started, wait until the ready bit is low in the Status Register before enabling the interrupt.

2.

UC3D

	8.7	Oscillator Characteristics	44
	8.8	Flash Characteristics	46
	8.9	Analog Characteristics	47
	8.10	USB Transceiver Characteristics	52
9	Mecha	nical Characteristics	53
	9.1	Thermal Considerations	53
	9.2	Package Drawings	54
	9.3	Soldering Profile	58
10	Orderii	ng Information	59
11	Errata		60
	11.1	Rev. C	60
	11.2	Rev. B	61
	11.3	Rev. A	63
12	Datash	eet Revision History	66
	12.1	Rev. A – 11/2009	66
			00
	12.2	Rev. B – 04/2011	
	12.2 12.3	Rev. B – 04/2011 Rev. C – 07/2011	66 66
	12.2 12.3 12.4	Rev. B – 04/2011 Rev. C – 07/2011 Rev. D – 11/2011	66 66 66

