

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atuc128d4-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

-								
A2	Channel 2 Line A	I/O						
B0	Channel 0 Line B	I/O						
B1	Channel 1 Line B	I/O						
B2	Channel 2 Line B	I/O						
CLK0	Channel 0 External Clock Input	Input						
CLK1	Channel 1 External Clock Input	Input						
CLK2	Channel 2 External Clock Input	Input						
	Two Wire Interface Master- TWIM							
TWCK	Two-wire Serial Clock							
TWD	Two-wire Serial Data							
Two Wire Interface Slave- TWIS								
TWCK	Two-wire Serial Clock							
TWD	Two-wire Serial Data							
	Universal Synchronous/Asynchronous R	eceiver/Trans	smitter - USA	RT0/1/2				
CLK	Clock	I/O						
CTS	Clear To Send	Input	Low					
RTS	Request To Send	Output	Low					
RXD	Receive Data	Input						
TXD	Transmit Data	Output						
	Universal Serial Bus 2.0 Full S	peed Interfac	e - USBC					
DM	DM for USB FS							
DP	DP for USB FS							
VBUS	VBUS							
	IIS Controller	- IISC						
IBCK	IIS Serial Clock	I/O						
ISDI	IIS Serial Data In	Input						
ISDO	IIS Serial Data Out	Output						
IWS	IIS Word Select	I/O						
IMCK	IIS Master Clock	Output						
	Capacitive Touch Se	ensor - CAT						
CSA24 - CSA0	Capacitive Sensor Group A	I/O						
CSB24 - CSB0	Capacitive Sensor Group B	I/O						
SYNC	Synchronize signal	Input						
	Glue Logic Control	ler - GLOC						
IN15 - IN0	Inputs to lookup tables	Input						
OUT3 - OUT0	Outputs from lookup tables	Output						
ADC controller interface - ADCIFD								

 Table 4-1.
 Signal Descriptions List

4.2.3.2 3.3V + 1.8V Dual Supply Mode

In dual supply mode the internal regulator is not used (unconnected), VDDIO is powered by 3.3V supply and VDDCORE is powered by a 1.8V supply as shown in Figure 4-3.

Figure 4-3. 3.3V + 1.8V Dual Power Supply Mode.

4.2.4 Power-up Sequence

4.2.4.1 Maximum Rise Rate

To avoid risk of latch-up, the rise rate of the power supplies must not exceed the values described in Supply Characteristics table in the Electrical Characteristics chapter.

Recommended order for power supplies is also described in this table.

4.2.4.2 Minimum Rise Rate

The integrated Power-Reset circuitry monitoring the VDDIN powering supply requires a minimum rise rate for the VDDIN power supply.

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

5.3 The AVR32UC CPU

The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced On-Chip Debug (OCD) system, and no caches. Java acceleration hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and I/O controller ports. This local bus has to be enabled by writing a one to the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the CPU Local Bus section in the Memories chapter.

Figure 5-1 on page 22 displays the contents of AVR32UC.

5.4 Programming Model

5.4.1 Register File Configuration

The AVR32UC register file is shown below.

Figure 5-3. The AVR32UC Register File

5.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 5-4 and Figure 5-5. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T, and L bits, while the upper halfword contains information about the mode and state the processor executes in. Refer to the *AVR32 Architecture Manual* for details.

Figure 5-5. The Status Register Low Halfword

5.4.3 Processor States

5.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 5-2.

Priority	Mode	Security	Description
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode
2	Exception	Privileged	Execute exceptions
3	Interrupt 3	Privileged	General purpose interrupt mode
4	Interrupt 2	Privileged	General purpose interrupt mode
5	Interrupt 1	Privileged	General purpose interrupt mode
6	Interrupt 0	Privileged	General purpose interrupt mode
N/A	Supervisor	Privileged	Runs supervisor calls
N/A	Application	Unprivileged	Normal program execution mode

 Table 5-2.
 Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

5.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

Table 5-5.	able 5-5. System Registers (Continued)			
Reg #	Address	Name	Function	
28	112	JAVA_LV5	Unused in AVR32UC	
29	116	JAVA_LV6	Unused in AVR32UC	
30	120	JAVA_LV7	Unused in AVR32UC	
31	124	JTBA	Unused in AVR32UC	
32	128	JBCR	Unused in AVR32UC	
33-63	132-252	Reserved	Reserved for future use	
64	256	CONFIG0	Configuration register 0	
65	260	CONFIG1	Configuration register 1	
66	264	COUNT	Cycle Counter register	
67	268	COMPARE	Compare register	
68	272	TLBEHI	Unused in AVR32UC	
69	276	TLBELO	Unused in AVR32UC	
70	280	PTBR	Unused in AVR32UC	
71	284	TLBEAR	Unused in AVR32UC	
72	288	MMUCR	Unused in AVR32UC	
73	292	TLBARLO	Unused in AVR32UC	
74	296	TLBARHI	Unused in AVR32UC	
75	300	PCCNT	Unused in AVR32UC	
76	304	PCNT0	Unused in AVR32UC	
77	308	PCNT1	Unused in AVR32UC	
78	312	PCCR	Unused in AVR32UC	
79	316	BEAR	Bus Error Address Register	
90-102	360-408	Reserved	Reserved for future use	
103-111	412-444	Reserved	Reserved for future use	
112-191	448-764	Reserved	Reserved for future use	
192-255	768-1020	IMPL	IMPLEMENTATION DEFINED	

 Table 5-3.
 System Registers (Continued)

5.5 Exceptions and Interrupts

In the AVR32 architecture, events are used as a common term for exceptions and interrupts. AVR32UC incorporates a powerful event handling scheme. The different event sources, like Illegal Op-code and interrupt requests, have different priority levels, ensuring a well-defined behavior when multiple events are received simultaneously. Additionally, pending events of a higher priority class may preempt handling of ongoing events of a lower priority class.

When an event occurs, the execution of the instruction stream is halted, and execution is passed to an event handler at an address specified in Table 5-4 on page 32. Most of the handlers are placed sequentially in the code space starting at the address specified by EVBA, with four bytes between each handler. This gives ample space for a jump instruction to be placed there, jump-ing to the event routine itself. A few critical handlers have larger spacing between them, allowing

the entire event routine to be placed directly at the address specified by the EVBA-relative offset generated by hardware. All interrupt sources have autovectored interrupt service routine (ISR) addresses. This allows the interrupt controller to directly specify the ISR address as an address relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset), not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up appropriately. The same mechanisms are used to service all different types of events, including interrupt requests, yielding a uniform event handling scheme.

An interrupt controller does the priority handling of the interrupts and provides the autovector offset to the CPU.

5.5.1 System Stack Issues

Event handling in AVR32UC uses the system stack pointed to by the system stack pointer, SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section, since the timing of accesses to this memory section is both fast and deterministic.

The user must also make sure that the system stack is large enough so that any event is able to push the required registers to stack. If the system stack is full, and an event occurs, the system will enter an UNDEFINED state.

5.5.2 Exceptions and Interrupt Requests

When an event other than *scall* or debug request is received by the core, the following actions are performed atomically:

- 1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and GM bits in the Status Register are used to mask different events. Not all events can be masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and Bus Error) can not be masked. When an event is accepted, hardware automatically sets the mask bits corresponding to all sources with equal or lower priority. This inhibits acceptance of other events of the same or lower priority, except for the critical events listed above. Software may choose to clear some or all of these bits after saving the necessary state if other priority schemes are desired. It is the event source's responsability to ensure that their events are left pending until accepted by the CPU.
- 2. When a request is accepted, the Status Register and Program Counter of the current context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, registers R8-R12 and LR are also automatically stored to stack. Storing the Status Register ensures that the core is returned to the previous execution mode when the current event handling is completed. When exceptions occur, both the EM and GM bits are set, and the application may manually enable nested exceptions if desired by clearing the appropriate bit. Each exception handler has a dedicated handler address, and this address uniquely identifies the exception source.
- 3. The Mode bits are set to reflect the priority of the accepted event, and the correct register file bank is selected. The address of the event handler, as shown in Table 5-4 on page 32, is loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The *rete* instruction signals the end of the event. When encountered, the Return Status Register and Return Address Register are popped from the system stack and restored to the Status Register and Program Counter. If the *rete* instruction returns from INT0, INT1, INT2, or INT3, registers R8-R12 and LR are also popped from the system stack. The restored Status Register

contains information allowing the core to resume operation in the previous execution mode. This concludes the event handling.

5.5.3 Supervisor Calls

The AVR32 instruction set provides a supervisor mode call instruction. The *scall* instruction is designed so that privileged routines can be called from any context. This facilitates sharing of code between different execution modes. The *scall* mechanism is designed so that a minimal execution cycle overhead is experienced when performing supervisor routine calls from time-critical event handlers.

The *scall* instruction behaves differently depending on which mode it is called from. The behaviour is detailed in the instruction set reference. In order to allow the *scall* routine to return to the correct context, a return from supervisor call instruction, *rets*, is implemented. In the AVR32UC CPU, *scall* and *rets* uses the system stack to store the return address and the status register.

5.5.4 Debug Requests

The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the status register. Upon entry into Debug mode, hardware sets the SR.D bit and jumps to the Debug Exception handler. By default, Debug mode executes in the exception context, but with dedicated Return Address Register and Return Status Register. These dedicated registers remove the need for storing this data to the system stack, thereby improving debuggability. The Mode bits in the Status Register can freely be manipulated in Debug mode, to observe registers in all contexts, while retaining full privileges.

Debug mode is exited by executing the *retd* instruction. This returns to the previous context.

5.5.5 Entry Points for Events

Several different event handler entry points exist. In AVR32UC, the reset address is 0x80000000. This places the reset address in the boot flash memory area.

TLB miss exceptions and *scall* have a dedicated space relative to EVBA where their event handler can be placed. This speeds up execution by removing the need for a jump instruction placed at the program address jumped to by the event hardware. All other exceptions have a dedicated event routine entry point located relative to EVBA. The handler routine address identifies the exception source directly.

All interrupt requests have entry points located at an offset relative to EVBA. This autovector offset is specified by an interrupt controller. The programmer must make sure that none of the autovector offsets interfere with the placement of other code. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security considerations, the event handlers should be located in non-writeable flash memory.

If several events occur on the same instruction, they are handled in a prioritized way. The priority ordering is presented in Table 5-4 on page 32. If events occur on several instructions at different locations in the pipeline, the events on the oldest instruction are always handled before any events on any younger instruction, even if the younger instruction has events of higher priority than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

The addresses and priority of simultaneous events are shown in Table 5-4 on page 32. Some of the exceptions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04			
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50			
14	EVBA+0x18			
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60			
25	EVBA+0x70			
26	EVBA+0x3C			
27	EVBA+0x40			
28	EVBA+0x44			

 Table 5-4.
 Priority and Handler Addresses for Events

 Table 6-2.
 Peripheral Address Mapping

0xFFFF6400	GLOC	Glue Logic Controller - GLOC
0xFFFF6800	AW	aWire - AW

6.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to being mapped on the Peripheral Bus. These registers can therefore be reached both by accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.

The following GPIO registers are mapped on the local bus:

Port	Register	Mode	Local Bus Address	Access
А	Output Driver Enable Register (ODER)	WRITE	0x40000040	Write-only
		SET	0x40000044	Write-only
		CLEAR	0x40000048	Write-only
		Mode Local Bus Address Address Address	Write-only	
	Output Value Register (OVR)		0x40000050	Write-only
		SET	0x40000054	Write-only
		CLEAR	0x40000058	Write-only
		TOGGLE	0x4000005C	Write-only
	Pin Value Register (PVR)	-	0x40000060	Read-only
В	Output Driver Enable Register (ODER)	WRITE	0x40000140	Write-only
		SET	0x40000144	Write-only
		Mode Address WRITE 0x40000040 SET 0x40000044 CLEAR 0x40000048 TOGGLE 0x4000004C WRITE 0x40000050 SET 0x40000054 CLEAR 0x40000054 CLEAR 0x40000058 TOGGLE 0x40000050 SET 0x40000050 VRITE 0x40000050 VRITE 0x40000140 SET 0x40000140 SET 0x40000144 CLEAR 0x40000148 TOGGLE 0x40000142 WRITE 0x40000142 SET 0x40000150 SET 0x40000150 SET 0x40000154 CLEAR 0x40000154 TOGGLE 0x40000158 TOGGLE 0x40000156	0x40000148	Write-only
		TOGGLE	0x4000014C	Write-only
	Output Value Register (OVR)	WRITE	0x40000150	Write-only
		SET	0x40000154	Write-only
		CLEAR	0x40000158	Write-only
		TOGGLE	0x4000015C	Write-only
	Pin Value Register (PVR)	-	0x40000160	Read-only

 Table 6-3.
 Local Bus Mapped GPIO Registers

• Temperature = -40°C to 85°C

	Clock Trequencies				
Symbol	Parameter	Conditions	Min	Мах	Units
f _{CPU}	CPU clock frequency			48	MHz
f _{PBA}	PBA clock frequency			48	MHz
f _{PBB}	PBB clock frequency			48	MHz
f _{GCLK0}	GCLK0 clock frequency	GLOC, GCLK0 pin		48	MHz
f _{GCLK1}	GCLK1 clock frequency	GCLK1 pin		48	MHz
f _{GCLK2}	GCLK2 clock frequency	GCLK2 pin		48	MHz
f _{GCLK3}	GCLK3 clock frequency	USB		48	MHz
f _{GCLK4}	GCLK4 clock frequency	PWMA		150	MHz
f _{GCLK5}	GCLK5 clock frequency	IISC		48	MHz
f _{GCLK6}	GCLK6 clock frequency	AST		80	MHz
f _{GCLK8}	GCLK8 clock frequency	ADCIFB		48	MHz

 Table 8-3.
 Clock Frequencies

8.5 Power Consumption

The values in Table 8-4 are measured values of power consumption under the following conditions, except where noted:

- Operating conditions internal core supply (Figure 8-1) this is the default configuration
 - $-V_{VDDIN} = 3.3V$
 - V_{VDDCORE} = 1.8V, supplied by the internal regulator
 - Corresponds to the 3.3V supply mode with 1.8 V regulated I/O lines, please refer to the Supply and Startup Considerations section for more details
 - The following peripheral clocks running
- TA = 25°C
- Oscillators
 - OSC0 running (external clock)as reference
 - PLL running at 48MHz with OSC0 as reference
- Clocks
 - PLL used as main clock source
 - CPU, HSB, and PBB clocks undivided
 - PBA clock divided by 4
 - The following peripheral clocks running
 - PM, SCIF, AST, FLASHCDW, PBA bridge
 - All other peripheral clocks stopped
- · I/Os are inactive with internal pull-up

Symbol	Parameter	Condition		Min	Тур	Мах	Units
		N = 2 0V	(5)			4	mA
IOL	Output low-level current	$v_{VDD} = 3.0 v$	(6)			8	mA
	Parameter Output low-level current Output high-level current Output frequency ⁽²⁾ Rise time ⁽²⁾ Fall time ⁽²⁾ Input leakage current Input capacitance,	N - 2 0V	(5)			4	mA
ЮН	Output high-level current	$v_{VDD} = 3.0 v$	(6)			8	mA
		V _{VDD} = 3.0V, load =	(5)			195	MHz
-	Quite ut free success (2)	10 pF	(6)			348	MHz
F _{MAX}		V _{VDD} = 3.0V, load =	(5)			78	MHz
		Condition el current $V_{VDD} = 3.0V$ /el current $V_{VDD} = 3.0V$, load = $ICy^{(2)}$ $V_{VDD} = 3.0V$, load = $V_{VDD} = 3.0V$, load = $0 pF$ PHI - PHI	(6)			149	MHz
		V _{VDD} = 3.0V, load =	(5)			2.21	ns
	Diag time (2)	10 pF	(6)	(5) 4 (6) 8 (5) 4 (6) 8 (5) 195 (6) 348 (5) 78 (6) 149 (6) 2.21 (6) 1.26 (5) 2.21 (6) 1.26 (5) 2.57 (6) 2.88 (5) 2.57 (6) 1.44 (5) 6.41 (6) 3.35 (6) 1.44 (5) 6.41 (6) 1.44 (5) 6.41 (6) 1.44 (5) 6.41 (6) 1.44 (6) 3.35 1 2 1 2 16.5 1 19 18.5	ns		
^L RISE	Rise time	V _{VDD} = 3.0V, load =	(5) 4 (6) 8 (5) 4 (6) 8 (5) 195 (6) 348 (5) 78 (6) 149 (5) 78 (6) 149 (5) 2.21 (6) 1.26 (5) 2.88 (5) 2.88 (5) 2.57 (6) 1.44 (5) 6.41 (6) 3.35 abled 1 2 0 16.5 5 5 5	ns			
		30 pF	(6)		Typ	2.88	ns
		V _{VDD} = 3.0V, load =	(5)			2.57	ns
		10 pF	(6)			1.44	ns
^L FALL		V _{VDD} = 3.0V, load =	(5)			6.41	ns
		30 pF	(6)			3.35	ns
I _{LEAK}	Input leakage current	Pull-up resistors disab	led			1	μA
		(7)			2		pF
6		PA09, PA10			16.5		pF
CIN	input capacitance,	PA11, PA12, PA18,	PA19		18.5		pF
		PB14, PB15			5		pF

Table 8-6. Normal I/O Pin Characteristics⁽¹⁾

Notes: 1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3.2 on page 8 for details.

2. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

- 3. This applies to all normal drive pads except PB13, PB17 and PB18.
- 4. This applies to PB13, PB17 and PB18 pads only.
- 5. This applies to all normal drive pad except PA00, PA01, PA02, PA03, PA04, PA05, PA06, PA07, PA08, PA09, PA10, PA11, PA12, PA13, PA18, PA19, PA27, PA30, PA31, PB13, PB16 and RESET_N.
- 6. This applies to PA00, PA01, PA02, PA03, PA04, PA05, PA06, PA07, PA08, PA09, PA10, PA11, PA12, PA13, PA18, PA19, PA27, PA30, PA31, PB13, PB16 and RESET_N pads only.
- 7. This applies to all normal drive pads except PA09, PA10, PA11, PA12, PA18, PA19, PB14, PB15.

Symbol	Parameter	Condition	Min	Тур	Max	Units
R _{PULLUP}	Pull-up resistance		9	15	25	kOhm
V _{IL}	Input low-level voltage	V _{VDD} = 3.0V	-0.3		+0.8	V
V _{IH}	Input high-level voltage	V _{VDD} = 3.6V	+2		V _{VDD} + 0.3	V
V _{OL}	Output low-level voltage	V _{VDD} = 3.0V, I _{OL} = 6mA			0.4	V

Table 8-7. High-drive I/O Pin Characteristics⁽¹⁾

8.7.3 Phase Locked Loop (PLL) Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{OUT}	VCO Output Frequency		80		240	MHz
F _{IN}	Input Frequency		4		16	MHz
I _{PLL} Current Consumption		Active mode F _{VCO} @80 MHz		240		
	Active mode F _{VCO} @240 MHz		600		μΑ	
t _{STARTUP} Startup time, from enabling the PLL until the PLL is locked	Wide Bandwith mode disabled		15			
	until the PLL is locked	Wide Bandwith mode enabled		45		μs

Table 8-14. Phase Lock Loop Characteristics

8.7.4 120 MHz RC Oscillator (RC120M) Characteristics

Table 8-15. Internal 120 MHz RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency ⁽¹⁾		88	120	152	MHz
I _{RC120M}	Current consumption			1.85		mA
t _{STARTUP}	Startup time			3		μs

Note: 1. These values are based on simulation and characterization of other AVR microcontrollers manufactured in the same process technology. These values are not covered by test limits in production.

8.7.5 System RC Oscillator (RCSYS) Characteristics

Table 8-16. System RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency	Calibrated point Ta = 85°C	110	115.2	116	kHz
		Ta = 25°C	105	109	115	kHz
		Ta = -40°C	100	104	108	kHz

8.8 Flash Characteristics

Table 8-17 gives the device maximum operating frequency depending on the number of flash wait states and the flash read mode. The FSW bit in the FLASHCDW FSR register controls the number of wait states used when accessing the flash memory.

Flash Wait States	Maximum Operating Frequency					
1	48MHz					
0	24 MHz					

Table 8-17.Maximum Operating Frequency

8.9.4 Reset Sequence

Table 8-29. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDRR}	VDDCORE rise rate to ensure power- on-reset		2.5			V/ms
V _{DDFR}	VDDCORE fall rate to ensure power- on-reset		0.01		400	V/ms
V _{POR+}	Rising threshold voltage: voltage up to which device is kept under reset by POR on rising VDDCORE	Rising VDDCORE: V _{RESTART} -> V _{POR+}	1.4	1.55	1.65	V
V _{POR-}	Falling threshold voltage: voltage when POR resets device on falling VDDCORE	Falling VDDCORE: 1.8V -> V _{POR+}	1.2	1.3	1.4	V
V _{RESTART}	On falling VDDCORE, voltage must go down to this value before supply can rise again to ensure reset signal is released at V _{POR+}	Falling VDDCORE: 1.8V -> V _{RESTART}	-0.1		0.5	V
T _{POR}	Minimum time with VDDCORE < V _{POR-}	Falling VDDCORE: 1.8V -> 1.1V		15		μs
T _{RST}	Time for reset signal to be propagated to system			200	400	μs
T _{SSU1}	Time for Cold System Startup: Time for CPU to fetch its first instruction (RCosc not calibrated)		480		960	μs
T _{SSU2}	Time for Hot System Startup: Time for CPU to fetch its first instruction (RCosc calibrated)			420		μs

Figure 8-3. MCU Cold Start-Up RESET_N tied to VDDIN

11.3 Rev. A

11.3.1 GPIO

1. Clearing Interrupt flags can mask other interrupts

When clearing interrupt flags in a GPIO port, interrupts on other pins of that port, happening in the same clock cycle will not be registered.

Fix/Workaround

Read the PVR register of the port before and after clearing the interrupt to see if any pin change has happened while clearing the interrupt. If any change occurred in the PVR between the reads, they must be treated as an interrupt.

11.3.2 Power Manager

1. Clock Failure Detector (CFD) can be issued while turning off the CFD

While turning off the CFD, the CFD bit in the Status Register (SR) can be set. This will change the main clock source to RCSYS.

Fix/Workaround

Solution 1: Enable CFD interrupt. If CFD interrupt is issues after turning off the CFD, switch back to original main clock source.

Solution 2: Only turn off the CFD while running the main clock on RCSYS.

2. Requesting clocks in idle sleep modes will mask all other PB clocks than the requested

In idle or frozen sleep mode, all the PB clocks will be frozen if the TWIS or the AST needs to wake the CPU up.

Fix/Workaround

Disable the TWIS or the AST before entering idle or frozen sleep mode.

3. SPI

 SPI disable does not work in SLAVE mode SPI disable does not work in SLAVE mode.
 Fix/Workaround

Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).

5. PCS field in receive data register is inaccurate

The PCS field in the SPI_RDR register does not accurately indicate from which slave the received data is read. **Fix/Workaround**

None.

6. SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

7. Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

8. SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0

When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK.

Fix/Workaround

When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1 if CSRn.CPOL=1 and CSRn.NCPHA=0.

9. I/O Pins

10. Current leakage through pads PA09, PA10 and PB16

Pads PA09 (TWI), PA10 (TWI) and PB16 (USB VBUS) are not fully 5V tolerant. A leakage current can be observed when a 5V voltage is applied onto those pads inputs. Their behavior is normal at 3.3V

Fix/Workaround

None for pads PA09 and PA10. A voltage divider can be used for PB16 (VBUS) to bring the input voltage down into the 3.3V range.

11. Current leakage through pads PB13, PB17 and PB18

For applications in which UC3D is considered as a drop in replacement solution to UC3B, pads PB13, PB17 and PB18 can no longer be used as VDDCORE supply pins. Maintaining a 1.8V voltage on those inputs will however lead to a current over consumption through the pins.

Fix/Workaround

Do not connect PB13, PB17 and PB18 when using UC3D as a drop in replacement for a UC3B specific application.

12. IO drive strength mismatch with UC3B specification for pads PA11, PA12, PA18 and PA19

For applications in which UC3D is considered as a drop in replacement solution to UC3B, GPIOs PA11, PA12, PA18 and PA19 are not completely compatible in terms of drive strength. Those pads have a 8 mA current capability on UC3B, while this is limited to 4 mA in UC3D.

Fix/Workaround

None.

13. WDT

14. Clearing the Watchdog Timer (WDT) counter in second half of timeout period will issue a Watchdog reset

If the WDT counter is cleared in the second half of the timeout period, the WDT will immediately issue a Watchdog reset.

Fix/Workaround

Use twice as long timeout period as needed and clear the WDT counter within the first half of the timeout period. If the WDT counter is cleared after the first half of the timeout period, you will get a Watchdog reset immediately. If the WDT counter is not cleared at all, the time before the reset will be twice as long as needed.

12. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. A - 11/2009

1. Initial revision.

12.2 Rev. B - 04/2011

1. Minor.

12.3 Rev. C - 07/2011

1. Final revision.

12.4 Rev. D - 11/2011

- 1. Adding errata for silicon Revision C .
- 2. Fixed PLLOPT field description in SCIF chapter

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support avr32@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNTIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2011 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, AVR[®] and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.