

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 11x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk20dn32vlf5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK20 and MK20.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K20
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory

Table continues on the next page ...

3.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins		7	pF

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

Terminology and guidelines

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V

Table continues on the next page...

General

5.2.2 LVD and POR operating requirements

 Table 2.
 V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	Level 3 falling (LVWV=10)	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	—	±80	_	mV	
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	Level 1 falling (LVWV=00)	1.74	1.80	1.86	V	
V _{LVW2L}	Level 2 falling (LVWV=01)	1.84	1.90	1.96	V	
V _{LVW3L}	Level 3 falling (LVWV=10)	1.94	2.00	2.06	V	
V _{LVW4L}	Level 4 falling (LVWV=11)	2.04	2.10	2.16	V	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	—	±60	_	mV	
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	

1. Rising thresholds are falling threshold + hysteresis voltage

Table 3. VBAT power operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR_VBAT}	Falling VBAT supply POR detect voltage	0.8	1.1	1.5	V	

5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = - 9 mA	$V_{DD} - 0.5$	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3 \text{ mA}$	$V_{DD} - 0.5$	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2 mA	$V_{DD} - 0.5$	—	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{ mA}$	$V_{DD} - 0.5$	_	V	
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9 mA	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3 \text{ mA}$	_	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2 mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	—	100	mA	
I _{IN}	Input leakage current (per pin)				
	@ full temperature range	—	1.0	μA	1
	• @ 25 °C	—	0.1	μA	
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
I _{OZ}	Total Hi-Z (off-state) leakage current (all input pins)	_	4	μA	
R _{PU}	Internal pullup resistors	22	50	kΩ	2
R _{PD}	Internal pulldown resistors	22	50	kΩ	3

1. Tested by ganged leakage method

2. Measured at Vinput = V_{SS}

3. Measured at Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	867	_	μA	6
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	1.1	_	mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V	_	509	_	μA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ -40 to 25°C	—	310	426	μA	
	• @ 70°C	—	384	458	μA	
	• @ 105°C	—	629	1100	μA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	● @ -40 to 25°C	—	3.5	22.6	μA	
	• @ 70°C	—	20.7	52.9	μA	
	• @ 105°C	—	85	220	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					
	● @ -40 to 25°C	—	2.1	3.7	μA	
	• @ 70°C	—	7.7	43.1	μA	
	• @ 105°C	—	32.2	68	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	● @ -40 to 25°C	_	1.5	2.9	μA	
	• @ 70°C	_	4.8	22.5	μA	
	• @ 105°C	—	20	37.8	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	• @ -40 to 25°C	_	1.4	2.8	μA	
	• @ 70°C	_	4.1	19.2	μA	
	• @ 105°C	—	17.3	32.4	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	_	0.678	1.3	μA	
	• @ 70°C	_	2.8	13.6	μA	
	• @ 105°C	_	13.6	24.5	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POB detect circuit enabled					
	• @ -40 to 25°C	_	0.367	1.0	μA	
	• @ 70°C	_	2.4	13.3	μA	
	• @ 105°C	_	13.2	24.1	μA	

 Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

Figure 2. Run mode supply current vs. core frequency

emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, $f_{OSC} = 12 \text{ MHz}$ (crystal), $f_{SYS} = 48 \text{ MHz}$, $f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to http://www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	_	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9			
f _{SYS}	System and core clock		50	MHz	
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{BUS}	Bus clock		50	MHz	
f _{FLASH}	Flash clock		25	MHz	
f _{LPTMR}	LPTMR clock		25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock		4	MHz	

Table continues on the next page ...

6.1.1 JTAG electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	5.5	V
J1	TCLK frequency of operation			MHz
	• JTAG	_	10	
	• CJTAG	_	5	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	• JTAG	100	_	ns
	• CJTAG	200	_	ns
				ns
J4	TCLK rise and fall times	—	1	ns
J5	TMS input data setup time to TCLK rise	53	_	ns
	• CJTAG	112	_	
J6	TDI input data setup time to TCLK rise	8	_	ns
J7	TMS input data hold time after TCLK rise	3.4	_	ns
	• CJTAG	3.4	_	
J8	TDI input data hold time after TCLK rise	3.4	_	ns
J9	TCLK low to TMS data valid	_	48	ns
	• CJTAG		85	
J10	TCLK low to TDO data valid	-	48	ns
J11	Output data hold/invalid time after clock edge1	—	3	ns

Table 12. JTAG voltage range electricals

1. They are common for JTAG and CJTAG. Input transition = 1 ns and Output load = 50pf

Figure 4. Test clock input timing

Figure 6. Test Access Port timing

5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	-
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

6.3.2.2 Oscillator frequency specifications Table 15. Oscillator frequency specifications

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

6.3.3 32 kHz Oscillator Electrical Characteristics

This section describes the module electrical characteristics.

6.3.3.1 32 kHz oscillator DC electrical specifications Table 16. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	_	3.6	V
R _F	Internal feedback resistor	_	100	_	MΩ

Table continues on the next page...

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion rate	16 bit modes No ADC hardware averaging	37.037	_	461.467	Ksps	5
		Continuous conversions enabled, subsequent conversion time					

Table 23. 16-bit ADC operating conditions (continued)

 Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

- 2. DC potential difference.
- 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R_{AS}/ C_{AS} time constant should be kept to <1ns.
- 4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/ files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1

Figure 10. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215		1.7	mA	3

Table continues on the next page ...

Peripheral operating requirements and behaviors

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 12. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org.

6.8.2 USB DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 μ A)	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	_	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μΑ
I _{DM_SINK}	USB_DM sink current	50	100	150	μΑ
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

Table 30. USB DCD electrical specifications

6.8.3 USB VREG electrical specifications

Table 31. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	—	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	120	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	1.54	μA	
I _{DDoff}	 Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25C Across operating voltage and temperature 	_	650 —	4	nA μA	
I _{LOADrun}	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	• Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	—	3.6	V	2

Table continues on the next page ...

Table 31. USB VREG electrical specifications (continued)

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	_	100	mΩ	
I _{LIM}	Short circuit current		290		mA	

1. Typical values assume VREGIN = 5.0 V, Temp = 25 $^{\circ}$ C unless otherwise stated.

2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

6.8.4 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}		ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	8	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	0	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	14		ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 32. Master mode DSPI timing (limited voltage range)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

6.8.8 I2S/SAI Switching Specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

6.8.8.1 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	_	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	25	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Table 36. I2S/SAI master mode timing

Figure 19. I2S/SAI timing — master modes

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	—	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	_	29	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	21	ns

Table 37. I2S/SAI slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 21. I2S/SAI timing — master modes

Table 39. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit		
	Operating voltage	1.71	3.6	V		
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	—	ns		
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period		
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns		
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	3	_	ns		
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	63	ns		
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns		
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns		
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns		
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	72	ns		

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

8 Pinout

8.1 K20 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

48	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
LQFP -QFN											
1	VDD	VDD	VDD								
2	VSS	VSS	VSS								
3	USB0_DP	USB0_DP	USB0_DP								
4	USB0_DM	USB0_DM	USB0_DM								
5	VOUT33	VOUT33	VOUT33								
6	VREGIN	VREGIN	VREGIN								
7	ADC0_DP0	ADC0_DP0	ADC0_DP0								
8	ADC0_DM0	ADC0_DM0	ADC0_DM0								
9	VDDA	VDDA	VDDA								
10	VREFH	VREFH	VREFH								
11	VREFL	VREFL	VREFL								
12	VSSA	VSSA	VSSA								
13	VREF_OUT/ CMP1_IN5/ CMP0_IN5	VREF_OUT/ CMP1_IN5/ CMP0_IN5	VREF_OUT/ CMP1_IN5/ CMP0_IN5								
14	XTAL32	XTAL32	XTAL32								
15	EXTAL32	EXTAL32	EXTAL32								
16	VBAT	VBAT	VBAT								
17	PTAO	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UART0_CTS_ b/ UART0_COL_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
18	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI
19	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
20	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UARTO_RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
21	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
22	VDD	VDD	VDD								
23	VSS	VSS	VSS								