
Parallax Inc. - SX48BD Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size 8-Bit

Speed 50MHz

Connectivity -

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 36

Program Memory Size 6KB (4K x 12)

Program Memory Type FLASH

EEPROM Size -

RAM Size 262 x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters -

Oscillator Type Internal

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 48-LQFP

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/sx48bd

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/sx48bd-4425570
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 2 of 61 Rev 1.5 11/20/2006

Table of Contents

1.0 Product Overview.. 1
1.1. Introduction..1
1.2. Key Features ...3
1.3. Architecture ...3
1.4. Programming Benefits in Assembly and High-Level Languages......4

1.4.1. Parallax SX/B Basic Compiler..4
1.5. Programming and Debugging Support...4
1.6. Applications ...4
1.7. Support..4
1.8. Part Numbering ...5
2.0 Connection Diagrams ... 6
2.1. Pin Assignments..6
2.2. Typical Connection Diagram..6
2.3. Pin Descriptions...7
3.0 Port Descriptions .. 8
3.1. Reading and Writing the Ports ...9
3.2. Read-Modify-Write Considerations ..11
3.3. Port Configuration..11

3.3.1. MODE Register..11
3.3.2. Port Configuration Registers..13
3.3.3. Port Configuration Upon Power-Up..13

4.0 Special-Function Registers.. 14
4.1. PC Register (02h)..14
4.2. STATUS Register (03h)...14
4.3. OPTION Register ..15
5.0 Device Configuration and ID Registers......................... 16
5.1. FUSE Word (Read/program via Programming Command)16
5.2. FUSEX Word (Read/program via Programming Command)17
5.3. DEVICE ID Word ...17
5.4. User Code ID...17
6.0 Memory Organization ... 18
6.1. Program Memory...18

6.1.1. Program Counter ...18
6.1.2. Subroutine Stack..18

6.2. Data Memory...18
6.2.1. Addressing Modes/FSR...18
6.2.2. Register Access Examples ..20

7.0 Power Down Mode .. 21
7.1. Multi-Input Wakeup..21
7.2. Port B MIWU/Interrupt Configuration ...23
8.0 Interrupt Support... 24
9.0 Oscillator Circuits ... 26
9.1. XT, LP or HS Modes..26
9.2. 75 MHz Operation ...28
9.3. External RC Mode ...29
9.4. Internal RC Mode ..29
10.0 Real Time Clock/Counter (RTCC)/Watchdog Timer 30
10.1. RTCC ..30
10.2. Watchdog Timer ..30
10.3. The Prescaler ..30

11.0 Multi-Function Timers ...32
11.1. Timer Registers... 33
11.2. Timer Operating Modes... 33

11.2.1. PWM Mode ... 33
11.2.2. Software Timer Mode.. 33
11.2.3. External Event Mode... 33
11.2.4. Capture/Compare Mode.. 33

11.3. Timer Pin Assignments ... 34
11.4. Timer Control Registers .. 34
12.0 Comparator ..38
13.0 Reset...39
14.0 Brown-Out Detector ..40
15.0 Register States upon Different Reset Conditions41
16.0 Instruction Set ...42
16.1. Instruction Set Features .. 42
16.2. Instruction Execution ... 42
16.3. Addressing Modes .. 43
16.4. The Bank Instruction ... 43
16.5. Bit Manipulation... 43
16.6. Input/Output Operation.. 43

16.6.1. Read-Modify-Write Considerations ... 43
16.7. Increment/Decrement.. 44
16.8. Loop Counting and Data Pointing Testing 44
16.9. Branch and Loop Call Instructions... 44

16.9.1. Jump Operation... 44
16.9.2. Page Jump Operation ... 44
16.9.3. Call Operation ... 44
16.9.4. Page Call Operation.. 44

16.10. Return Instructions .. 44
16.11. Subroutine Operation .. 45

16.11.1. Push Operation ... 45
16.11.2. Pop Operation ... 45

16.12. Comparison and Conditional Branch Instructions.......................... 45
16.13. Logical Instruction ... 45
16.14. Shift and Rotate Instructions ... 45
16.15. Complement and SWAP ... 45
16.16. Key to Abbreviations and Symbols.. 46
17.0 Native Instruction Set Summary Tables........................47
17.1. Equivalent Assembler Mnemonics .. 51
18.0 Electrical Characteristics..52
18.1. Absolute Maximum Ratings... 52
18.2. DC Characteristics .. 53
18.3. AC Characteristics .. 54
18.4. Comparator DC and AC Specifications ... 54
18.5. Typical Performance Characteristics (25 °C)................................. 55
19.0 Package Dimensions...58
20.0 Manufacturing Information ...59
20.1. Reflow Peak Temperature... 59
20.2. MSL3 Compliance... 59
20.3. Green/RoHS Compliance.. 59
20.4. Stress Testing Data Summary... 59

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 4 of 61 Rev 1.5 11/20/2006

1.4. Programming Benefits in Assembly
and High-Level Languages
The SX’s high speed enables a “software system on a
chip” approach. Programming in assembly language
provides a particularly high-level of access to the interrupt
service routine, the stack and registers to take the highest
advantage of the SX’s deterministic timing. The primary
technical resources for programming the SX in assembly
language include the following:

• The SX48BD datasheet
• SX-Key Development System User’s Manual by

Parallax, Inc.
• Programming the SX Microcontroller – A Complete

Guide by Guenther Daubach

Customers with a high-level programming language
background may prefer the use of a C or BASIC
compiler.

1.4.1. Parallax SX/B Basic Compiler
Parallax's SX/B is a free BASIC language compiler for
the SX microcontroller (SX20, SX28, and SX48). The
compiler speeds the programming of the SX
microcontrollers by providing a simple, yet robust high-
level language familiar to Parallax customers. SX/B
includes the following features and commands:

• ASM directive to support in-line assembly language
• Program structure commands including BRANCH,

DO..LOOP, GOTO, GOSUB, IF..THEN..ELSE
• Numeric formatters
• WORD variable support
• Frequency generation with FREQOUT
• Synchronous serial communication for I2C, 1-Wire,

SPI
• Asynchronous serial communication with SERIN

and SEROUT
• Table data storage and retrieval with LOOKUP,

LOOKDOWN
• I/O pin control with HIGH, LOW, TOGGLE,

REVERSE
• Timing and delay with PAUSE, SLEEP
• PULSIN and PULSOUT
• Resistor/capacitor A/D with RCTIME
• RANDOM for pseudo-random number generation
• Non-volatile EEPROM memory access with DATA,

READ
• Low-current SLEEP command

The complete SX/B command reference and examples are
installed with the SX-Key IDE.

1.5. Programming and Debugging
Support
The SX devices are supported by Parallax’s programming
and debugging tools. The Parallax SX-Blitz is a
programming tool. The SX-Key supports programming
and source-level debugging. On-chip in-system debug
capabilities allow the Parallax tool to be an all-in-one
integrated development environment with editor, macro
assembler, debugger, and programmer. Unobtrusive in-
system programming is provided through the OSC pins.
Visit www.parallax.com for the SX-Key development
tools, the IDE and support forum information.
The in-system programming specification is available to
other 3rd party tool vendors upon request.

1.6. Applications
The SX may be used as a solution for process controllers,
electronic appliances/tools, security/monitoring systems,
sound and signal generation, GPS interface, robotic
control, motor control, sensor interfacing and personal
communication devices. Applications such as interactive
toys, magnetic-stripe readers, infrared decoders, and other
timing-sensitive projects are also common with the SX.
Examples of customer applications may be seen on the
Parallax web site.

1.7. Support
Parallax and our distributors provide support for the SX
microcontroller. Support is available free of charge via
phone (888) 512-1024 in the U.S. Also be sure to
participate in the SX discussion forum at
http://forums.parallax.com/forums/. The on-line SX
support community is actively involved in customer
support 24 hours a day.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 7 of 61 Rev 1.5 11/20/2006

2.3. Pin Descriptions

Table 2-1: Pin Descriptions

Name Pin Type Input Levels Description
RA0 I/O TTL/CMOS Bidirectional I/O Pin; symmetrical source / sink capability
RA1 I/O TTL/CMOS Bidirectional I/O Pin; symmetrical source / sink capability
RA2 I/O TTL/CMOS Bidirectional I/O Pin; symmetrical source / sink capability
RA3 I/O TTL/CMOS Bidirectional I/O Pin; symmetrical source / sink capability
RB0 I/O TTL/CMOS/ST Bidirectional I/O Pin; comparator output; MIWU/Interrupt input
RB1 I/O TTL/CMOS/ST Bidirectional I/O Pin; comparator negative input; MIWU/Interrupt input
RB2 I/O TTL/CMOS/ST Bidirectional I/O Pin; comparator positive input; MIWU/Interrupt input
RB3 I/O TTL/CMOS/ST Bidirectional I/O Pin; MIWU/Interrupt input,
RB4 I/O TTL/CMOS/ST Bidirectional I/O Pin; MIWU/Interrupt input, Timer T1 Capture Input 1
RB5 I/O TTL/CMOS/ST Bidirectional I/O Pin; MIWU/Interrupt input, Timer T1 Capture Input 2
RB6 I/O TTL/CMOS/ST Bidirectional I/O Pin; MIWU/Interrupt input, Timer T1 PWM/Compare Output
RB7 I/O TTL/CMOS/ST Bidirectional I/O Pin; MIWU/Interrupt input, Timer T1 External Event Counter Input
RC0 I/O TTL/CMOS/ST Bidirectional I/O Pin, Timer T2 Capture Input 1
RC1 I/O TTL/CMOS/ST Bidirectional I/O Pin, Timer T2 Capture Input 2
RC2 I/O TTL/CMOS/ST Bidirectional I/O Pin, Timer T2 PWM/compare Output
RC3 I/O TTL/CMOS/ST Bidirectional I/O Pin; Timer T2 External Event Counter Input
RC4 I/O TTL/CMOS/ST Bidirectional I/O Pin
RC5 I/O TTL/CMOS/ST Bidirectional I/O Pin
RC6 I/O TTL/CMOS/ST Bidirectional I/O Pin
RC7 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD0 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD1 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD2 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD3 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD4 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD5 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD6 I/O TTL/CMOS/ST Bidirectional I/O Pin
RD7 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE0 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE1 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE2 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE3 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE4 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE5 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE6 I/O TTL/CMOS/ST Bidirectional I/O Pin
RE7 I/O TTL/CMOS/ST Bidirectional I/O Pin
RTCC I ST Input to Real-time Clock/Counter

MCLR I ST Master Clear reset input – active low. When not controlled externally, this pin must
be pulled high with a 10 kΩ resistor.

OSC1/In/Vpp I ST Crystal oscillator input – External Clock source input
OSC2/Out O CMOS Crystal oscillator output; in R/C mode, internally pulled to Vdd through weak pull-up
Vdd P - Positive supply pins (a total of 4, one on each side of the device)

Vss P - Ground pins (a total of 4, one on each side of the device)
Note: I = input, O = output, I/O = Input/Output, P = Power, TTL = TTL input, CMOS = CMOS input, ST = Schmitt Trigger input,
MIWU = Multi-Input Wakeup input.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 10 of 61 Rev 1.5 11/20/2006

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 18 of 61 Rev 1.5 11/20/2006

6.0 MEMORY ORGANIZATION
6.1. Program Memory
The program memory is organized as 4K, 12-bit wide
words. The program memory words are addressed
sequentially by a binary program counter. Upon reset, the
program counter is initialized with 0FFFh. If there is no
branch operation, it will increment to the maximum value
possible for the device and roll over and begin again.
Internally, the program memory has a semi-transparent
page structure. A page is composed of 512 contiguous
program memory words. The lower nine bits of the
program counter are zeros at the first address of a page
and ones at the last address of a page. This page structure
has no effect on the program counter. The program
counter will freely increment through the page
boundaries.

6.1.1. Program Counter
The program counter contains the 12-bit address of the
instruction to be executed. The lower eight bits of the
program counter are contained in the PC register (02h),
and the three upper bits are specified by the STATUS
register (PA0, PA1, PA2). Bit 8 is not accessible.
Changing the STATUS bits is necessary to cause jumps
and subroutine calls across program memory page
boundaries. Prior to the execution of a branch operation,
the user program must initialize the upper bits of the
STATUS register to cause a branch to the desired page.
An alternative method is to use the PAGE instruction,
which automatically causes subsequent branch
instructions to vector to the desired page, based on the
value specified in the operand field.

6.1.2. Subroutine Stack
The subroutine stack consists of eight 12-bit save
registers. A physical transfer of register contents from the
program counter to the stack or vice versa, and within the
stack, occurs on all operations affecting the stack,
primarily calls and returns. The stack is physically and
logically separate from data RAM. The program cannot
read or write the stack.

6.2. Data Memory
The data memory is a RAM-based register set consisting
of 262 general-purpose registers and nine special-purpose
registers. All of these registers are eight bits wide. The
data memory is organized into 16 banks, designated Bank
0 through Bank F, each containing 16 registers, plus an
additional bank of 16 “global” registers. Because the
registers are organized into banks or “files,” these
memory-mapped registers are called “file registers.”

6.2.1. Addressing Modes/FSR
Each SX instruction that accesses a data memory register
contains a 5-bit field in the instruction opcode that
specifies the register to be accessed. The abbreviation “fr”

(file register) represents the 5-bit register address
designator. For example, the instruction description “mov
fr,W” means that a 5-bit value or label must be substituted
for “fr” in the instruction, such as “mov $0F,W” (to move
the contents of the working register W into file reg ister
0Fh).
There are three different addressing modes, called the
indirect, direct, and semi-direct modes. The addressing
mode used for register access depends on the 5-bit “fr”
value used in the instruction:

• indirect mode: fr = 00h
• direct mode (fr bit 4 = 0): fr = 01h through 0Fh
• semi-direct mode (fr bit 4 = 1): fr = 10h through 1Fh

Figure 6-1 illustrates the data memory addressing scheme.
For indirect addressing (fr=00), the File Select Register
(FSR) specifies the register to be accessed. FSR is an 8bit,
memory-mapped register (at address 04h) which serves as
an 8-bit pointer into data memory for indirect addressing.
In this mode, the global register bank and Bank 1 through
Bank F are accessible. Bank 0 is not accessible.
For direct addressing (fr=01-0F), the value of “fr” itself
specifies the register to be accessed, and the FSR register
is ignored. For this addressing mode, only the global
register bank is accessible. To gain access to any other
bank, you must use either indirect or semi-direct
addressing.
For semi-direct addressing (fr=10-1F), the bank number is
selected by the four high-order bits of FSR, and the
register within that bank is selected by the four low-order
bits of “fr.” In other words, the register address is
obtained by combining the four high-order bits of FSR
with the four low-order bits of “fr”. In this addressing
mode, the low-order bits of FSR are ignored. Bank 0
through Bank F are accessible, but the global register
bank is not accessible.
Figure 6-1 shows how register addressing works in the
indirect, direct, and semi-direct modes. The 16 global
registers are always accessible by direct addressing,
regardless of what is contained in the FSR register. The
global registers are also accessible with indirect
addressing, but they are not accessible with semi-direct
addressing. Of the 16 global registers, nine are special-
purpose registers (RTCC, PC, STATUS, and so on), and
six are general-purpose registers. Location 00 is used for
indirect addressing (INDF). All of the registers in Bank 0
though Bank F are general-purpose registers. To change
the contents of the FSR register, the program can either
write an eight-bit value to the FSR register or use the
“bank” instruction. The “bank” instruction writes bits 4,
5, and 6 in the FSR register. Bit 7 of FSR is used to select
the upper or lower “bank” of memory banks. Thus, to
change from one upper bank to another, only a single
“bank” instruction is required. To change from one upper
bank to a lower bank, the “bank” instruction must be
followed by “setb FSR.7”.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 20 of 61 Rev 1.5 11/20/2006

6.2.2. Register Access Examples
Here is an example of an instruction that uses direct
addressing:

inc $0F ;increment file register 0Fh

This instruction increments the contents of file register
0Fh in the global register bank. It does not matter what is
contained in the FSR register.
To gain access to any register outside of the global
register bank, it is necessary to use semi-direct or indirect
addressing. In that case, you need to make sure that the
FSR register contains the correct value for accessing the
desired bank. Here are 2 examples that use semi-direct
addressing:

mov W,#$F0 ;load W with F0h
mov FSR,W ;load W into FSR (Bank F)
inc $1F ;increment file register FFh

Or, to access bank 0,

mov W,#$00 ;load W with 00h
mov FSR,W ;load W into FSR (Bank 0)
inc $1F ;increment file register 0Fh

In these examples, “FSR” is a label that represents the
value 04h, which is the address of the FSR register in the
global register bank. Note that the FSR register is itself a
memory-mapped global register, which is always
accessible using direct addressing.
The “banked” data memory is divided into upper and
lower blocks, each consisting of 8 banks of data memory.
The range for the lower block is from $00 to $7F, while
the range for the upper block is from $80 to $FF. Bit 7 of
the FSR is used to select the upper or lower block. The
BANK instruction is used to select the bank within that
block.
To use the “bank” instruction, in the syntax of the
assembly language, you specify an 8-bit value that
corresponds to the desired bank number. The assembler
encodes bits 4, 5, and 6 of the specified value into the
instruction opcode and ignores bit 7 and the low-order
bits. For example, if another lower bank was being used
to increment file register 2Fh, you could use the following
instructions:

bank $20 ;select Bank 2 in FSR
inc $1F ;increment register 2F

Note that the “bank” instruction only modifies bits 4, 5,
and 6 the FSR register. Therefore, to change from a lower
block to an upper block bank, the “bank” instruction will
not work. Instead, you need to write the whole FSR
register using code such as the following:

mov W,#$80 ;load W with 80h
mov FSR,W ;select Bank 8 in FSR

Another approach is to set bit 7 of the FSR register
individually after the “bank” instruction to address an
upper block bank.

bank $80 ;set bits in 4, 5, and 6 FSR
setb FSR.7 ;select Bank 8 in FSR

To change from an upper block to a lower block bank, bit
7 of FSR must be cleared.
With indirect addressing, you specify the full 8-bit
address of the register using FSR as a pointer. This
addressing mode provides the flexibility to access
different registers or multiple registers using the same
instruction in the program.
You invoke indirect addressing by using fr=00h. For
example:

mov W,#$F5 ;load W with F5h
mov $04,W ;move value F5h into FSR
mov W,#$01 ;load W with 01h
mov $00,W ;move value 01h into register F5h

In the second “mov” instruction, FSR is loaded with the
desired 8-bit register address. In the fourth “mov”
instruction, fr = 00, so the device looks at FSR and moves
the result to the register addressed by FSR, which is the
register at F5h (Bank F, register number 5).
A practical example that uses indirect addressing is the
following program, which clears the upper eight registers
in the global register bank and the upper 8 registers in all
banks from Bank 1 through Bank F:

clr FSR ;clear FSR to 00h (at 04h)
:loop setb FSR.3 ;set FSR bit 3
clr $00 ;clear register pointed to by FSR
incsz FSR ;increment FSR and test
 ;skip jmp if 00h
jmp :loop ;jump back and clear next reg.

This program initially clears FSR to 00h. At the beginning
of the loop, it sets bit 3 of FSR so that it starts at 08h. The
“clr $00” instruction clears the register pointed to by FSR
(initially, the file register at 08h in the global register
bank). Then the program increments FSR and clears
consecutive file registers, always in the upper half of each
bank: (08h, 09h, 0Ah... 0Fh, 18h, 19h... FFh). The loop
ends when FSR wraps back to 00h.
For addresses from 01h through 0Fh, the global register
bank is accessed. For higher addresses, Bank 1 through
Bank F are accessed. This program does not affect Bank
0, which is not accessible in the indirect addressing mode.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 21 of 61 Rev 1.5 11/20/2006

7.0 POWER DOWN MODE
The power down mode is entered by executing the
SLEEP instruction.
In power down mode, only the Watchdog Timer (WDT)
and SLEEPCLOCK are active, if enabled. The operation
clock can be enabled or disabled during this mode, by
using the SLEEPCLK bit of the FUSEX register. If the
Watchdog Timer is enabled, upon execution of the
SLEEP instruction, the Watchdog Timer is cleared, the
TO (time out) bit is set in the STATUS register, and the
PD (power down) bit is cleared in the STATUS register.
There are three different ways to exit from the power
down mode:

1. A timer overflow signal from the Watchdog
Timer (WDT).

2. A valid transition on any of the Multi-Input
Wakeup pins (Port B pins).

3. An external reset input on the MCLR pin.
The states of registers (upon wakeup) are described in
Section 15.0.
To achieve the lowest possible power consumption, the
Watchdog Timer should be disabled (the sleep clock
should be disabled) and the device should exit the power
down mode through the (Multi-Input Wakeup) MIWU
pins or an external reset. In addition, the SLEEPCLOCK
should be disabled during the power down mode.
Bit 11 of the FUSEX can be used to enable (clear bit to 0)
the clock operation during the power down mode (to
allow fast clock start-up upon exiting the power down
mode).

7.1. Multi-Input Wakeup
Multi-Input Wakeup is one way of causing the device to
exit the power down mode. Port B is used to support this
feature. The WKEN_B register (Wakeup Enable Register)
allows any Port B pin or combination of pins to cause the
wakeup. Clearing a bit in the WKEN_B register enables
the wakeup on the corresponding Port B pin. If multi-
input wakeup is selected to cause a wakeup, the trigger
condition on the selected pin can be either rising edge
(low to high) or falling edge (high to low). The WKED_B
register (Wakeup Edge Select) selects the desired
transition edge. Setting a bit in the WKED_B register
selects the falling edge on the corresponding Port B.
Resetting the bit selects the rising edge. The WKEN_B
and WKED_B registers are set to FFh upon reset.
Once a valid transition occurs on the selected pin, the
WKPND_B register (Wakeup Pending Register) latches
the transition in the corresponding bit position. A logic ‘1’
indicates the occurrence of the selected trigger edge on
the corresponding Port B pin. The WKPND_B comes up
with undefined value upon reset. The user program must
clear the WKPND_B register prior to enabling the
interrupt.
Upon exiting the power down mode, the Multi-Input
Wakeup logic causes program counter to branch to the
maximum program memory address (same as reset).
Figure 7-1 shows the Multi-Input Wakeup block diagram.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 23 of 61 Rev 1.5 11/20/2006

7.2. Port B MIWU/Interrupt Configuration
The WKPND_B register comes up with an unknown
value upon reset. The user program must clear the register
prior to enabling the wake-up condition or interrupts. The
proper initialization sequence is:
Select the desired edge (through WKED_B register).
Clear the WKPND_B register.
Enable the Wakeup condition (through WKEN_B
register).
Below is an example of how to read the WKPND_B
register to determine which Port B pin caused the wakeup
or interrupt, and to clear the WKPND_B register:

mov W, #$19 ;prepare to exchange WKPND_B
 ;with W (can also use $09)
 mov M,W
 clr W
mov !RB,W ;W contains WKPND_B
 ;contents of W exchanged
 ;with contents of WKPND_B

The final “mov” instruction in this example performs an
exchange of data between the working register (W) and
the WKPND_B register. This exchange occurs only with
accesses to the WKPND_B and CMP_B registers.
Otherwise, the “mov” instruction does not perform an
exchange, but only moves data from the source to the
destination. Here is an example of a program segment
that configures the RB0, RB1, and RB2 pins to operate as

Multi-Input Wakeup/Interrupt pins, sensitive to falling
edges:

mov W,#$1F ;prepare to write port data
mov M,W ;direction registers
mov W,#$07 ;load W with the value 07h
mov RB,W ;configure RB0-RB2 to be inputs

mov W,#$1A ;prepare to write WKED_B
mov M,W ;(edge) register
mov W,#$07 ;load W with the value 07h
mov RB,W ;configure RB0-RB2 to sense
 ;falling edges

mov W,#$19 ;prepare to access WKPND_B
mov M,W ;(pending) register
mov W,#$00 ;clear W
mov !RB,W ;clear all wakeup pending flags

mov W,#$1B ;prepare to write WKEN_B (enable)
mov M,W ;register
mov W,#$F8 ;load W with the value F8h
mov !RB,W ;enable RB0-RB2 to operate as
 ;wakeup inputs

To prevent false interrupts, the enabling step (clearing bits
in WKEN_B) should be done as the last step in a
sequence of Port B configuration steps.
After this program segment is executed, the device can
receive interrupts on the RB0, RB1, and RB2 pins. If the
device is put into the power down mode (by executing a
SLEEP instruction), the device can then receive wakeup
signals on those same pins.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 24 of 61 Rev 1.5 11/20/2006

8.0 INTERRUPT SUPPORT
The device supports both internal and external maskable
interrupts. The internal interrupt is generated as a result of
the RTCC rolling over from FFh to 00h. This interrupt
source has an associated enable bit located in the
OPTION register and pending flag bit in the Timer T1
Control B register. In addition, timers T1 and T2 each
have three interrupt sources associated with counter
overflow, compare match, and input capture.
Port B provides the source for eight external software
selectable, edge sensitive interrupts, when the device is
not in the power down mode. These interrupt sources
share logic with the Multi-Input Wakeup circuitry. The
WKEN_B register allows interrupt from Port B to be
individually enabled or disabled.

Clearing a bit in the WKEN_B register enables the
interrupt on the corresponding Port B pin. The WKED_B
selects the transition edge to be either positive or
negative. The WKEN_B and WKED_B registers are set
to FFh upon reset. Setting a bit in the WKED_B register
selects the falling edge while clearing the bit selects the
rising edge on the corresponding Port B pin.
The WKPND_B register serves as the external interrupt
pending register.
The WKPND_B register comes up with a random value
upon reset. The user program must clear the WKPND_B
register prior to enabling the interrupt.

Figure 8-1: Interrupt Structure

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 30 of 61 Rev 1.5 11/20/2006

10.0 REAL TIME CLOCK/COUNTER (RTCC)/WATCHDOG TIMER
The device contains an 8-bit Real Time Clock/Counter
(RTCC) and an 8-bit Watchdog Timer (WDT). An 8-bit
programmable prescaler extends the RTCC to 16 bits. If
the prescaler is not used for the RTCC, it can serve as a
postscaler for the Watchdog Timer. Figure 10-1 shows the
RTCC and WDT block diagram.

10.1. RTCC
RTCC is an 8-bit real-time timer that is incremented once
by the internal instruction cycle clock or from a transition
on the RTCC pin. The on-board prescaler can be used to
extend the RTCC counter to 16 bits.
To select the internal clock source, bit 5 of the OPTION
register should be cleared. In this mode, RTCC is
incremented at each instruction cycle unless the prescaler
is selected to increment the counter.
To select the external clock source, bit 5 of the OPTION
register must be set. In this mode, the RTCC pin is
sampled on each rising edge of the OSC1 pin (the signal
frequency at the RTCC pin must be less half the
frequency on OSC1). By using bit 4 of the OPTION
register, the transition can be programmed to be either a
falling edge or rising edge. Setting the control bit selects
the falling edge to increment the counter. Clearing the bit
selects the rising edge.
The RTCC generates an interrupt (if enabled) as a result
of an RTCC rollover from FFh to 00h. Bit 7 of the Timer
T1 Control B register is an interrupt pending flag
(RTCCOV) associated with this event. The program
should read this flag to determine any rollover
occurrence. Writing to the RTCC also clears the prescaler
if it is assigned to the RTCC (bit 3 at OPTION register is
cleared). Using the “TEST fr” with RTCC (with fr being
the RTCC and RTCC clock internally or externally) will
not allow the RTCC to increment. The workaround is to
use the “MOV W, RTCC” instruction instead.

10.2. Watchdog Timer
The watchdog logic consists of a Watchdog Timer which
shares the same 8-bit programmable prescaler with the
RTCC. The prescaler actually serves as a postscaler if
used in conjunction with the WDT, in contrast to its use
as a prescaler with the RTCC. The WDT is clocked by it’s
own internal RC oscillator.
The Watchdog oscillator has a nominal operating
frequency of 16 kHz, or a period of 62.5 microseconds.
At this rate, the 8-bit counter counts from 00h to FFh in
16 milliseconds. In the default configuration (prescaler
assigned to WDT, with divide rate set to 1:128), the
application program needs to execute a “CLR !WDT”
instruction at least once every 2 seconds to prevent a
Watchdog reset (if the WDTE bit in the FUSE register is
set to 1).

10.3. The Prescaler
The 8-bit prescaler may be assigned to either the RTCC or
the WDT through the PSA bit (bit 3 of the OPTION
register). Setting the PSA bit assigns the prescaler to the
WDT. If assigned to the WDT, the WDT clocks the
prescaler and the prescaler divide rate is selected by the
PS0, PS1, and PS2 bits located in the OPTION register.
Clearing the PSA bit assigns the prescaler to the RTCC.
Once assigned to the RTCC, the prescaler clocks the
RTCC and the divide rate is selected by the PS0, PS1, and
PS2 bits in the OPTION register. The prescaler is not
mapped into the data memory, so run-time access is not
possible.
The prescaler cannot be assigned to both the RTCC and
WDT simultaneously.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 34 of 61 Rev 1.5 11/20/2006

count upward after a match occurs (unlike the PWM
mode, which resets the counter to zero when a match
occurs).
In the Capture/Compare mode, the timer is clocked by the
on-chip system clock divided by a value defined by a 3-
bit divide-by factor. The divide-by factor can be set to any
power-of-2 from 1 to 128. The two input capture pins are
designated Capture 1 and Capture 2. They can be
configured to sense either rising or falling edges. The
Capture 1 pin captures the counter value in a dedicated
16-bit capture register, a read-only register. The Capture 2
pin captures the counter value in the R2 register. The
occurrence of a capture event also generates an interrupt
(if enabled) and sets an associated interrupt pending flag.
Overflow of the counter from FFFFh to 0000h also
generates an interrupt (if enabled) and sets an associated
interrupt pending flag. Because the counter is free-
running, an overflow can occur at any time. In cases
where the time between successive capture events might
exceed 65,536 counts of the timer, the software should
keep track of the number of overflows between successive
events in order to determine the true amount of time
between such events.

11.3. Timer Pin Assignments
The following table lists the I/O port pins associated with
the Timer T1 and Timer T2 I/O functions.

Table 11-2: Timer T1/T2 Pin Assignments
I/O Pin Timer T1/T2 Function

RB4 Timer T1 Capture Input 1

RB5 Timer T1 Capture Input 2

RB6 Timer T1 PWM/Compare Output

RB7 Timer T1 External Event Clock Source

RC0 Timer T2 Capture Input 1

RC1 Timer T2 Capture Input 2

RC2 Timer T2 PWM/Compare Output

RC3 Timer T2 External Event Clock Source
11.4. Timer Control Registers
There are two 8-bit control registers associated with each
timer, called the Control A and Control B registers. The
Control A register contains the interrupt enable bits and
interrupt flag bits associated with the timer. (Interrupts are
caused by comparison, capture, and overflow events.) The
Control B register contains bits for setting the timer
operating mode, the clock prescaler divide-by factor, and
the input signal edge sensitivity. Each Control B register
also contains one device configuration bit not related to
operation of the multi-function timers.
The register formats are shown in the following diagrams.

Timer T1 Control A Register (T1CNTA)

T1CPF2 T1CPF1 T1CPIE T1CMF2 T1CMF1 T1CMIE T1OVF T1OVIE
7 6 5 4 3 2 1 0

T1CPF2 Timer T1 Capture Flag 2. In Capture/Compare mode, this flag is automatically set to 1 when a capture
event occurs on the Capture 2 pin of Timer T1 (pin RB5). It stays set until cleared by the software.

T1CPF1 Timer T1 Capture Flag 1. In Capture/Compare mode, this flag is automatically set to 1 when a capture
event occurs on the Capture 1 pin of Timer T1 (pin RB4). It stays set until cleared by the software.

T1CPIE Timer T1 Capture Interrupt Enable. Set this bit to 1 to enable capture interrupts for Timer T1 in
Capture/Compare mode. In that case, an interrupt will occur each time a valid edge is received on the
Capture 1 or Capture 2 pin of Timer T1. Clear this bit to 0 to disable capture interrupts.

T1CMF2 Timer T1 Comparison Flag 2. This flag is automatically set to 1 when the contents of the timer counter
match the contents of R2, when R2 is the active comparison register. The flag stays set until it is cleared by
the software.

T1CMF1 Timer T1 Comparison Flag 1. This flag is automatically set to 1 when the contents of the timer counter
match the contents of R1, when R1 is the active comparison register. The flag stays set until it is cleared by
the software.

T1CMIE Timer T1 Comparison Interrupt Enable. Set this bit to 1 to enable comparison interrupts for Timer T1. In
that case, an interrupt will occur each time the contents of the timer counter match the contents of the active
comparison register (R1 or R2) of Timer T1. Clear this bit to 0 to disable comparison interrupts.

 T1OVF Timer T1 Overflow Flag. This flag is automatically set to 1 when the timer counter overflows from FFFFh
to 0000h. The flag stays set until it is cleared by the software.

T1OVIE Timer T1 Overflow Interrupt Enable. Set this bit to 1 to enable overflow interrupts for Timer T1. In that
case, an interrupt will occur each time Timer T1 overflows. Clear this bit to 0 to disable overflow
interrupts.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 37 of 61 Rev 1.5 11/20/2006

Timer T2 Control b Register (T2CNTb)
PRTRD T2CPEDG T2EXEDG T2PS2 – T2PS0 T2MC1 – T2MC0

7 6 5 4 3 2 1 0

PORTRD Port Read mode. This bit determines how the device reads data from its I/O ports (Port A through Port E).

Clear this bit to 0 to have the device read data from the port I/O pins directly. Set this bit to 1 to have the
device read data from the port data registers. Under normal (output mode) conditions, it should not matter
which method you use to read the port data. However, if a port pin is configured as an output and an
external circuit forces the pin to the wrong value, the value read from the port will depend on the reading
mode used. Note that this control bit is not related to multi-function timers T1 and T2.

T2CPEDG Timer T2 Capture Edge. This bit sets the edge sensitivity of the Timer T2 input capture pins, Capture 1 and
Capture 2 (RC0 and RC1). Set this bit to 1 to sense positive-going (low-to-high) edges. Clear this bit to 0 to
sense negative-going (high-to-low) edges.

T2EXEDG Timer T2 External Event Clock Edge. This bit sets the edge sensitivity of the Timer T2 input used to count
external events (RC3). Set this bit to 1 to sense positive-going (low-to-high) edges. Clear this bit to 0 to
sense negative-going (high-to-low) edges.

T2PS2-T2PS0 Timer T2 Prescaler Divider field. This 3-bit field specifies the divide-by factor for generating the timer
clock from the on-chip system clock:
000 = divide by 1
001 = divide by 2
010 = divide by 4
011 = divide by 8
100 = divide by 16
101 = divide by 32
110 = divide by 64
111 = divide by 128
For example, setting this field to 010 sets the divide-by factor to 4, which means that the T2 counter
register is incremented once every four system clock cycles.

T2MC1- T2MC0 Timer T2 Mode Control field. This 2-bit field specifies the Timer T1 operating mode as follows:
00 = Software Timer mode
01 = PWM mode
10 = Capture/Compare mode
11 = External Event mode

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 38 of 61 Rev 1.5 11/20/2006

12.0 COMPARATOR
The device contains an on-chip differential comparator.
Ports RB0-RB2 support the comparator. Pins RB1 and
RB2 are the comparator negative and positive inputs,
respectively, while RB0 serves as the comparator output
pin. To use these pins in conjunction with the comparator,
the user program must configure RB1 and RB2 as inputs
and RB0 as an output. The CMP_B register is used to
enable the comparator, to read the output of the
comparator internally, and to enable the output of the
comparator to the comparator output pin.
The comparator enable bits are set to “1” upon reset, thus
disabling the comparator. To avoid drawing additional
current during the power down mode, the comparator
should be disabled before entering the power down mode.
Here is an example of how to set up the comparator and
read the CMP_B register.

 ;enable RB0 as output
mov W,#$18 ;set MODE register to access
mov M,W ;CMP_B
mov W,#$00 ;clear W
mov !RB,W ;enable comparator and its
 ;output
 ;delay after enabling
 ;comparator for response
mov W,#$18 ;set MODE register to access
mov M,W ;CMP_B
mov W,#$00 ;clear W
mov !RB,W ;enable comparator and its
 ;output and also read CMP_B
 ;(exchange W and CMP_B)
and W,#$01 ;set/clear Z flag based on
 ;comparator result
snb $03.2 ;test Z flag in STATUS reg
 ;(0 => RB2<RB1)
jmp rb2_hi ;jump only if RB2>RB1

The final “mov” instruction in this example performs an
exchange of data between the working register (W) and
the CMP_B register. This exchange occurs only with
accesses to CMP_B and WKPEND_B. Otherwise, the
“mov” instruction does not perform an exchange, but only
moves data from the source to the destination.
The following figure shows the format of the CMP_B
register.

EN_CMP OE_CMP Reserved CMP_RES

Bit 7 Bit 6 Bits 5 – 1 Bit 0

ENCMP _ When cleared to 0, enables the

comparator.
OECMP _ When cleared to 0, enables the

comparator output to the RB0 pin if
RB0 is configured as an output.

CMP_RES Comparator result (Read Only): 1 for
RB2>RB1 or 0 for RB2<RB1.
Comparator must be enabled (CMP_EN
= 0) to read the result. The result can be
read whether or not the CMP_OE bit is
cleared.

Figure 12-1: Comparator Block
Diagram

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 39 of 61 Rev 1.5 11/20/2006

13.0 RESET
Power-On Reset, Brown-Out Reset, Watchdog Reset, or
External Reset initializes the device. Each one of these
reset conditions causes the program counter to branch to
the top of the program memory. For example, on the
device with 4096 K ($1000 hex) words of program
memory, the program counter is initialized to 0FFF upon
a valid reset condition.
The device incorporates an on-chip Power-On Reset
(POR) circuit that generates an internal reset as VDD rises
during power-up. Figure 13-2 is a block diagram of the
circuit. The circuit contains a 10-bit Delay Reset Timer
(DRT) and a reset latch. The DRT controls the reset
timeout delay. The reset latch controls the internal reset
signal.
Upon power-up, the reset latch is set (device held in
reset), and the DRT starts counting once it detects a valid
logic high signal at the MCLR pin. Once DRT reaches the
end of the timeout period (typically 72 msec), the reset
latch is cleared, releasing the device from reset state.
Figure 13-1 shows a power-up sequence where MCLR is
not tied to the VDD pin and VDD signal is allowed to rise

and stabilize before MCLR pin is brought high. The
device will actually come out of reset TDRT msec after
MCLR goes high.
The brown-out circuitry resets the chip when device
power (VDD) dips below its minimum allowed value, but
not to zero, and then recovers to the normal value.

Figure 13-1: Time-Out Sequence on Power-Up

(MCLR not tied to Vdd)

Figure 13-2
Block Diagram
of On-Chip Reset Circuit

Note: Ripple counter is 10 bits for Power
on Reset (POR) only.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 44 of 61 Rev 1.5 11/20/2006

16.7. Increment/Decrement
The current selected bank of 31 registers serves as a set of
accumulators. The instruction set contains instructions to
increment and decrement the register file. The device also
includes both INCSZ fr (increment file register and skip if
zero) and DECSZ fr (decrement file register and skip if
zero) instructions.

16.8. Loop Counting and Data Pointing
Testing
The device has specific instructions to facilitate loop
counting. The DECSZ fr (decrement file register and skip
if zero) tests any one of the file registers and skips the
next instruction (which can be a branch back to loop) if
the result is zero.

16.9. Branch and Loop Call Instructions
The device contains an 8-level hardware stack where the
return address is stored with a subroutine call. Multiple
stack levels allow subroutine nesting. The instruction set
supports absolute address branching.

16.9.1. Jump Operation
When a JMP instruction is executed, the lower nine bits
of the program counter are loaded with the address of the
specified label. The upper three bits of the program
counter are loaded with the page select bits, PA2:PA0,
contained in the STATUS register. Therefore, care must
be exercised to ensure the page select bits are pointing to
the correct page before the jump occurs.

16.9.2. Page Jump Operation
When a JMP instruction is executed and the intended
destination is on a different page, the page select bits must
be initialized with appropriate values to point to the
desired page before the jump occurs. This can be done
easily with SETB and CLRB instructions or by writing a
value to the STATUS register. The device also has the
PAGE instruction, which automatically selects the page in
a single-cycle execution.

Note:“N” must be 0, 1, 2, or 3.

16.9.3. Call Operation
The following happens when a CALL instruction is
executed:

• The current value of the program counter is
incremented and pushed onto the top of the stack.

• The lower eight bits of the label address are copied
into the lower eight bits of the program counter.

• The ninth bit of the Program Counter is cleared to
zero.

• The page select bits (in STATUS register) are
copied into the upper three bits of the 12-bit
program counter.

This means that the call destination must start in the lower
half of any page. For example, 00h-0FFh, 200h-2FFh,
400h-4FFh, etc.

16.9.4. Page Call Operation
When a subroutine that resides on a different page is
called, the page select bits must contain the proper values
to point to the desired page before the call instruction is
executed. This can be done easily using SETB and CLRB
instructions or writing a value to the STATUS register.
The device also has the PAGE instruction, which
automatically selects the page in a single-cycle execution.

16.10. Return Instructions
The device has several instructions for returning from
subroutines and interrupt service routines. The return
from subroutine instructions are RET (return without
affecting W), RETP (same as RET but affects PA2:PA0),
RETI (return from interrupt), RETIW (return and add W
to RTCC), and RETW #literal (return and place literal in
W). The literal serves as an immediate data value from
memory. This instruction can be used for table lookup
operations. To do table lookup, the table must contain a
string of RETW #literal instructions. The first instruction
just in front of the table calculates the offset into the table.
The table can be used as a result of a CALL.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 45 of 61 Rev 1.5 11/20/2006

16.11. Subroutine Operation

16.11.1. Push Operation
When a subroutine is called, the return address is pushed
onto the subroutine stack. Specifically, each address in the
stack is moved to the next lower level in order to make
room for the new address to be stored. Stack 1 receives
the contents of the program counter. Stack 8 is
overwritten with what was in Stack 7. The contents of
stack 8 are lost.

16.11.2. Pop Operation
When a return instruction is executed the subroutine stack
is popped. Specifically, the contents of Stack 1 are copied
into the program counter and the contents of each stack
level are moved to the next higher level. For example,
Stack 1 receives the contents of Stack 2, etc., until Stack 7
is overwritten with the contents of Stack 8. Stack 8 is left
unchanged, so the contents of Stack 8 are duplicated in
Stack 7.

16.12. Comparison and Conditional Branch
Instructions
The instruction set includes instructions such as DECSZ
fr (decrement file register and skip if zero), INCSZ fr
(increment file register and skip if zero), SNB bit (bit test
file register and skip if bit clear), and SB bit (bit test file
register and skip if bit set). These instructions will cause
the next instruction to be skipped if the tested condition is
true. If a skip instruction is immediately followed by a
PAGE or BANK instruction (and the tested condition is
true) then two instructions are skipped and the operation
consumes three cycles. This is useful for conditional
branching to another page where a PAGE instruction
precedes a JMP. If several PAGE and BANK instructions
immediately follow a skip instruction then they are all
skipped plus the next instruction and a cycle is consumed
for each.

16.13. Logical Instruction
The instruction set contain a full complement of the
logical instructions (AND, OR, Exclusive OR), with the
W register and a selected memory location (using either
direct or indirect addressing) serving as the two operands.

16.14. Shift and Rotate Instructions
The instruction set includes instructions for left or right
rotate-through-carry.

16.15. Complement and SWAP
The device can perform one’s complement operation on
the file register (fr) and W register. The MOV W,<>fr
instruction performs nibble-swap on the fr and puts the
value into the W register.

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 46 of 61 Rev 1.5 11/20/2006

16.16. Key to Abbreviations and Symbols

Table 16-1: Key to Abbreviations and Symbols

Symbol Description Symbol Description
W Working register n Numerical value bit in opcode

fr File register (memory mapped in range of 00h to FFh) b Bit position selector bit in opcode

PC Lower eight bits of program counter (file register 02h) . File register / bit selector separator in assembly instruct.

STATUS STATUS register (file register 03h) # Immediate literal designator in assembly instruction

FSR File Select Register (file register 04h) lit Literal value in assembly language instruction

C Carry bit in STATUS register (Bit 0) addr8 8-bit address in assembly language instruction

DC Digit Carry bit in STATUS register (Bit 1) addr9 9-bit address in assembly language instruction

Z Zero bit in STATUS register (Bit 2) addr12 12-bit address in assembly language instruction

PD Power Down bit in STATUS register (Bit 3) / Logical 1’s complement

TO Watchdog Timeout bit in STATUS register (Bit 4) | Logical OR

PA2:PA0 Page select bits in STATUS register (Bits7:5) ^ Logical exclusive OR

OPTION OPTION register (not memory mapped) & Logical AND

WDT Watchdog Timer register (not memory-mapped) <> Swap high and low nibbles (4-bit segments)

MODE MODE register (not memory mapped) << Rotate left through carry bit

rx Port control register pointer (RA, RB, RC) >> Rotate right through carry bit

! Non-memory-mapped register designator -- Cecrement file register

f File register address bit in opcode ++ Increment file register

k Constant value bit in opcode

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 50 of 61 Rev 1.5 11/20/2006

Table 17-5: Native SX Instruction Set: Program Control Instructions

Mnemonic,
Operands Description Clock Cycles Opcode Flags

Affected

CALL addr8

Call Subroutine:
Top-of-stack = program counter + 1
PC(7:0) = addr8
Program counter (8) = 0
Program counter (10:9) = PA1:PA0

3 1001 kkkk kkkk none

JMP addr9

Jump to Address:
PC(7:0) = addr9(7:0)
Program counter = (8) = addr9(8)
Program counter (10:9) = PA1:PA0

3 101k kkkk kkkk none

NOP No Operation 1 0000 0000 0000 none

RET Return from subroutine
(program counter = top-of-stack) 3 0000 0000 1100 none

RETP
Return from subroutine across Page boundary
(PA1:PA0 = top-of-stack (10:19) and program
counter = top-of-stack)

3 0000 0000 1101 PA1, PA0

RETI Return from Interrupt (restore W, STATUS, FSR,
and program counter from shadow registers) 3 0000 0000 1110

All STATUS except
TO, PD

RETIW
Return from Interrupt and add W to RTCC
(restore W, STATUS FSR, and program counter
from shadow registers; and add W to RTCC)

3 0000 0000 1111
All STATUS except

TO, PD

RETW lit Return from Subroutine with Liter in W
(W = lit and program counter = top-of-stack) 3 1000 kkkk kkkk none

Table 17-6: Native SX Instruction Set: System Control Instructions

Mnemonic,
Operands Description Clock Cycles Opcode Flags

Affected

BANK addr8 Load Bank number into FSR(7:5)
FSR(7:5) = addr8(7:5) 1 0000 0001 1nnn none

IREAD Read word from Instruction memory
MODE:W = data at (MODE:W) 4 0000 0100 0001 none

PAGE addr12 Load Page number into STATUS(7:5)
STATUS(7:5) = addr12(11:9) 1 0000 0001 0nnn PA1, PA0

SLEEP
Power down mode
WDT = 00h, TO = 1, stop oscillator
(PD = 0, clears prescaler if assigned)

1 0000 0000 0011 TO, PD

Parallax SX48BD www.parallax.com

© Parallax Inc. Page 56 of 61 Rev 1.5 11/20/2006

17.5. Typical Performance Characteristics (25 °C) (Continued)

