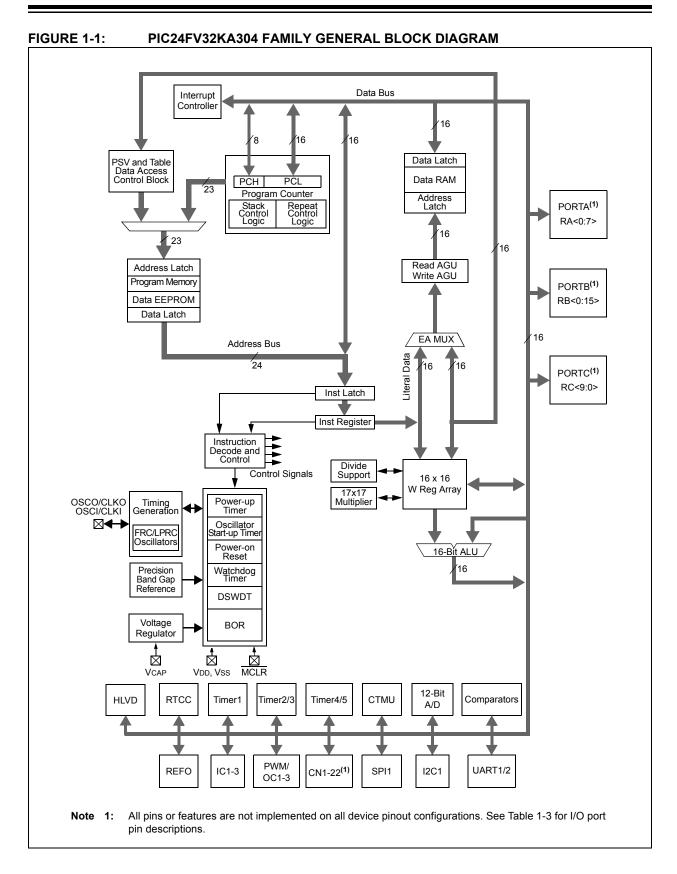


Welcome to E-XFL.COM

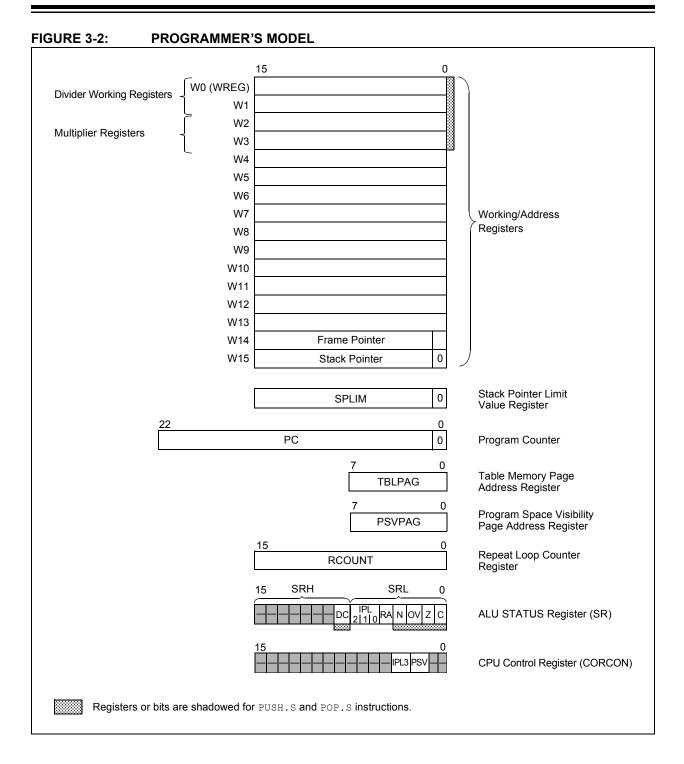
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka301-e-p


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS

			F					FV					
			Pin Number					Pin Number			1		
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
AN0	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Analog Inputs
AN1	3	3	28	20	22	3	3	28	20	22	Т	ANA	
AN2	4	4	1	21	23	4	4	1	21	23	I	ANA	
AN3	5	5	2	22	24	5	5	2	22	24	Т	ANA	
AN4	6	6	3	23	25	6	6	3	23	25	I	ANA	
AN5	_	7	4	24	26	_	7	4	24	26	I	ANA	
AN6	_	_	_	25	27	_	_	_	25	27	I	ANA	
AN7	_	_	_	26	28	_	—	_	26	28	I	ANA	
AN8	_	_	_	27	29	_	_	_	27	29	I	ANA	
AN9	18	26	23	15	16	18	26	23	15	16	I	ANA	
AN10	17	25	22	14	15	17	25	22	14	15	I	ANA	
AN11	16	24	21	11	12	16	24	21	11	12	Т	ANA	
AN12	15	23	20	10	11	15	23	20	10	11	Т	ANA	
AN13	7	9	6	30	33	7	9	6	30	33	Т	ANA	
AN14	8	10	7	31	34	8	10	7	31	34	I	ANA	
AN15	9	11	8	33	36	9	11	8	33	36	I	ANA	
ASCL1	-	15	12	42	46	_	15	12	42	46	I/O	l ² C™	Alternate I2C1 Clock Input/Output
ASDA1	-	14	11	41	45	_	14	11	41	45	I/O	l ² C	Alternate I2C1 Data Input/Output
AVDD	20	28	25	17	18	20	28	25	17	18	1	ANA	A/D Supply Pins
AVss	19	27	24	16	17	19	27	24	16	17	Т	ANA	
C1INA	8	7	4	24	26	8	7	4	24	26	1	ANA	Comparator 1 Input A (+)
C1INB	7	6	3	23	25	7	6	3	23	25	1	ANA	Comparator 1 Input B (-)
C1INC	5	5	2	22	24	5	5	2	22	24	Т	ANA	Comparator 1 Input C (+)
C1IND	4	4	1	21	23	4	4	1	21	23	I	ANA	Comparator 1 Input D (-)
C1OUT	17	25	22	14	15	17	25	22	14	15	0	—	Comparator 1 Output
C2INA	5	5	2	22	24	5	5	2	22	24	I	ANA	Comparator 2 Input A (+)
C2INB	4	4	1	21	23	4	4	1	21	23	I	ANA	Comparator 2 Input B (-)
C2INC	8	7	4	24	26	8	7	4	24	26	I	ANA	Comparator 2 Input C (+)
C2IND	7	6	3	23	25	7	6	3	23	25	I	ANA	Comparator 2 Input D (-)
C2OUT	14	20	17	7	7	11	16	13	43	47	0	—	Comparator 2 Output

TABLE 4-3: CPU CORE REGISTERS MAP

IADEE -	т-∪.		OOKE															
File Name	Start Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								WF	REG0								0000
WREG1	0002								WF	REG1								0000
WREG2	0004								WF	REG2								0000
WREG3	0006								WF	REG3								0000
WREG4	0008		WREG4 00									0000						
WREG5	000A		WREG5 0000										0000					
WREG6	000C			WREG6 0000									0000					
WREG7	000E								WF	REG7								0000
WREG8	0010								WF	REG8								0000
WREG9	0012								WF	REG9								0000
WREG10	0014								WR	EG10								0000
WREG11	0016								WR	EG11								0000
WREG12	0018								WR	EG12								0000
WREG13	001A								WR	EG13								0000
WREG14	001C								WR	EG14								0000
WREG15	001E								WR	EG15								0000
SPLIM	0020								SF	PLIM								XXXX
PCL	002E								F	PCL								0000
PCH	0030	_	_	_	_	_	_	_	_	_				PCH				0000
TBLPAG	0032		_		—	—		—	—				TBI	_PAG				0000
PSVPAG	0034		PSVPAG 00								0000							
RCOUNT	0036		RCOUNT								XXXXX							
SR	0042	_	_		-	-		_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044		_	-	_	_		_	—	—	_	_	-	IPL3	PSV	—	_	0000
DISICNT	0052		_							DISIC	NT							XXXX

DS39995D-page 39

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0190		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0194		OC1RS 0000															
OC1R	0196									OC1R								0000
OC1TMR	0198		OC1TMR XXXX															
OC2CON1	019A	_	- OCSIDL OCTSEL2 OCTSEL1 OCTSEL0 ENFLT2 ENFLT1 ENFLT0 OCFLT2 OCFLT1 OCFLT0 TRIGMODE OCM2 OCM1 OCM0 0000															
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E									OC2RS								0000
OC2R	01A0									OC2R								0000
OC2TMR	01A2									OC2TMR								XXXX
OC3CON1	01A4			OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8									OC3RS								0000
OC3R	01AA									OC3R								0000
OC3TMR	01AC		OC3TMR xxxx															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '011000' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

MOV #0x4058, W0	;
MOV W0, NVMCON	; Initialize NVMCON
Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W	0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts
	for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

FIGURE 8-1: PIC24F INTERRUPT VECTOR TABLE Reset - GOTO Instruction 000000h Reset - GOTO Address 000002h Reserved 000004h Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 000014h Interrupt Vector 1 _ Interrupt Vector 52 00007Ch Interrupt Vector Table (IVT)⁽¹⁾ Decreasing Natural Order Priority Interrupt Vector 53 00007Eh Interrupt Vector 54 000080h _ Interrupt Vector 116 0000FCh Interrupt Vector 117 0000FEh Reserved 000100h Reserved 000102h Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 000114h Interrupt Vector 1 Alternate Interrupt Vector Table (AIVT)⁽¹⁾ 00017Ch Interrupt Vector 52 00017Eh Interrupt Vector 53 Interrupt Vector 54 000180h _____ Interrupt Vector 116 Interrupt Vector 117 0001FEh Start of Code 000200h

Note 1: See Table 8-2 for the interrupt vector list.

REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	U-0					
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	—	OC3IF						
bit 15							bit 8					
U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0	R/W-0					
		—	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF					
bit 7							bit 0					
Legend:		HS = Hardwa	ro Sottabla bit									
R = Readable	a hit	W = Writable		II = I Inimplem	nented bit, read	1 as 'O'						
-n = Value at		'1' = Bit is set	on	'0' = Bit is clea		x = Bit is unkne	own					
II Value at												
bit 15	U2TXIF: UAR	RT2 Transmitter	Interrupt Flag	Status bit								
		request has occ										
	0 = Interrupt r	request has not	occurred									
bit 14	U2RXIF: UAF	RT2 Receiver Ir	terrupt Flag St	atus bit								
	•	request has occ										
h:+ 40	-	request has not										
bit 13		rnal Interrupt 2	-									
		request has not										
bit 12	-	Interrupt Flag S										
		request has occ										
	0 = Interrupt request has not occurred											
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit									
		request has occ										
		request has not										
bit 10	•	ted: Read as '										
bit 9		ut Compare Ch		pt Flag Status b	bit							
		request has occ										
h# 0 5	-	request has not										
bit 8-5 bit 4	•	ted: Read as '										
DIL 4		rnal Interrupt 1	-									
	•	request has not										
bit 3	-	Change Notifica		lag Status bit								
		request has occ	-	U								
	0 = Interrupt r	request has not	occurred									
bit 2	-	arator Interrupt	-									
		request has occ										
h:+ 1	-	request has not		Ctatua hit								
bit 1		ster I2C1 Event		Status bit								
		request has occ request has not										
bit 0	-	ve I2C1 Event I		tatus bit								
		request has occ		·····								

REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7		1				1	bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	-	: UART1 Rece		riority bits			
		pt is Priority 7 (=	-			
	•		0 . ,	• /			
	•						
	001 = Interru						
	-	ot source is dis					
bit 11	-	ted: Read as '					
bit 10-8		SPI1 Event Int	, ,				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Inf	errupt Priority	oits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
	-	ted: Read as '					
hit 3		imer3 Interrupt					
			•	interrunt)			
	111 = Interru	nt is Priority 7 (
	111 = Interruj •	pt is Priority 7 (nignest priority	interrupt)			
bit 3 bit 2-0	111 = Interruj •	pt is Priority 7 (nignest phonty	interrupt)			
	• • 001 = Interru			interrupt)			

NOTES:

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

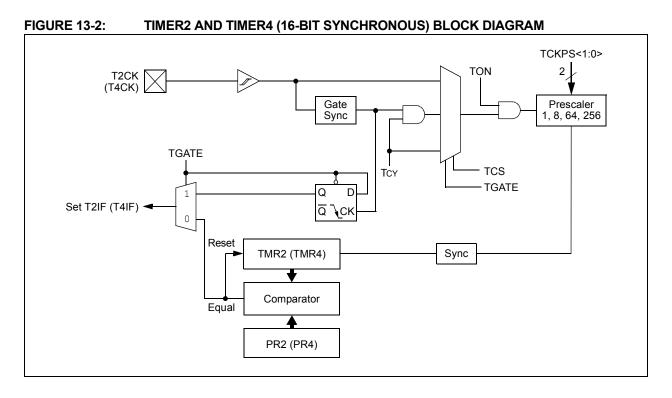
11.3 Input Change Notification (ICN)

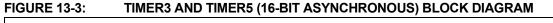
The Input Change Notification function of the I/O ports allows the PIC24FV32KA304 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the ICN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately, using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.


Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.


When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs $\$
NOP;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
Equivalent ` C' Code	
TRISB = 0xFF00;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP();	//Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
}	

18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 18-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 18-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

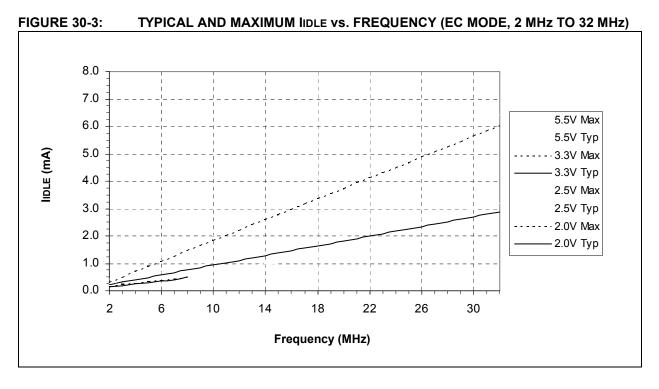
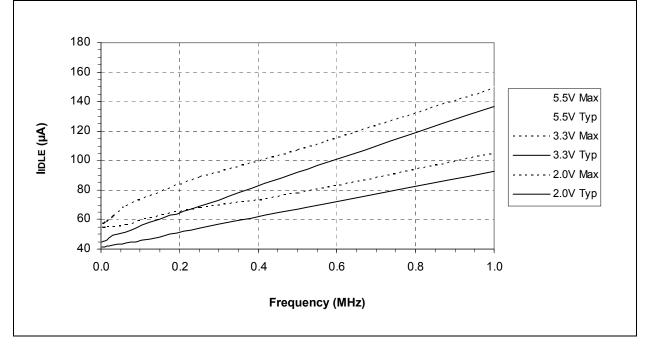
Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	=	FCY/(16 (UxBRG + 1))
Solving for UxBRG va	lue	:
UxBRG UxBRG	=	((FCY/Desired Baud Rate)/16) – 1 ((4000000/9600)/16) – 1
UxBRG	=	25
Calculated Baud Rate		4000000/(16 (25 + 1)) 9615
Error	=	(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate (9615 – 9600)/9600 0.16%
Note 1: Based on	Fc	Y = Fosc/2; Doze mode and PLL are disabled.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
HLVDEN	_	HLSIDL		—	—	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit C
Legend:							
R = Readabl	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	HLVDEN: Hig	gh/Low-Voltage	Detect Powe	r Enable bit			
	1 = HLVD is						
	0 = HLVD is						
bit 14	•	nted: Read as '0					
bit 13		/D Stop in Idle N					
		nues module op es module opera		device enters Id	le mode		
bit 12-8		ited: Read as '0		ouc			
bit 7	-	e Change Direc		t			
	-	-		exceeds trip poir	nt (HLVDL<3:0>	>)	
				falls below trip po	•	,	
bit 6	BGVST: Ban	d Gap Voltage S	Stable Flag bit	t			
		that the band g					
6.4 <i>F</i>		that the band g					
bit 5		al Reference Vo		riag bit oltage is stable	and the high-v	oltage detect lo	ogic generates
	the inter	rupt flag at the s	pecified volta	ige range			
				oltage is unstab			
	generate enabled	e the interrupt fi	ag at the spe	cified voltage ra	nge, and the F	ALVD Interrupt	snould not be
bit 4		ted: Read as '0	,				
bit 3-0	-	High/Low-Volt		n Limit bits			
	1111 = Exter	nal analog inpu	-	ut comes from th	e HLVDIN pin)		
	1110 = Trip 	Point 1 ⁽¹⁾	、 I		. ,		
	1101 = Trip I 1100 = Trip I	Point $2^{(1)}$					
	1100 = 1mp i	onto' /					
	•						
	•						
	0000 = Trip I	Point 15					

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

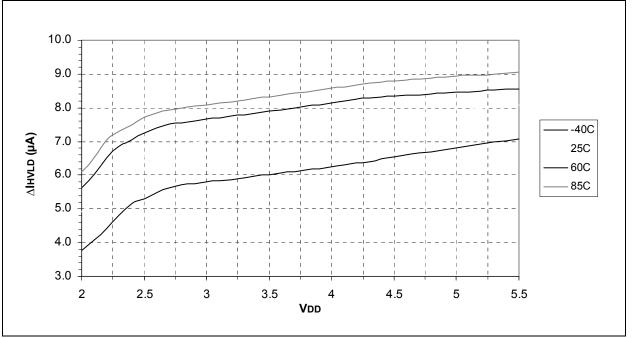


FIGURE 30-4: TYPICAL AND MAXIMUM lidle vs. FREQUENCY (EC MODE, 1.95 kHz TO 1 MHz)

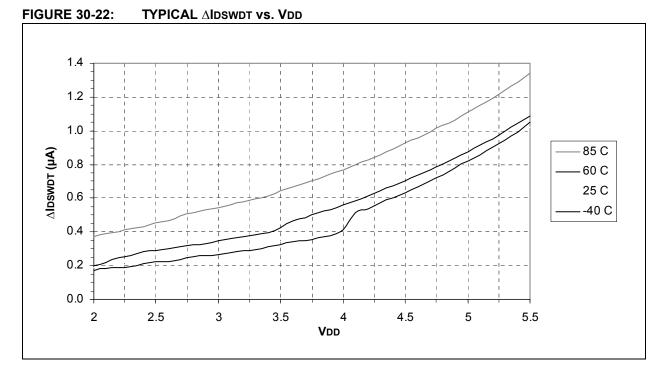


FIGURE 30-23: TYPICAL VBOR vs. TEMPERATURE (BOR TRIP POINT 3)

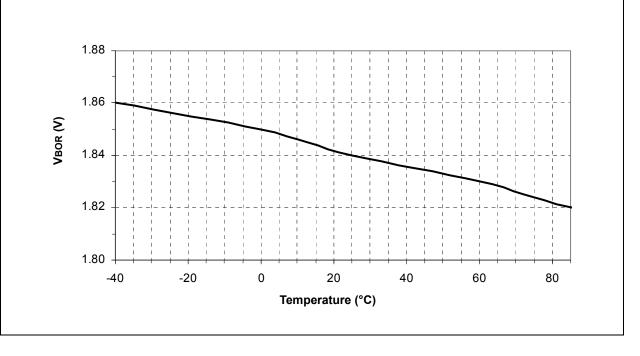
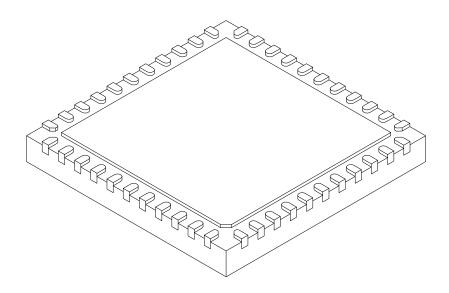


FIGURE 30-46: TYPICAL AlwDT vs. VDD

∆IWDT (µA)

Vdd


FIGURE 30-47: TYPICAL AIDSBOR vs. VDD

Aldsbor (nA)

Vdd

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

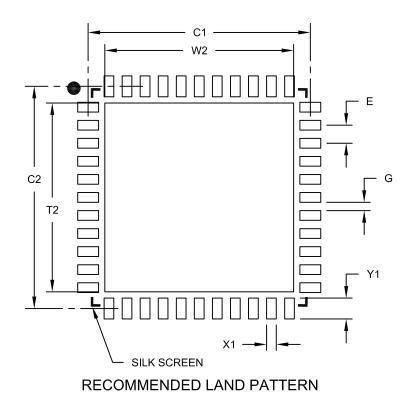
	Units	N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	A	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units					
Dimensior	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC			
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B