

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka301-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC24FV16KA301	PIC24FV32KA301	PIC24FV16KA302	PIC24FV32KA302	PIC24FV16KA304	PIC24FV32KA304
Operating Frequency			DC – 32 I	MHz		
Program Memory (bytes)	16K	32K	16K	32K	16K	32K
Program Memory (instructions)	5632	11264	5632	11264	5632	11264
Data Memory (bytes)			2048			
Data EEPROM Memory (bytes)			512			
Interrupt Sources (soft vectors/ NMI traps)	30 (26/4)					
I/O Ports	PORTA<5:0> PORTB<15:12,9:7,4,2:0>		PORTA<7,5:0> PORTB<15:0>		PORTA<11:7,5:0> PORTB<15:0> PORTC<9:0>	
Total I/O Pins	17		23		38	
Timers: Total Number (16-bit)			5			
32-Bit (from paired 16-bit timers)			2			
Input Capture Channels			3			
Output Compare/PWM Channels			3			
Input Change Notification Interrupt	16	6	2	2	3	7
Serial Communications: UART SPI (3-wire/4-wire)			2			
I ² C™			2			
12-Bit Analog-to-Digital Module (input channels)	12	2	1	3	1	6
Analog Comparators			3			
Resets (and delays)	POR, BOR, RESET Instruction, MCLR, WDT, Illegal Opcode, REPEAT Instruction, Hardware Traps, Configuration Word Mismatch (PWRT, OST, PLL Lock)					
Instruction Set	76 E	ase Instructio	ns, Multiple A	ddressing Mo	ode Variation	S
Packages	20-F PDIP/SSC	Pin DP/SOIC	28-Pin SPDIP/SSOP/SOIC/OFN		44-Pin QFN/TQFP 48-Pin UQFN	

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FV32KA304 FAMILY

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
   #define NUM INSTRUCTION PER ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = 0x1234; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
  unsigned int progData[2*NUM INSTRUCTION PER ROW]; // Buffer of data to write
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4001;
                                                               // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr); // Initialize PM Page Boundary SFR
offset = __builtin_tbloffset(&progAddr); // Initialize lower word of address
  offset = __builtin_tbloffset(&progAddr);
                                                             // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM INSTRUCTION PER ROW; i++)</pre>
   {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                               // Write to upper byte
       offset = offset + 2;
                                                               // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	; Block all interrupts
		for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; 2 NOPs required after setting WR
NOP		;
BTSC	NVMCON, #15	; Wait for the sequence to be completed
BRA	\$-2	;

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	<pre>// Block all interrupts for next 5 instructions</pre>
builtin_write_NVM();	// Perform unlock sequence and set WR

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Data EEPROM, refer to the *"PIC24F Family Reference Manual"*, Section 5. "Data EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFFh. The size of the data EEPROM is 256 words in the PIC24FV32KA304 family devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

//Disable Inter	rupts For 5 instruc	tions
asm volatile	("disi #5");	
//Issue Unlock	Sequence	
asm volatile	("mov #0x55, W0	\n"
	"mov W0, NVMKEY	\n"
	"mov #0xAA, W1	\n"
	"mov W1, NVMKEY	\n");
// Perform Writ	e/Erase operations	
asm volatile	("bset NVMCON, #WR	\n"
	"nop	\n"
	"nop	\n");

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0		
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—		
bit 7							bit 0		
Legend: C = Clearable bit				HSC = Hardware Settable/Clearable bit					
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-4 Unimplemented: Read as '0' bit 3 IPL3: CPU Interrupt Priority Level Status bit ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less									
bit 1-0	Unimplemen	ted: Read as ')'						
 Note 1: See Register 3-2 for the description of this bit, which is not dedicated to interrupt control functions. 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level. 									

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

bit 0 INTOIE: External Interrupt 0 Enable bit

- 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	RTCIE	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0		
	<u> </u>	<u> </u>	<u> </u>		MI2C2IE	SI2C2IE	<u> </u>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown		
bit 15	Unimplemen	ted: Read as ')'						
bit 14	RTCIE: Real-	Time Clock and	d Calendar Inte	errupt Enable bi	it				
	1 = Interrupt r 0 = Interrupt r	equest is enab equest is not e	led nabled						
bit 13-3	Unimplemen	ted: Read as ')'						
bit 2	MI2C2IE: Mas	ster I2C2 Even	t Interrupt Enal	ble bit					
	1 = Interrupt r 0 = Interrupt r	equest is enab equest is not e	led nabled						
bit 1	SI2C2IE: Slav	ve I2C2 Event I	nterrupt Enable	e bit					
	1 = Interrupt request is enabled 0 = Interrupt request is not enabled								

REGISTER 8-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

bit 0 Unimplemented: Read as '0'

REGISTER 8-21: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

		D 444 A	D 444 A			D 444 0	5444.0		
U-0	R/W-1	R/W-0	R/W-0	<u>U-0</u>	R/W-1	R/W-0	R/W-0		
	CNIP2	CNIP1	CNIP0		CMIP2	CMIP1	CMIP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
	MI2C1P2 MI2C1P1 MI2C1P0 — SI2C1P2 SI2C1P1								
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	Unimplemen	ted: Read as '	D'						
bit 14-12	CNIP<2:0>:	nput Change N	otification Inte	rrupt Priority bi	ts				
	111 = Interru	pt is Priority 7(highest priority	v interrupt)					
	•								
	• 001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 11	Unimplemen	ted: Read as '	o'						
bit 10-8	CMIP<2:0>: (Comparator Inte	errupt Priority I	oits					
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•	ut in Duinuitur 4							
	001 = Interru	pt is Priority 1 nt source is dis	abled						
hit 7		ted: Read as '	n'						
bit 6-4	MI2C1P<2.0	• Master I2C1	- Event Interrun	t Priority bits					
	111 = Interru	nt is Priority 7 (highest priority	(interrupt)					
	•	pr.o							
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	SI2C1P<2:0>	Slave I2C1 E	vent Interrupt I	Priority bits					
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)					
	•								
	• 001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						

	REGISTER 8-23:	IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	T4IP2	T4IP1	T4IP0	_		—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	OC3IP2	OC3IP1	OC3IP0	_	—	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
bit 15	Unimplemen	ted: Read as '	כי				
bit 14-12	T4IP<2:0>: ⊺	ïmer4 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)			
	•						
	• 001 - Internu	nt in Driarity 1					
	001 = Interru	pl is Phonly 1 nt source is dis	abled				
bit 11-7	Unimplemen	ited: Read as '	נגיים ז'				
bit 6-4			re Channel 3	Interrunt Priority	/ hits		
bit 0 4	111 = Interru	nt is Priority 7 (highest priority	v interrunt)	010		
	•	prist honry / (nightest phone	y interrupt)			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as ')'				

REGISTER	8-24: IPC7	: INTERRUPT	PRIORITY (CONTROL R	EGISTER 7					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0			
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	Unimplemer	nted: Read as '	0'							
bit 14-12	U2TXIP<2:0	>: UART2 Tran	smitter Interrup	t Priority bits						
	111 = Interru	upt is Priority 7 ((highest priority	(interrupt)						
	•									
	• 001 = Interru	upt is Priority 1								
	000 = Interru	upt source is dis	abled							
bit 11	Unimplemer	Unimplemented: Read as '0'								
bit 10-8	U2RXIP<2:0	>: UART2 Rece	eiver Interrupt F	Priority bits						
	111 = Interru	upt is Priority 7 ((highest priority	interrupt)						
	•									
	• 001 = Interru	int is Priority 1								
	000 = Interru	upt source is dis	abled							
bit 7	Unimplemer	nted: Read as '	0'							
bit 6-4	INT2IP<2:0>	: External Inter	rupt 2 Priority b	oits						
	111 = Interru	upt is Priority 7 ((highest priority	interrupt)						
	•									
	• 001 – Intorr i	unt is Priority 1								
	000 = Interru	upt is Fridity i	abled							
bit 3	Unimplemer	nted: Read as '	0'							
bit 2-0	T5IP<2:0>:]	Timer5 Interrupt	Priority bits							
	111 = Interru	upt is Priority 7 ((highest priority	interrupt)						
	•			. ,						
	•									
	001 = Interru	upt is Priority 1	ahled							

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	—	TSIDL	_	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾
bit 15							bit 8
							
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	_
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
							-
bit 15	TON: Timer1	On bit					
	1 = Starts 16	-bit Timer1					
	0 = Stops 16	-bit limer1					
DIT 14		ted: Read as ')' Aada hit				
DIE 13	1 = Discontinu	ues module on	noue bil aration when c	levice enters ld	lle mode		
	0 = Continues	s module opera	tion in Idle mo	ide	ne mode		
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9-8	T1ECS<1:0>	: Timer1 Extend	led Clock Sele	ect bits ⁽¹⁾			
	11 = Reserve	ed; do not use					
	10 = Timer1	uses the LPRC	as the clock s				
	00 = Timer1 u	uses the Secon	dary Oscillato	r (SOSC) as the	e clock source		
bit 7	Unimplemen	ted: Read as 'd)'	、 ,			
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
	When TCS =	<u>1:</u>					
	This bit is ign	ored.					
	$\frac{When ICS =}{1 = Gated tin}$	<u>0:</u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulation	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	lect bit		
	When TCS =	<u>1:</u>					
	1 = Synchro	nizes external o t synchronize e	clock input Internal clock i	nput			
	When TCS =			nput			
	This bit is igno	ored.					
bit 1	TCS: Timer1	Clock Source S	Select bit				
	1 = Timer1 cl	lock source is s	elected by T1	ECS<1:0>			
L:1 C	0 = Internal c	clock (Fosc/2)	.,				
U JIQ	Unimplemen	ted: Read as ')				
Note 1: ⊤	he T1ECSx bits	are valid only w	vhen TCS = 1				

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- **Note 1:** This feature is is only available for the 16x BRG mode (BRGH = 0).
 - 2: The bit availability depends on the pin availability.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7			L		L		bit 0
Legend:	. h:t		L:+		anted bit was	d aa (0'	
R = Readable		vv = vvritable	DIL	0 = 0	iented bit, rea	uas u v = Pitio unkr	
	FUK	I – DILIS SEL			areu		IOWIT
bit 15	ALRMEN: Ala	arm Enable bit					
	1 = Alarm is	enabled (clear	ed automatica	lly after an ala	rm event whe	never ARPT<7	:0> = 00h and
	CHIME =	= 0)					
	0 = Alarm is	disabled					
DIT 14		e Enable bit			aver fram 00h		
	1 = Chime is 0 = Chime is	disabled: ARP	T < 7:0 > bits are	once they rea	over from oon ach 00h	IO FFN	
bit 13-10	AMASK<3:0>	>: Alarm Mask	Configuration b	pits			
	0000 = Ever	ry half second	0				
	0001 = Ever	ry second					
	0010 = Ever	ry 10 seconds					
	0100 = Ever	ry 10 minutes					
	0101 = Ever	ry hour					
	0110 = Onc	e a day _.					
	0111 = Oncolumn	e a week					
	1001 = Onc	e a year (excep	t when configu	ired for Februa	ry 29 th , once e	every 4 years)	
	101x = Reserved – do not use						
	11xx = Rese	erved – do not	use				
bit 9-8	ALRMPTR<1	:0>: Alarm Valu	ue Register Wi	ndow Pointer b	Its		
	Points to the corresponding Alarm value registers when reading the ALRMVALH and ALRMVALL registers. The ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'.						
	ALRMVAL<1	<u>5:8>:</u>		5			
	00 = ALRMM	IN					
	01 = ALRMW	/D NTH					
	11 = Unimple	mented					
	ALRMVAL<7:	:0>:					
	00 = ALRMSI	EC					
	01 = ALRMH	R AV					
	11 = Unimple	mented					
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits			
	11111111 =	Alarm will rep	eat 255 more ti	imes			
	00000000 =	Alarm will not	repeat			_	
		decrements on	any alarm eve	nt; it is prevent	ed from rolling	over from 00h	to FFh unless
	$\Box \Box \Box \Box \Box \Box = \bot$.						

REGISTER 19-11: RTCCSWT: CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PWCSTAB<7:0>: PWM Stability Window Timer bits				
	11111111 = Stability window is 255 TPWCCLK clock periods				
	00000000 = Stability window is 0 TPWCCLK clock periods The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.				
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits				
	 11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 				
	00000000 = Sample window is 0 TPWCCLK clock periods The sample window timer starts counting at the end of the stability window when PWCEN = 1. If PWCSTAB<7:0> = 00000000, the sample window timer starts counting from every alarm event when PWCEN = 1.				

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15		•	•				bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7		•				•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					nown		
bit 15-13	Unimplemen	ted: Read as '	o'				
bit 12-8	DWIDTH<4:0>: Data Width Select bits						
	Defines the width of the data word (Data Word Width = (DWIDTH<4:0>) + 1).						

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits Defines the length of the CRC polynomial (Polynomial Length = (PLEN<4:0>) + 1).

FIGURE 29-16: UARTX BAUD RATE GENERATOR OUTPUT TIMING

FIGURE 29-17: UARTX START BIT EDGE DETECTION

TABLE 29-35: UARTx TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Symbol	Characteristics	Min	Тур	Max	Units		
TLW	UxBCLK High Time	20	Tcy/2	_	ns		
THW	UxBCLK Low Time	20	(TCY * UXBRG) + TCY/2	—	ns		
TBLD	UxBCLK Falling Edge Delay from UxTX	-50	—	50	ns		
Твнр	UxBCLK Rising Edge Delay from UxTX	Tcy/2 – 50	—	Tcy/2 + 50	ns		
Twak	Minimum Low on UxRX Line to Cause Wake-up	_	1	—	μS		
Тстѕ	Minimum Low on UxCTS Line to Start Transmission	Тсу	_	_	ns		
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns		
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	—	TCY + TSETUP	ns		

FIGURE 30-13: LPRC FREQUENCY ACCURACY vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

FIGURE 30-17: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)

FIGURE 30-36: HLVD TRIP POINT VOLTAGE vs. TEMPERATURE (HLVDL<3:0> = 0000, PIC24F32KA304 FAMILY DEVICES ONLY

FIGURE 30-37: TEMPERATURE SENSOR DIODE VOLTAGE vs. TEMPERATURE (2.0V \leq VDD \leq 5.5V)

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12