

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka301-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable bit	
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit, read as '0'	

bit 15	WR: Write Control bit
	 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once the operation is complete. 0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	1 = Enables Flash program/erase operations0 = Inhibits Flash program/erase operations
bit 13	WRERR: Write Sequence Error Flag bit
	 1 = An improper program or erase sequence attempt, or termination, has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally
bit 12	PGMONLY: Program Only Enable bit ⁽⁴⁾
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	 1 = Performs the erase operation specified by NVMOP<5:0> on the next WR command 0 = Performs the program operation specified by NVMOP<5:0> on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is '1'):
	1010xx = Erases entire boot block (including code-protected boot block) ⁽²⁾ 1001xx = Erases entire memory (including boot block, configuration block, general block) ⁽²⁾ 011010 = Erases 4 rows of Flash memory ⁽³⁾
	011001 = Erases 2 rows of Flash memory ⁽³⁾
	011000 = Erases 1 row of Flash memory ⁽³⁾
	0101xx = Erases entire configuration block (except code protection bits)
	0100xx = Erases entire data EEPROM ⁽⁴⁾ 0011xx = Erases entire general memory block programming operations
	0011xx = Erases entire general memory block programming operations $0001xx = \text{Writes 1 row of Flash memory (when ERASE bit is '0')^{(3)}$
Note 1:	All other combinations of NVMOP<5:0> are no operation.
2:	These values are available in ICSP [™] mode only. Refer to the device programming specification.

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM.

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

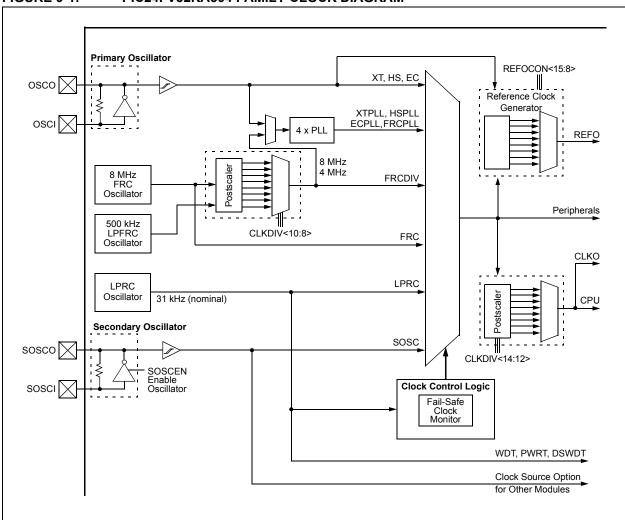
TABLE 8-1:TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

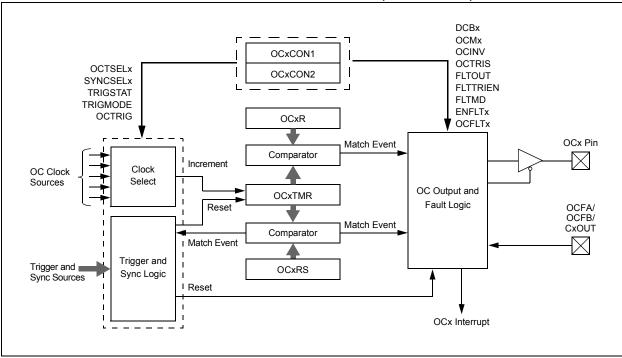
la farmar f O anna a			AIVT	Interrupt Bit Locations			
Interrupt Source	Vector Number	IVT Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
HLVD (High/Low-Voltage Detect)	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>	
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<2>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
Timer5	28	00004Ch	00015Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	
Ultra Low-Power Wake-up	80	0000B4h	0001B4h	IFS5<0>	IEC5<0>	IPC20<2:0>	

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
—			—		MI2C2IP2	MI2C2IP1	MI2C2IP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	SI2C2IP2	SI2C2IP1	SI2C2IP0				<u> </u>		
bit 7							bit 0		
Legend:									
R = Readable		W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-11	Unimplemen	ted: Read as ')'						
bit 10-8	MI2C2IP <2:0	>: Master I2C2	Event Interru	pt Priority bits					
	• • 001 = Interrup	ot is Priority 7 (l ot is Priority 1 ot source is disa		r interrupt)					
	000 = Interru		Unimplemented: Read as '0'						
bit 7	•	ted: Read as ')'						
bit 7 bit 6-4	Unimplemen	ted: Read as 'd >: Slave I2C2 E		Priority bits					
	Unimplement SI2C2IP<2:0> 111 = Interrup 001 = Interrup	•: Slave I2C2 E ot is Priority 7 (I	vent Interrupt nighest priority						

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "PIC24F Family Reference Manual", Section 38. "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24FV32KA304 family of devices has the following features:

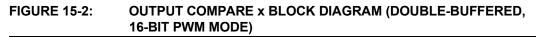

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

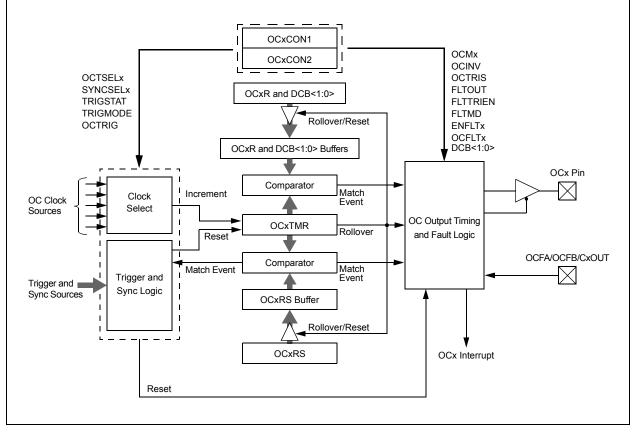
- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FV32KA304 FAMILY CLOCK DIAGRAM

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)


15.3 Pulse-Width Modulation (PWM) Mode


In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Calculate the desired ON time and load it into the OCxR register.
- 2. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 4. Select a clock source by writing the OCTSEL2<2:0> (OCxCON<12:10>) bits.
- 5. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 6. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.

	CSS30	CSS29	CSS28	CSS27	CSS26	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	CSS17	CSS16
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared		x = Bit is unknown		

- bit 14-10CSS<30:26>: A/D Input Scan Selection bits
1 = Includes corresponding channel for input scan
0 = Skips channel for input scanbit 9-2Unimplemented: Read as '0'bit 1-0CSS<17:16>: A/D Input Scan Selection bits
 - 1 = Includes corresponding channel for input scan
 - 0 = Skips channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.

REGISTER 22-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
				•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
						bit (
	CSS14 R/W-0	CSS14 CSS13 R/W-0 R/W-0	CSS14 CSS13 CSS12 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0	CSS14 CSS13 CSS12 CSS11 CSS10 CSS9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 C

CSS<15:0>: A/D Input Scan Selection bits

- 1 = Includes corresponding ANx input for scan
- 0 = Skips channel for input scan

Note 1: Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.

NOTES:

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
—		—	_	—		GSS0	GWRP
bit 7	•		•				bit 0
Legend:							
R = Readable	hit	C = Clearable	hit	U = Unimplem	onted hit read	1 26 '0'	
R = Readable	, DIL		, DIL		chica bit, icac		

bit 7-2	Unimplemented: Read as '0'
bit 1	GSS0: General Segment Code Flash Code Protection bit
	1 = No protection0 = Standard security is enabled
bit 0	GWRP: General Segment Code Flash Write Protection bit
	1 = General segment may be written0 = General segment is write-protected

REGISTER 26-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

REGISTER 26-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
IESO	LPRCSEL	SOSCSRC	—	—	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:				
R = Reada	ble bit	P = Programmable bit	U = Unimplemented bit	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	IESO: Inte	ernal External Switchover bit		
		al External Switchover mode is al External Switchover mode is	· · ·	,
bit 6	LPRCSEL	.: Internal LPRC Oscillator Pov	wer Select bit	
	0	Power/High-Accuracy mode Power/Low-Accuracy mode		
bit 5	SOSCSR	C: Secondary Oscillator Clock	Source Configuration bit	
		analog crystal function is ava crystal is disabled; digital SCI		1
bit 4-3	Unimplen	nented: Read as '0'		
bit 2-0	FNOSC<2	2:0>: Oscillator Selection bits		
		at RC Oscillator (FRC) at RC Oscillator with Divide-by-	N with PLL module (FRCD	V+PLL)
				•

- 010 = Primary Oscillator (XT, HS, EC)
- 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
- 100 = Secondary Oscillator (SOSC)
- 101 = Low-Power RC Oscillator (LPRC)
- 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
- 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)

26.4 Deep Sleep Watchdog Timer (DSWDT)

In PIC24FV32KA304 family devices, in addition to the WDT module, a DSWDT module is present which runs while the device is in Deep Sleep, if enabled. It is driven by either the SOSC or LPRC oscillator. The clock source is selected by the Configuration bit, DSWDTOSC (FDS<4>).

The DSWDT can be configured to generate a time-out, at 2.1 ms to 25.7 days, by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (FDS<3:0>). When the DSWDT is enabled, the clock source is also enabled.

DSWDT is one of the sources that can wake-up the device from Deep Sleep mode.

26.5 Program Verification and Code Protection

For all devices in the PIC24FV32KA304 family, code protection for the boot segment is controlled by the Configuration bit, BSS0, and the general segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the boot segment and bit, GWRP, for the general segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

26.6 In-Circuit Serial Programming

PIC24FV32KA304 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.7 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

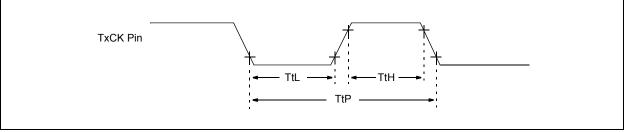
MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).


The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

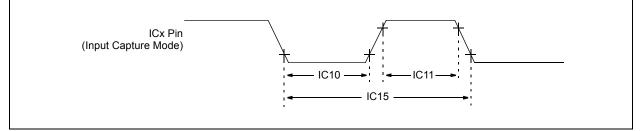

FIGURE 29-8: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

TABLE 29-27: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS

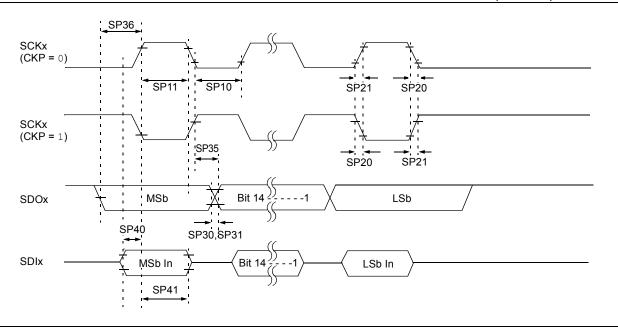

Param. No.	Symbol	Chara	Min	Max	Units	Conditions	
	TtH	TxCK High Pulse	Sync w/Prescaler	Tcy + 20	_	ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtL	TxCK Low Pulse	Sync w/Prescaler	Tcy + 20	_	ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtP	TxCK External Input	Sync w/Prescaler	2 * Tcy + 40	_	ns	N = Prescale Value
		Period	Async w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	—	ns	(1, 4, 8, 16)
			Async Counter	40		ns	
		Delay for Input Edge	Synchronous	1	2	TCY	
		to Timer Increment	Asynchronous	—	20	ns	

FIGURE 29-9: INPUT CAPTURE x TIMINGS

TABLE 29-28: INPUT CAPTURE x REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15
IC11	ТссН	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15
IC15	TccP	ICx Input Period – Syncl	nronous Timer	<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

FIGURE 29-19: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 29-37: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

АС СНА	RACTERIST	TICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2		_	ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns		
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.

TABLE 29-40: A/D MODULE SPECIFICATIONS

			Standard Opera	ting C			
AC CHA	ARACTERI	STICS	Operating tempe	rature	2.0V -40°C \leq TA \leq + -40°C \leq TA \leq +	85°C f	
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
			Device S	upply			
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8		Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKA30X devices
			Greater of: VDD – 0.3 or 2.0		Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKA30X devices
AD02	AVss	Module Vss Supply	Vss-0.3		Vss + 0.3	V	
			Reference	Inputs	3		-
AD05	VREFH	Reference Voltage High	AVss + 1.7	_	AVDD	V	
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD – 1.7	V	
AD07	Vref	Absolute Reference Voltage	AVss – 0.3	—	AVDD + 0.3	V	
AD08	IVREF	Reference Voltage Input Current	_	1.25	—	mA	
AD09	ZVREF	Reference Input Impedance	_	10k	_	Ω	
			Analog	nput	1		
AD10	VINH-VINL	Full-Scale Input Span	VREFL	—	VREFH	V	(Note 2)
AD11	VIN	Absolute Input Voltage	AVss - 0.3		AVDD + 0.3	V	
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V	
AD17	RIN	Recommended Impedance of Analog Voltage Source	—	_	1k	Ω	12-bit
			A/D Acc	uracy			
AD20b	NR	Resolution	—	12	—	bits	
AD21b	INL	Integral Nonlinearity	_	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD22b	DNL	Differential Nonlinearity	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD23b	Gerr	Gain Error	—	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD24b	EOFF	Offset Error	_	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD25b		Monotonicity ⁽¹⁾		_	_	_	Guaranteed

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.

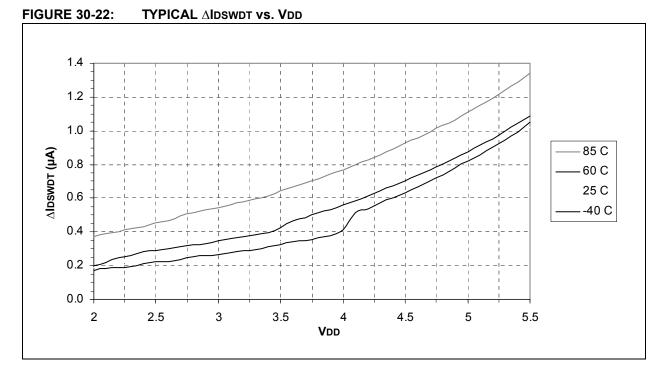
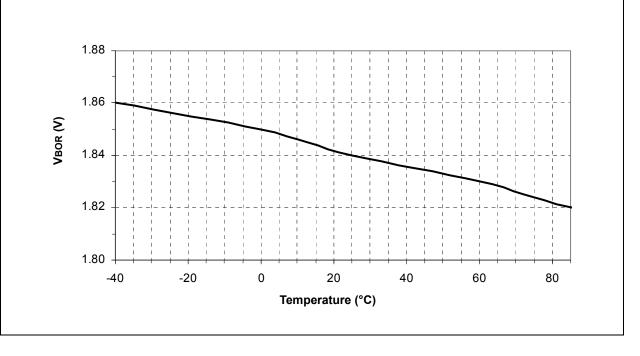



FIGURE 30-23: TYPICAL VBOR vs. TEMPERATURE (BOR TRIP POINT 3)

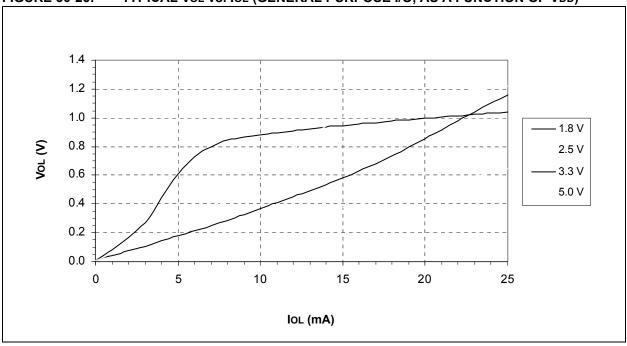
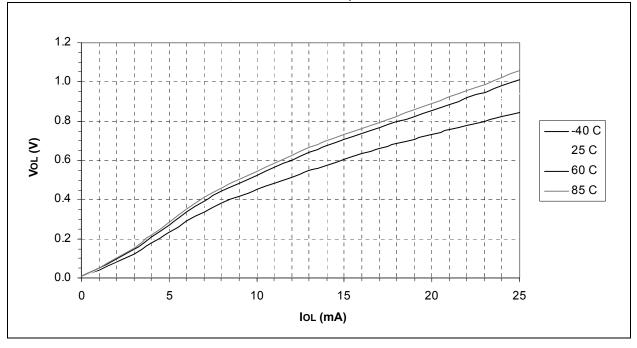



FIGURE 30-26: TYPICAL Vol vs. IoL (GENERAL PURPOSE I/O, AS A FUNCTION OF VDD)

FIGURE 30-27: TYPICAL Vol vs. Iol (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le Vdd \le 5.5V$)

30.2 Characteristics for Extended Temperature Devices (-40°C to +125°C)

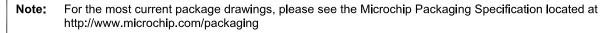
Note: Data for VDD levels greater than 3.3V are applicable to PIC24FV32KA304 family devices only.

FIGURE 30-40: TYPICAL AND MAXIMUM lidle vs. Vdd (FRC MODE)

libLE (mA)				
		VDD		

FIGURE 30-41: TYPICAL AND MAXIMUM lidle vs. TEMPERATURE (FRC MODE)

liple (mA)	
	Temperature (°C)


FIGURE 30-49: TYPICAL Vol vs. Iol (GENERAL I/O, $2.0V \le VDD \le 5.5V$)

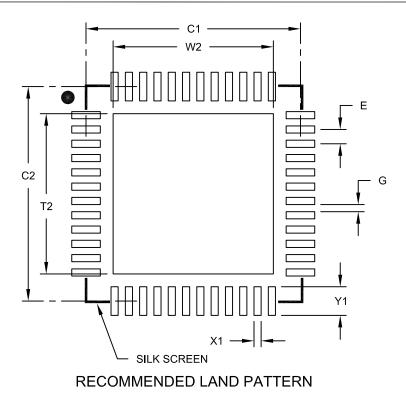

0 Γοι (MA)

FIGURE 30-50: TYPICAL VOH vs. IOH (GENERAL I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le V \text{DD} \le 5.5 \text{V})$

(л) нол	-	- -	-	_	-
		Юн (mA))		

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

	Units				
Dimensio	n Limits	MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Optional Center Pad Width	W2			4.45	
Optional Center Pad Length	T2			4.45	
Contact Pad Spacing	C1		6.00		
Contact Pad Spacing	C2		6.00		
Contact Pad Width (X28)	X1			0.20	
Contact Pad Length (X28)	Y1			0.80	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A