

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka301-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features	PIC24FV16KA301	PIC24FV32KA301	PIC24FV16KA302	PIC24FV32KA302	PIC24FV16KA304	PIC24FV32KA304		
Operating Frequency			DC – 32 I	MHz				
Program Memory (bytes)	16K	32K	16K	32K	16K	32K		
Program Memory (instructions)	5632	11264	5632	11264	5632	11264		
Data Memory (bytes)			2048					
Data EEPROM Memory (bytes)			512					
Interrupt Sources (soft vectors/ NMI traps)		30 (26/4)						
I/O Ports	PORTA PORTB<15:1	<5:0> 2,9:7,4,2:0>	PORTA PORTB	<7,5:0> <15:0>	PORTA<11:7,5:0> PORTB<15:0> PORTC<9:0>			
Total I/O Pins	17	7	2	3	3	8		
Timers: Total Number (16-bit)			5					
32-Bit (from paired 16-bit timers)			2					
Input Capture Channels			3					
Output Compare/PWM Channels			3					
Input Change Notification Interrupt	16	6	2	2	3	7		
Serial Communications: UART SPI (3-wire/4-wire)			2					
I ² C™			2					
12-Bit Analog-to-Digital Module (input channels)	12	2	1	3	1	6		
Analog Comparators			3					
Resets (and delays)	POR, REPEAT	BOR, RESET Instruction, Ha	Instruction, Mardware Traps PWRT, OST, F	ICLR, WDT, s, Configuratio PLL Lock)	Illegal Opcoc on Word Mis	le, match		
Instruction Set	76 E	ase Instructio	ns, Multiple A	ddressing Mo	ode Variation	S		
Packages	20-F PDIP/SSC	Pin DP/SOIC	28- SPDIP/SSOF	Pin P/SOIC/OFN	44-Pin QFN/TQFP 48-Pin UQFN			

TABLE 1-1: DEVICE FEATURES FOR THE PIC24FV32KA304 FAMILY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								TN	/IR1								0000
PR1	0102								Р	R1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	T1ECS1	T1ECS0	—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106								TN	IR2								0000
TMR3HLD	0108								TMR	3HLD								0000
TMR3	010A								ΤN	/IR3								0000
PR2	010C								Р	R2								0000
PR3	010E								Р	R3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS		FFFF
T3CON	0112	TON	_	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	—	TCS	_	0000
TMR4	0114								TN	/IR4								0000
TMR5HLD	0116								TMR	5HLD								0000
TMR5	0118								ΤN	1R5								0000
PR4	011A								Р	R4								FFFF
PR5	011C								Р	R5								FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T45	_	TCS	_	0000
T5CON	0120	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	_	TCS	_	0000
Lananda				Desetual		the last and a	la sins al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

	1					1	1			1	1		1		1	1	1	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	—	—	—	_	—	—		IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144									IC1BU	F							0000
IC1TMR	0146									IC1TM	R							XXXX
IC2CON1	0148	—	_	ICSIDL	IC2TSEL2	IC2TSEL1	IC2TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C									IC2BU	F							0000
IC2TMR	014E									IC2TM	R							XXXX
IC3CON1	0150	—	_	ICSIDL	IC3TSEL2	IC3TSEL1	IC3TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154									IC3BU	F							0000
IC3TMR	0156									IC3TM	R							XXXX

PIC24FV32KA304 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	_	_	_	_		—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	-	_				—	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	_	_		_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: PORTC is not implemented in 20-pin devices or 28-pin devices.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_	_	_	_	_	_		_	_	_	SMBUSDEL2	SMBUSDEL1	_	_		_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

INE OID I EIN	0-4.							
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI	_			_		_	
bit 15	·				•	•	bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	—	—	—		INT2EP	INT1EP	INT0EP	
bit 7	·	•				•	bit 0	
Legend:		HSC = Hardw	are Settable/C	learable bit				
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	Table bit				
	1 = Uses Alte	rnate Interrupt '	Vector Table (A	AIVT)				
	0 = Uses stan	idard (default) I	nterrupt Vector	r Table (IVT)				
bit 14	DISI: DISI In	struction Status	s bit					
	1 = DISI inst	ruction is active) 					
	0 = DISI INSt	ruction is not ad	Ctive					
bit 13-3	Unimplemen	ted: Read as ')^					
bit 2	INT2EP: Exte	rnal Interrupt 2	Edge Detect F	Polarity Select b	bit			
	1 = Interrupt i	s on the negatives on the positive	ve edge					
bit 1		s on the positiv	E euge Edge Detect [Palarity Salaat k	sit			
DILI	1 = Interrunt i	s on the negative			JIL			
	0 = Interrupt i	s on the positiv	e edge					
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect F	Polarity Select b	oit			
	1 = Interrupt i	s on the negativ	ve edge					
	0 = Interrupt i	s on the positiv	e edge					

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

REGISTER	9-2: CLK	DIV: CLOCK [GISTER			
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0
bit 15	4	I	•				bit 8
r							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	
Dit 7							DITU
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
<u> </u>							
bit 15	ROI: Recove	r on Interrupt bi	t				
	1 = Interrupt	s clear the DOZ	EN bit, and re	eset the CPU an	d peripheral clo	ock ratio to 1:1	
	0 = Interrupts	s have no effec	t on the DOZE	N bit			
bit 14-12	DOZE<2:0>:	CPU and Perip	heral Clock R	atio Select bits			
	111 = 1:128						
	110 = 1:64						
	101 = 1.32 100 = 1.16						
	011 = 1 :8						
	010 = 1:4						
	001 = 1:2						
1.11.44	000 = 1.1						
DIT 11		e Enable bit	the CDU and		, notio		
	1 = DOZE<2 0 = CPU and	20> bits specify	ck ratio are se	peripheral clock t to 1:1	k ratio		
bit 10-8	RCDIV<2:0>	: FRC Postscal	er Select bits				
	When COSC	<2:0> (OSCCO	N<14:12>) = :	<u>111:</u>			
	111 = 31.25	kHz (divide-by-	256)				
	110 = 125 kF	1z (divide-by-64	·)				
	101 = 230 kF	12 (divide-by-32	.) i)				
	011 = 1 MHz	(divide-by-8))				
	010 = 2 MHz	(divide-by-4)					
	001 = 4 MHz	(divide-by-2) (d	default)				
	000 = 8 MHz		NZ14:105) - 1	110.			
	111 = 1.95 k	< <u><2.0> (05000</u> Hz (divide-by-2)	<u>1N< 14. 122) = .</u> 56)	<u>110.</u>			
	110 = 7.81 k	Hz (divide-by-6	4)				
	101 = 15.62	kHz (divide-by-	32)				
	100 = 31.25	kHz (divide-by-	16)				
	011 = 62.5 kl	HZ (divide-by-8))				
	001 = 250 kF	Iz (divide-by-4)	(default)				
	000 = 500 k ⊦	Iz (divide-by-1)	(
h:+ 7 0		And. Deed as i	~,				

bit 7-0 Unimplemented: Read as '0'

Note 1: This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

NOTES:

EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-1: SAMPLE SCKx FREQUENCIES^(1,2)

	Secondary Prescaler Settings							
		1:1	2:1	4:1	6:1	8:1		
Primary Prescaler Settings	1:1	Invalid	8000	4000	2667	2000		
	4:1	4000	2000	1000	667	500		
	16:1	1000	500	250	167	125		
	64:1	250	125	63	42	31		
Fcy = 5 MHz								
Primary Prescaler Settings	1:1	5000	2500	1250	833	625		
	4:1	1250	625	313	208	156		
	16:1	313	156	78	52	39		
	64:1	78	39	20	13	10		

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: SCKx frequencies are indicated in kHz.

18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 18-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 18-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	= FCY/(16 (UxBRG + 1))
Solving for UxBRG va	lue:
UxBRG UxBRG UxBRG	= ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1 = 25
Calculated Baud Rate	= 4000000/(16(25+1)) = 9615
Error	 = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 – 9600)/9600 = 0.16%
Note 1: Based on	FCY = FOSC/2; Doze mode and PLL are disabled.

		-					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PVCFG	1 PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	—	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS ⁽¹) SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-14	PVCFG<1:0 > 11 = 4 * Inter 10 = 2 * Inter 01 = Externa	•: Converter Po mal V _{BG} (²⁾ mal V _{BG} (³⁾ I VREF+	sitive Voltage	Reference Conf	iguration bits		
	00 = AV DD						
bit 13	NVCFG0: Co 1 = External	onverter Negativ VREF-	ve Voltage Rei	ference Configur	ation bits		
hit 12		fset Calibration	Mode Select	hit			
	1 = Inverting	and non-invert	ing inputs of c	hannel Sample-	and-Hold are c	onnected to AV	22
	0 = Inverting	and non-invert	ing inputs of c	hannel Sample-	and-Hold are c	onnected to not	rmal inputs
bit 11	BUFREGEN:	A/D Buffer Re	gister Enable	bit			
	1 = Conversi	ion result is loa	ded into a buf	fer location deter	mined by the	converted chann	nel
	0 = A/D resu	It buffer is treat	ed as a FIFO				
bit 10	CSCNA: Sca	n Input Selectio	ons for CH0+	S/H Input for MU	IX A Setting bit		
	1 = Scans in 0 = Does not	puts t scan inputs					
bit 9-8	Unimplemen	ited: Read as '	0'				
bit 7	BUFS: Buffer	⁻ Fill Status bit ⁽¹)				
	1 = A/D is fill 0 = A/D is fill	ing the upper h	alf of the buffe	er; user should a er; user should a	ccess data in t ccess data in t	he lower half he upper half	
bit 6-2	SMPI<4:0>: \$	Sample Rate In	terrupt Select	bits			
	11111 = Inte 11110 = Inte	errupts at the co errupts at the co	ompletion of th ompletion of th	e conversion for e conversion for	⁻ each 32nd sa ⁻ each 31st sar	mple nple	
	•						
	• 00001 = Inte	errupts at the co	ompletion of th	e conversion for	every other sample	ample	
hit 1	BUFM: Buffe	r Fill Mode Sele	-ct hit(1)		cuon cumpic		
bit i	1 = Starts fill	ing the buffer a	it address. AD	1BUF0. on the t	first interrupt a	nd AD1BUF(n/2	2) on the next
	interrupt 0 = Starts fil interrupts	(Split Buffer mo ling the buffer s (FIFO mode)	ode) at address,	ADCBUF0, and	l each sequer	ntial address o	n successive
Note 1:	This is only applicused when BUFN	cable when the $I = 1$.	buffer is used	in FIFO mode (I	BUFREGEN =	0). In addition,	BUFS is only
2:	The voltage refer	ence settina wi	ll not be withir	the specificatio	n with VDD bel	ow 4.5V.	

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

3: The voltage reference setting will not be within the specification with VDD below 2.3V.

TABLE 22-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format Equivalent Decimal Value	/ 9	16-Bit Signed Fractional Format/ Equivalent Decimal Value				
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999			
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998			
	•••							
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001			
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000			
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001			
•••								
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999			
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000			

FIGURE 22-5: A/D OUTPUT DATA FORMATS (10-BIT)

RAM Contents:							d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																
Integer	0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
										I	I					
Signed Integer	s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
															0	
Fractional (1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
Signed Fractional (1.15)	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0

TABLE 22-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/ Equivalent Decimal Value	16-Bit Signed Integer Format/ Equivalent Decimal Value				
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023		
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022		
• • •							
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1		
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0		
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1		
• • •							
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023		
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024		

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR x MODULE BLOCK DIAGRAM

26.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watch- dog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the "PIC24F Family Reference Manual" provided below:
	 Section 9. "Watchdog Timer (WDT)" (DS39697) Section 36. "High-Level Integration

 Section 36. "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)

• Section 33. "Programming and Diagnostics" (DS39716)

PIC24FV32KA304 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 26-1. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-8.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

TABLE 26-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

bit 3-1	BSS<2:0>: Boot Segment Program Flash Code Protection bits						
	111 = No boot program Flash segment						
	011 = Reserved						

110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh

010 = High-security boot program Flash segment starts at 200h, ends at 000AFEh

101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾

001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾

100 = Standard security; boot program Flash segment starts at 200h, ends at $002BFEh^{(1)}$

000 = High-security; boot program Flash segment starts at 200h, ends at 002BFEh⁽¹⁾

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot segment may be written
- 0 = Boot segment is write-protected

Note 1: This selection should not be used in PIC24FV16KA3XX devices.

REGISTER 2	26-4: FOSC	: OSCILLAT	OR CONFIGU	JRATION REC	SISTER		
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits
	 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit
	 1 = Secondary oscillator is configured for high-power operation 0 = Secondary oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits
	 11 = Primary oscillator/external clock input frequency is greater than 8 MHz 10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz 01 = Primary oscillator/external clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected

26.4 Deep Sleep Watchdog Timer (DSWDT)

In PIC24FV32KA304 family devices, in addition to the WDT module, a DSWDT module is present which runs while the device is in Deep Sleep, if enabled. It is driven by either the SOSC or LPRC oscillator. The clock source is selected by the Configuration bit, DSWDTOSC (FDS<4>).

The DSWDT can be configured to generate a time-out, at 2.1 ms to 25.7 days, by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (FDS<3:0>). When the DSWDT is enabled, the clock source is also enabled.

DSWDT is one of the sources that can wake-up the device from Deep Sleep mode.

26.5 Program Verification and Code Protection

For all devices in the PIC24FV32KA304 family, code protection for the boot segment is controlled by the Configuration bit, BSS0, and the general segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the boot segment and bit, GWRP, for the general segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

26.6 In-Circuit Serial Programming

PIC24FV32KA304 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.7 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

FIGURE 30-10: FRC FREQUENCY ACCURACY vs. VDD

FIGURE 30-13: LPRC FREQUENCY ACCURACY vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

FIGURE 30-29: VIL/VIH vs. VDD (I²C[™], TEMPERATURES AS NOTED)

FIGURE 30-34: TYPICAL VOLTAGE REGULATOR OUTPUT vs. VDD

FIGURE 30-35: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B