

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka302-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		N	lemory				٨N				ch)	rs	<u> </u>	
PIC24F Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Timers 16-Bit	Capture Input	Compare/PV Output	UART w/ IrDA [®]	IdS	I²C™	12-Bit A/D (Comparato	CTMU (ch	RTCC
PIC24FV16KA301/ PIC24F16KA301	20	16K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV32KA301/ PIC24F32KA301	20	32K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV16KA302/ PIC24F16KA302	28	16K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV32KA302/ PIC24F32KA302	28	32K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV16KA304/ PIC24F16KA304	44	16K	2K	512	5	3	3	2	2	2	16	3	16	Y
PIC24FV32KA304/ PIC24F32KA304	44	32K	2K	512	5	3	3	2	2	2	16	3	16	Y

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Data EEPROM, refer to the *"PIC24F Family Reference Manual"*, Section 5. "Data EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFFh. The size of the data EEPROM is 256 words in the PIC24FV32KA304 family devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB® C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

//Disable Inter	rupts For 5 instruc	tions
asm volatile	("disi #5");	
//Issue Unlock	Sequence	
asm volatile	("mov #0x55, W0	\n"
	"mov W0, NVMKEY	\n"
	"mov #0xAA, W1	\n"
	"mov W1, NVMKEY	\n");
// Perform Writ	e/Erase operations	
asm volatile	("bset NVMCON, #WR	\n"
	"nop	∖n"
	"nop	\n");

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7							bit 0
Legend:		C = Clearable	bit	HSC = Hardw	are Settable/C	learable bit	
R = Readable	R = Readable bit W = Writable bit				nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set			'0' = Bit is cleared x = Bit is unknown		
bit 15-4 Unimplemented: Read as '0' bit 3 IPL3: CPU Interrupt Priority Level Status bit ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less							
bit 1-0	Unimplemen	ted: Read as ')'				
Note 1: Se 2: Th	e Register 3-2 e IPL3 bit is co	for the descript ncatenated with	tion of this bit, v n the IPL<2:0>	which is not deo bits (SR<7:5>)	dicated to intern to form the CF	rupt control fun PU Interrupt Pri	ctions. ority Level.

Note: Bit 2 is described in Section 3.0 "CPU".

INE OID I EIN	0-4.								
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	_			_		_		
bit 15	·				•	•	bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	—	—	—		INT2EP	INT1EP	INT0EP		
bit 7	·	•				•	bit 0		
Legend:		HSC = Hardw	are Settable/C	learable bit					
R = Readabl	le bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	• Value at POR '1' = Bit is set '0' = Bit is cleared					x = Bit is unkr	nown		
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	Table bit					
	1 = Uses Alte	1 = Uses Alternate Interrupt Vector Table (AIVT)							
	0 = Uses stan	idard (default) I	nterrupt Vector	r Table (IVT)					
bit 14	DISI: DISI In	struction Status	s bit						
	1 = DISI inst	1 = DISI instruction is active							
	0 = DISI INSt	ruction is not ad	Ctive						
bit 13-3	Unimplemen	ted: Read as ')^						
bit 2	INT2EP: Exte	rnal Interrupt 2	Edge Detect F	Polarity Select b	bit				
	1 = Interrupt is on the negative edge								
bit 1		s on the positiv	E euge Edge Detect [Palarity Salaat k	sit				
DILI	1 = Interrunt i	s on the negative			JIL				
	0 = Interrupt i	s on the positiv	e edge						
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect F	Polarity Select b	oit				
	1 = Interrupt i	s on the negativ	ve edge						
	0 = Interrupt i	s on the positiv	e edge						

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

	REGISTER 8-23:	IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_	T4IP2	T4IP1	T4IP0	_		—	_		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
_	OC3IP2	OC3IP1	OC3IP0	_	—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	Unimplemen	ted: Read as '	כי						
bit 14-12	T4IP<2:0>: ⊺	T4IP<2:0>: Timer4 Interrupt Priority bits							
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)					
	•								
	• 001 - Internu	nt in Driarity 1							
	001 = Interru	pl is Phonly 1 nt source is dis	abled						
bit 11-7	Unimplemen	Unimplemented: Read as '0'							
bit 6-4		OCCUP/2:0 : Output Compare Channel 3 Interrupt Priority hits							
bit 0 4	111 = Interru	UC3IF<2:02: Output Compare Channel 3 Interrupt Priority bits							
	•	prist honry / (nightest phone	y interrupt)					
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 3-0	Unimplemen	ted: Read as ')'						

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 DEEP SLEEP MODE

In PIC24FV32KA304 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- · POR Event
- MCLR Event
- RTCC Alarm (if the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) Time-out
- Ultra Low-Power Wake-up (ULPWU) Event

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE). An unlock sequence is required to set the DSEN bit. Once the DSEN bit has been set, there is no time limit before the SLEEP command can be executed. The DSEN bit is automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep
	wake-up, allow a delay of at least 3 Tcr
	after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.2.4.5 "Deep Sleep WDT".
- 2. If the application requires Deep Sleep BOR, enable it by programming the DSLPBOR Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module For more information on RTCC, see Section 19.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).

Note: An unlock sequence is required to set the DSEN bit.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

To set the DSEN bit, the unlock sequence in Example 10-2 is required:

EXAMPLE 10-2: THE UNLOCK SEQUENCE

//Disa	able Interrupts For 5 instructions
asm	<pre>volatile("disi #5");</pre>
//Issi	le Unlock Sequence
asm	volatile
mov	#0x55, W0;
mov	W0, NVMKEY;
mov	#0xAA, W1;
mov	W1, NVMKEY;
bset	DSCON, #DSEN
1	

Enter Deep Sleep mode by issuing a PWRSAV #0 instruction.

FIGURE 16-1: SPI1 MODULE BLOCK DIAGRAM (STANDARD BUFFER MODE)

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or cleared when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 Read – indicates data transfer is output from the slave
	0 = Write – indicates data transfer is input to the slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty

Hardware is set when the software writes to I2CxTRN; hardware is clear at the completion of data transmission.

NOTES:

R/W-0	<u>U-0</u>	R/W-0	U-0	<u>U-0</u>	<u>U-0</u>	U-0	<u>U-0</u>
HLVDEN	<u> </u>	HLSIDL		<u> </u>			—
bit 15							bit 8
							
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
VDIR	BGVST	IRVST		HLVDL3	HLVDL2	HLVDL1	HLVDL0
bit 7							bit 0
· · · ·							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	HLVDEN: Hig	h/Low-Voltage	Detect Power	Enable bit			
	1 = HLVD is $0 = HLVD$ is 0	enabled disabled					
bit 14	Unimplement	ted: Read as '()'				
bit 13	HLSIDL: HIV	D Stop in Idle N	/ /ode bit				
211 10	1 = Discontin	ues module op	eration when c	levice enters Id	lle mode		
	0 = Continue	s module opera	ation in Idle mo	de			
bit 12-8	Unimplemen	ted: Read as ')'				
bit 7	VDIR: Voltage	e Change Direc	tion Select bit				
	1 = Event occ	urs when volta	ge equals or e	xceeds trip poir	nt (HLVDL<3:0>	>)	
	0 = Event occ	urs when volta	ge equals or fa	Ills below trip p	oint (HLVDL<3:	:0>)	
bit 6	BGVST: Band	d Gap Voltage S	Stable Flag bit				
	1 = Indicates that the band gap voltage is stable						
bit 5		al Reference V	ap voitage is u oltago Stable E				
bit 5	1 = Indicates	that the interna	al reference vo	ltage is stable	and the high-ve	oltage detect lo	ogic generates
	the interr	upt flag at the s	pecified voltag	le range	0	0	0 0
	0 = Indicates	that the internation	al reference vo	ltage is unstab	le and the high	1-voltage detec	t logic will not
	enabled	the interrupt in	ag at the spec	med voltage ra	inge, and the F	alvo interrupt	should not be
bit 4	Unimplemen	ted: Read as ')'				
bit 3-0	HLVDL<3:0>:	: Hiah/I ow-Volt	age Detection	l imit bits			
	1111 = Exteri	nal analog inpu	t is used (input	comes from th	e HLVDIN pin)		
	1110 = Trip P	Point 1 ⁽¹⁾	、 ·		. ,		
	1101 = Trip P	Point $2^{(1)}$					
	$\pm \pm 00 = 1 \text{ Irip P}$	OINT 3					
	•	(4)					
	0000 = Trip P	oint 15(")					

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

FIGURE 22-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

REGISTER 22-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—	—	—	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CHH<17:16>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For All Other Values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

REGISTER 22-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7		•	•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For all other values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

CMxCON: COMPARATOR x CONTROL REGISTERS REGISTER 23-1: R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R-0 CON COE CPOL CLPWR CEVT COUT bit 15 bit 8 R/W-0 R/W-0 U-0 R/W-0 U-0 U-0 R/W-0 R/W-0 EVPOL1 **EVPOL0** CREF CCH1 CCH0 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CON: Comparator x Enable bit 1 = Comparator is enabled 0 = Comparator is disabled bit 14 COE: Comparator x Output Enable bit 1 = Comparator output is present on the CxOUT pin 0 = Comparator output is internal only bit 13 CPOL: Comparator x Output Polarity Select bit 1 = Comparator output is inverted 0 = Comparator output is not inverted bit 12 CLPWR: Comparator x Low-Power Mode Select bit 1 = Comparator operates in Low-Power mode 0 = Comparator does not operate in Low-Power mode bit 11-10 Unimplemented: Read as '0' bit 9 **CEVT:** Comparator x Event bit 1 = Comparator event defined by EVPOL<1:0> has occurred; subsequent triggers and interrupts are disabled until the bit is cleared 0 = Comparator event has not occurred bit 8 COUT: Comparator x Output bit When CPOL = 0: 1 = VIN + > VIN -0 = VIN + < VIN -When CPOL = 1: 1 = VIN + < VIN-0 = VIN + > VIN bit 7-6 EVPOL<1:0>: Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0) 10 = Trigger/event/interrupt is generated on the transition of the comparator output: If CPOL = 0 (non-inverted polarity): High-to-low transition only. If CPOL = 1 (inverted polarity): Low-to-high transition only. 01 = Trigger/event/interrupt is generated on the transition of the comparator output If CPOL = <u>0</u> (non-inverted polarity): Low-to-high transition only. If CPOL = $\underline{1}$ (inverted polarity): High-to-low transition only. 00 = Trigger/event/interrupt generation is disabled

bit 5 Unimplemented: Read as '0'

© 2011-2013 Microchip Technology Inc.

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Measurement Unit, refer to the "PIC24F Family Reference Manual", Section 53. "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen external edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edge levels or edge transitions
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of current source and trims the current.

25.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from several internal peripheral modules (OC1, Timer1, any input capture or comparator module) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

EQUATION 25-1:

$$I = C \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 25-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	f = f	1	1	N, Z
	COM	f.WREG	WREG = f	1	1	N.Z
	COM	Ws Wd	$Wd = \overline{Ws}$	1	1	N 7
CP	CP	f	Compare f with WREG	1	1	C DC N OV Z
Cr	CP	1 Wb #1:+5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb, #1105	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CPO	CPO	f		1	1	C, DC, N, OV, Z
CFU	CPO	L We		1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG with Borrow	1	1	C, DC, N, OV, Z
CFD	CPP	1 Wb #1:+5	Compare Wb with lit5 with Borrow	1	1	C, DC, N, OV, Z
	CPP	Wb, #1105	Compare Wb with Ws with Borrow	1	1	C, DC, N, OV, Z
	Crb	w D , wS	$(Wb - Ws - \overline{C})$	-		0, 00, 11, 01, 2
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = [+ 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 28-2.	INSTRUCTION	SET OVERVIEW	
IADLL 20-2.			

FIGURE 30-34: TYPICAL VOLTAGE REGULATOR OUTPUT vs. VDD

FIGURE 30-35: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

Μ

Microchip Internet Web Site	358
MPLAB ASM30 Assembler, Linker, Librarian	252
MPLAB Integrated Development	
Environment Software	251
MPLAB PM3 Device Programmer	254
MPLAB REAL ICE In-Circuit Emulator System	253
MPLINK Object Linker/MPLIB Object Librarian	252
Ν	
Near Data Space	
0	
On-Chip Voltage Regulator	
Oscillator Configuration	
Clock Switching	121
Enabling	121
Sequence	121
Configuration Bit Values for Clock Selection	116
CPU Clocking Scheme	116
Initial Configuration on POR	116
Reference Clock Output	122
Output Compare	
Cascaded (32-Bit) Mode	151
Operations	153
Subcycle Resolution	156
Synchronous, Trigger Modes	151

Ρ

Packaging	
Details	328
Marking	325
PIC24F32KA304 Family Device Features (Summary)	14
PIC24FV32KA304 Family Device	
Features (Summary)	13
Pinout Descriptions	16
Power-Saving	134
Power-Saving Features	125
Clock Frequency, Clock Switching	125
Coincident Interrupts	126
Instruction-Based Modes	125
Deep Sleep	126
Idle	126
Sleep	125
Selective Peripheral Control	134
Ultra Low-Power Wake-up	131
Voltage, Regulator-Based	133
Deep Sleep Mode	133
Retention Sleep Mode	133
Run Mode	133
Sleep (Standby) Mode	133
Product Identification System	360
Program and Data Memory	
Access Using Table Instructions	53
Addressing Space	51
Interfacing Spaces	51
Program Space Visibility	55
Program Memory	
Address Space	35
Data EEPROM	36
Device Configuration Words	36
Hard Memory Vectors	36
Memory Map	35
Organization	36
Program Verification	250

Pulse-Width Modulation (PWM) Mode Pulse-Width Modulation. See PWM.	154
PWM	155
	155
R	
Reader Response	359
Register Maps	
A/D Converter	47
Analog Select	48
	49
CRC	33
СТМИ	48
Deep Sleep	49
I2Cx	44
ICN	40
Input Capture	42
Interrupt Controller	41
NVM	50
Output Compare	43
Pad Configuration	46
	50
	40
PORTC	46
Real-Time Clock and Calendar (RTCC)	48
SPlx	45
Timer	42
Triple Comparator	48
UARTx	44
Ultra Low-Power Wake-up	50
Registers	
AD1CHITH (A/D Scan Compare Hit, High Word).	216
ADICHIH (A/D Scan Compare Hit, Low Word)	210
AD1CON1 (A/D Control 1)	210
AD1CON2 (A/D Control 2)	211
AD1CON3 (A/D Control 3)	213
AD1CON5 (A/D Control 5)	214
AD1CSSH (A/D Input Scan Select, High Word)	217
AD1CSSL (A/D Input Scan Select, Low Word)	217
AD1CTMUENH (CTMU Enable, High Word)	218
AD1CTMUENL (CTMU Enable, Low Word)	218
ALCFGRPT (Alarm Configuration)	190
ALMINSEC (Alarm Minutes and Seconds Value) .	194
ALMTHDY (Alarm Month and Day Value)	193
ALWDHR (Alarm Weekday and Hours Value)	193
ANSA (Analog Selection, PORTA)	130
ANSE (Analog Selection, FORTE)	137
CI KDIV (Clock Divider)	119
CMSTAT (Comparator x Status)	228
CMxCON (Comparator x Control)	227
CORCON (CPU Control)	33
CORCON (CPU Core Control)	80
CRCCON1 (CRC Control 1)	202
CRCCON2 (CRC Control 2)	203
CRCXORH (CRC XOR Polynomial, High Byte)	204
CRCXORL (CRC XOR Polynomial, Low Byte)	204
CIMUCON (CTMU Control 1)	234
CTMUCON2 (CTMU Control 2)	235
	231
Reference Control)	
	00