

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka302t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE ⁽¹⁾	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE ^(1,2)	CN9PDE ⁽¹⁾	CN8PDE ⁽³⁾	CN7PDE ⁽¹⁾	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	CN31PDE ^(1,2)	CN30PDE	CN29PDE	CN28PDE ^(1,2)	CN27PDE ⁽¹⁾	CN26PDE ^(1,2)	CN25PDE ^(1,2)	CN24PDE ⁽¹⁾	CN23PDE	CN22PDE	CN21PDE	CN20PDE ^(1,2)	CN19PDE ^(1,2)	CN18PDE ^(1,2)	CN17PDE ^(1,2)	CN16PDE ⁽¹⁾	0000
CNPD3	005A	_	-	_	_	_	_	_	_	_	-	_	CN36PDE ^(1,2)	CN35PDE ^(1,2)	CN34PDE ^(1,2)	CN33PDE ^(1,2)	CN32PDE ^(1,2)	0000
CNEN1	0062	CN15IE ⁽¹⁾	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE ^(1,2)	CN9IE ⁽¹⁾	CN8IE ⁽³⁾	CN7IE ⁽¹⁾	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	CN31IE ^(1,2)	CN30IE	CN29IE	CN28IE ^(1,2)	CN27IE ⁽¹⁾	CN26IE ^(1,2)	CN25IE ^(1,2)	CN24IE ⁽¹⁾	CN23IE	CN22IE	CN21IE	CN20IE ^(1,2)	CN19IE ^(1,2)	CN18IE ^(1,2)	CN17IE ^(1,2)	CN16IE ⁽¹⁾	0000
CNEN3	0066	—	_		—		_	_		_	_	_	CN36IE ^(1,2)	CN35IE ^(1,2)	CN34IE ^(1,2)	CN33IE ^(1,2)	CN32IE ^(1,2)	0000
CNPU1	006E	CN15PUE ⁽¹⁾	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE ^(1,2)	CN9PUE ⁽¹⁾	CN8PUE ⁽³⁾	CN7PUE ⁽¹⁾	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2	0070	CN31PUE ^(1,2)	CN30PUE	CN29PUE	CN28PUE ^(1,2)	CN27PUE ⁽¹⁾	CN26PUE ^(1,2)	CN25PUE ^(1,2)	CN24PUE ⁽¹⁾	CN23PUE	CN22PUE	CN21PUE	CN20PUE ^(1,2)	CN19PUE ^(1,2)	CN18PUE ^(1,2)	CN17PUE ^(1,2)	CN16PUE ⁽¹⁾	0000
CNPU3	0072	—	_		—		_	_		_	_	_	CN36PUE ^(1,2)	CN35PUE ^(1,2)	CN34PUE ^(1,2)	CN33PUE ^(1,2)	CN32PUE ^(1,2)	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

3: These bits are not implemented in FV devices.

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the table read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and table read procedures (builtin_tblrdl) from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

```
int attribute ((space(eedata))) eeData = 0x1234;
                                          // Data read from EEPROM
int data;
/*_____
                                       _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the read
_____
*/
  unsigned int offset;
   \ensuremath{//} Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData);
                                           // Initialize EE Data page pointer
  offset = __builtin_tbloffset(&eeData);
data = __builtin_tblrdl(offset);
                                            // Initizlize lower word of address
                                            // Write EEPROM data to write latch
```

r							
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	ROEN: Refer	ence Oscillator	Output Enable	e bit			
	1 = Reference	e oscillator is er	nabled on REF	O pin			
	0 = Reference	e oscillator is di	sabled				
bit 14	Unimplemen	ted: Read as ')'				
bit 13	ROSSLP: Re	ference Oscilla	tor Output Sto	p in Sleep bit			
	1 = Reference	e oscillator cont e oscillator is di	inues to run ir sabled in Slee	n Sleep			
hit 12		e oscillator is di	r Source Sele	۰۲ ct bit			
	1 = Primary (oscillator is use	d as the base	clock(1)			
	0 = System c	clock is used as	the base cloc	k; base clock re	eflects any cloc	k switching of t	he device
bit 11-8	RODIV<3:0>	Reference Os	cillator Divisor	Select bits			
	1111 = Base	clock value div	ided by 32,76	3			
	1110 = Base	clock value div	ided by 16,384	4			
	1101 = Base	clock value div	ided by 8,192				
	1011 = Base	clock value div	ided by 4,096 ided by 2 048				
	1010 = Base	clock value div	ided by 1,024				
	1001 = Base	clock value div	ided by 512				
	1000 = Base	clock value div	ided by 256				
	0111 = Base	clock value div	ided by 128				
	0110 – Base	clock value div	ided by 32				
	0100 = Base	clock value div	ided by 16				
	0011 = Base	clock value div	ided by 8				
	0010 = Base	clock value div	ided by 4				
	0001 - base	clock value div	iueu by z				

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
TON	—	TSIDL	_	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾		
bit 15							bit 8		
									
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	_		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
	<u> </u>						-		
bit 15	TON: Timer1	On bit							
	1 = Starts 16	-bit Timer1							
	0 = Stops 16	-bit limer1							
DIT 14		ted: Read as ')' Aada hit						
DIE 13	1 = Discontin	ues module on	noue bil aration when c	levice enters ld	lle mode				
	0 = Continues	s module opera	tion in Idle mo	ide	ne mode				
bit 12-10	Unimplemen	Unimplemented: Read as '0'							
bit 9-8	T1ECS<1:0>	T1ECS<1:0>: Timer1 Extended Clock Select bits ⁽¹⁾							
	11 = Reserved; do not use								
	10 = Timer1	uses the LPRC	as the clock s						
	00 = Timer1 u	uses the Secon	dary Oscillato	r (SOSC) as the	e clock source				
bit 7	Unimplemen	ted: Read as 'd)'	、 ,					
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit					
	When TCS =	<u>1:</u>							
	This bit is ign	ored.							
	$\frac{\text{When ICS} =}{1 = \text{Gated tin}}$	<u>0:</u> ne accumulatio	n is enabled						
	0 = Gated tin	ne accumulation	n is disabled						
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits					
	11 = 1:256								
	10 = 1:64 01 = 1:8								
	00 = 1:1								
bit 3	Unimplemen	ted: Read as 'd)'						
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	lect bit				
	When TCS =	<u>1:</u>							
	1 = Synchro	nizes external o t synchronize e	clock input Internal clock i	nput					
	When TCS =			nput					
	This bit is igno	ored.							
bit 1	TCS: Timer1	Clock Source S	Select bit						
	1 = Timer1 cl	lock source is s	elected by T1	ECS<1:0>					
L:1 C	0 = Internal c	clock (Fosc/2)	.,						
U JIQ	Unimplemen	ted: Read as ')						
Note 1: ⊤	te 1: The T1ECSx bits are valid only when TCS = 1.								

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON	—	TSIDL	_				_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0		
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾		TCS			
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	bit 15 TON: Timerx On bit $ \frac{\text{When TxCON<3>} = 1:}{1 = \text{Starts 32-bit Timerx/y}} $ $ 0 = \text{Stops 32-bit Timerx/y} $ $ \frac{\text{When TxCON<3>} = 0:}{1 = \text{Starts 16-bit Timerx}} $ $ 0 = \text{Stops 16-bit Timerx} $								
bit 14	Unimplemen	Unimplemented: Read as '0'							
bit 13	TSIDL: Timer	TSIDL: Timerx Stop in Idle Mode bit							
	1 = Discontine 0 = Continues	ues module op s module opera	eration when d tion in Idle mo	evice enters Id de	le mode				
bit 12-7	Unimplemen	ted: Read as '	כ'						
bit 6	TGATE: Time When TCS = This bit is igno When TCS = 1 = Gated tin 0 = Gated tin	erx Gated Time <u>1:</u> ored. <u>0:</u> ne accumulatio ne accumulatio	Accumulation n is enabled n is disabled	Enable bit					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescale	e Select bits					
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1								
bit 3	T32: 32-Bit Ti	imer Mode Sele	ect bit ⁽¹⁾						
	1 = Timer2 a 0 = Timer2 a	nd Timer3 or Ti nd Timer3 or Ti	mer4 and Time mer4 and Time	er5 form a sing er5 act as two ⁻	le 32-bit timer 16-bit timers				
bit 2	Unimplemen	ted: Read as '	כ'						
bit 1	TCS: Timerx	Clock Source S	Select bit						
	1 = External 0 = Internal	clock from pin, clock (Fosc/2)	TxCK (on the	rising edge)					
bit 0	Unimplemen	ted: Read as '	כ'						
Note 1: In	32-bit mode, th	ne T3CON or T	5CON control b	oits do not affeo	ct 32-bit timer o	peration.			

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit has not yet started, SPIxTXB is full
 - 0 = Transmit has started, SPIxTXB is empty

In Standard Buffer mode:

Automatically set in hardware when the CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

In Enhanced Buffer mode:

Automatically set in hardware when the CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

- 1 = Receive is complete, SPIxRXB is full
- 0 = Receive is not complete, SPIxRXB is empty

In Standard Buffer mode:

Automatically set in hardware when the SPIx transfers data from the SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

In Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or cleared when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 Read – indicates data transfer is output from the slave
	0 = Write – indicates data transfer is input to the slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty

Hardware is set when the software writes to I2CxTRN; hardware is clear at the completion of data transmission.

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0		
bit 15							bit 8		
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0		
bit 7	bit 7 bit 0								
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15	Unimplement	ed: Read as '0'							
bit 14-12	MINTEN<2:0	>: Binary Code	d Decimal Valu	ie of Minute's T	ens Digit bits				
	Contains a va	lue from 0 to 5							
bit 11-8	MINONE<3:0	>: Binary Code	ed Decimal Valu	ue of Minute's C	Ones Digit bits				
	Contains a va	lue from 0 to 9							
bit 7	Unimplemen	ted: Read as '	כי						
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits								
	Contains a va	lue from 0 to 5							
bit 3-0	bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits								
	Contains a va	lue from 0 to 9							

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

REGISTER 19-11: RTCCSWT: CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PWCSTAB<7:0>: PWM Stability Window Timer bits							
	11111111 = Stability window is 255 TPWCCLK clock periods							
	•							
	00000000 = Stability window is 0 TPWCCLK clock periods The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.							
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits							
	 11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 							
	•							
	0000000 = Sample window is 0 TPWCCLK clock periods The sample window timer starts counting at the end of the stability window when PWCEN = 1. If PWCSTAB<7:0> = 00000000, the sample window timer starts counting from every alarm event when PWCEN = 1.							

Note 1: A write to this register is only allowed when RTCWREN = 1.

NOTES:

22.1 A/D Control Registers

The 12-bit A/D Converter module uses up to 43 registers for its operation. All registers are mapped in the data memory space.

22.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to eleven control and status registers:

- AD1CON1: A/D Control Register 1
- AD1CON2: A/D Control Register 2
- AD1CON3: A/D Control Register 3
- AD1CON5: A/D Control Register 5
- AD1CHS: A/D Sample Select Register
- AD1CHITH and AD1CHITL: A/D Scan Compare Hit Registers
- AD1CSSL and AD1CSSH: A/D Input Scan Select Registers
- AD1CTMUENH and AD1CTMUENL: CTMU Enable Registers

The AD1CON1, AD1CON2 and AD1CON3 registers (Register 22-1, Register 22-2 and Register 22-3) control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion triggers, and manually controlling the sample/convert sequences. The AD1CON5 register (Register 22-4) specifically controls features of the Threshold Detect operation, including its function in power-saving modes.

The AD1CHS register (Register 22-5) selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The AD1CHITH and AD1CHITL registers (Register 22-6 and Register 22-7) are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases,

indicate if a match condition has occurred. AD1CHITL is always implemented, whereas AD1CHITH may not be implemented in devices with 16 or fewer channels.

The AD1CSSH/L registers (Register 22-8 and Register 22-9) select the channels to be included for sequential scanning.

The AD1CTMUENH/L registers (Register 22-10 and Register 22-11) select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. AD1CTMUENL is always implemented, whereas AD1CTMUENH may not be implemented in devices with 16 or fewer channels.

22.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port RAM, called ADC1BUF. The buffer is composed of at least the same number of word locations as there are external analog channels for a particular device, with a maximum number of 32. The number of buffer addresses is always even. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADC1BUF0 through ADC1BUFn (up to 31).

The A/D result buffers are both readable and writable. When the module is active (AD1CON<15> = 1), the buffers are read-only, and store the results of A/D conversions. When the module is inactive (AD1CON<15> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations.

Buffer contents are not cleared when the module is deactivated with the ADON bit (AD1CON1<15>). Conversion results and any programmed threshold values are maintained when ADON is set or cleared.

24.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", Section 20. "Comparator Module Voltage Reference Module" (DS39709).

24.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

REGISTER 25-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is Comparator 3 output 1110 = Edge 2 source is Comparator 2 output 1101 = Edge 2 source is Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is IC3 1010 = Edge 2 source is IC2 1001 = Edge 2 source is IC1 1000 = Edge 2 source is CTED13⁽²⁾ 0111 = Edge 2 source is CTED12^(1,2) 0110 = Edge 2 source is CTED11^(1,2) 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is OC1 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

DC CHARACTERISTICS		Standard C	Operating Co	onditions: -40°C ≤ -40°C ≤	1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX TA \leq +85°C for Industrial TA \leq +125°C for Extended		
Parameter No.	Device	Typical	Мах	Units	Conditions		
Idle Current (ID	LE)						
DC40	PIC24FV32KA3XX	120	200	μA	2.0V		
		160	430	μA	5.0V	0.5 MIPS,	
	PIC24F32KA3XX	50	100	μA	1.8V	Fosc = 1 MHz ⁽¹⁾	
		90	370	μA	3.3V		
DC42	PIC24FV32KA3XX	165	—	μA	2.0V		
		260		μA	5.0V	1 MIPS,	
	PIC24F32KA3XX	95	—	μA	1.8V	Fosc = 2 MHz ⁽¹⁾	
		180	—	μA	3.3V		
DC44	PIC24FV32KA3XX	3.1	6.5	mA	5.0V	16 MIPS,	
	PIC24F32KA3XX	2.9	6.0	mA	3.3V	Fosc = 32 MHz ⁽¹⁾	
DC46	PIC24FV32KA3XX	0.65	—	mA	2.0V		
		1.0		mA	5.0V	FRC (4 MIPS),	
	PIC24F32KA3XX	0.55	—	mA	1.8V	Fosc = 8 MHz	
		1.0	—	mA	3.3V		
DC50	PIC24FV32KA3XX	60	200	μA	2.0V		
		70	350	μA	5.0V	LPRC (15.5 KIPS),	
	PIC24F32KA3XX	2.2	18	μA	1.8V	Fosc = 31 kHz	
		4.0	60	μA	3.3V		

TABLE 29-7: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

Note 1: Oscillator is in External Clock mode (FOSCSEL<2:0> = 010, FOSC<1:0> = 00).

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV32KA304 family AC characteristics and timing parameters.

TABLE 29-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	1.8V to 3.6V PIC24F32KA3XX			
		2.0V to 5.5V PIC24FV32KA3XX			
AC CHARACTERISTICS	Operating temperature:	-40°C ≤ TA ≤ +85°C for Industrial			
	_	-40°C \leq TA \leq +125°C for Extended			
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".				

FIGURE 29-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	_	15	pF	In XT and HS modes when the external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-20: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)

TABLE 29-38: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
SP70	TscL	SCKx Input Low Time	30	—		ns			
SP71	TscH	SCKx Input High Time	30	—		ns			
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns			
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_		ns			
SP50	TssL2scH, TssL2scL	\overline{SSx} to SCKx \uparrow or SCKx Input	120	_	_	ns			
SP51	TssH2doZ	$\overline{\text{SSx}}$ \uparrow to SDOx Output High-Impedance ⁽³⁾	10		50	ns			
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	—	_	ns			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.

FIGURE 30-17: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)

20-Lead SOIC (7.50 mm)

Example

Example

