

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka304-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note:	The TBLRDH and TBLWTH instructions are
	not used while accessing data EEPROM
	memory.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0, HS	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
—	—	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 4-2	Unimplemented: Read as '0'
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	SPF2IF: SPI2 Fault Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source. See Example 10-3 for initializing the ULPWU module.

A series resistor, between RB0 and the external capacitor, provides overcurrent protection for the RB0/AN0/ULPWU pin and enables software calibration of the time-out (see Figure 10-1).

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

EXAMPLE 10-3: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//*******************************
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
   LATBbits.LATB0 = 1:
  for(i = 0; i < 10000; i++) Nop();</pre>
//*******
//2. Stop Charging the capacitor
// on RBO
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
TEC5bits.ULPWUTE = 1:
IPC21bits.ULPWUIP = 0x7;
//*******
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
   capacitor discharge
ULPWCONbits.ULPEN = 1;
   ULPWCONbit.ULPSINK = 1;
//********
//5. Enter Sleep Mode
//*******************************
  Sleep();
//for sleep, execution will
//resume here
```

REGISTER 16-1:

R/W-0 U-0 R/W-0 U-0 U-0 R-0, HSC R-0, HSC R-0, HSC SPIEN SPIBEC0 SPISIDL SPIBEC2 SPIBEC1 bit 15 bit 8 R-0, HSC R/C-0, HS R/W-0, HSC R/W-0 R/W-0 R/W-0 R-0, HSC R-0, HSC SPIROV SPIRBF SRMPT SRXMPT SISEL2 SISEL1 SISEL0 SPITBF bit 7 bit 0 HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPI transfers pending. Slave mode: Number of SPI transfers unread. bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and ready to send or receive 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded (the user software has not read the previous data in the SPI1BUF register) 0 = No overflow has occurred bit 5 **SRXMPT:** SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty 0 = Receive FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data byte is shifted into the SPIxSR: as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set)

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit				
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

DIT 14	UTXINV: IrDA [®] Encoder Transmit Polarity Inversion bit
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx 0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on a RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on a RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	1 = Receive buffer has overflowed
	0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 \rightarrow 0 transition) will reset the receiver buffer and the RSR to the empty state)
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data; at least one more characters can be read 0 = Receive buffer is empty

© 2011-2013 Microchip Technology Inc.

P/M/ 0	11-0	P/M/0	11-0	11-0	11-0	11-0		
	0-0		0-0	0-0	0-0	0-0	0-0	
hit 15		TIEGIDE					 bit 8	
bit 15							511 0	
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
VDIR	BGVST	IRVST	_	HLVDL3	HLVDL2	HLVDL1	HLVDL0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15	HLVDEN: Hig	h/Low-Voltage	Detect Power	Enable bit				
	1 = HLVD is 0	enabled						
	0 = HLVD is (disabled						
bit 14	Unimplemen	ted: Read as ')' A a al a la 1					
DIT 13	HLSIDL: HLV	D Stop in Idle N	/IODE DIT	laviaa antara ld	la mada			
	1 = Discontinue 0 = Continue	s module opera	ation in Idle mo	ide	lle mode			
bit 12-8	Unimplemen	ted: Read as ')'					
bit 7	VDIR: Voltage	e Change Direc	tion Select bit					
	1 = Event occ	urs when volta	ge equals or e	xceeds trip poir	nt (HLVDL<3:0>	>)		
	0 = Event occ	urs when voltage	ge equals or fa	alls below trip po	oint (HLVDL<3	:0>)		
bit 6	BGVST: Band	d Gap Voltage S	Stable Flag bit					
	1 = Indicates	that the band g	ap voltage is s	table				
hit E		chat the band g	ap voltage is u					
DIL 5	1 = Indicates	that the interna	al reference vo	oltage is stable	and the high-ve	oltage detect lo	ogic generates	
	the interr	upt flag at the s	pecified voltag	je range	and the high h		gie generatee	
	0 = Indicates	that the international	al reference vo	oltage is unstab	le and the high	1-voltage detec	t logic will not	
	generate enabled	the interrupt th	ag at the spec	ined voltage ra	inge, and the F	1LVD Interrupt	snould not be	
bit 4	Unimplemen	ted: Read as ')'					
bit 3-0	HLVDL<3:0>	: High/I ow-Volt	age Detection	l imit bits				
	1111 = Exter	nal analog inpu	t is used (input	t comes from th	e HLVDIN pin)			
	1110 = Trip Point 1(1)							
	1101 = Trip P	Point 2(')						
		ont 5						
	•							
	0000 - T rin F	Doint 15(1)						
	0000 = mp P	Unit 15'						

REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	_	—	MODE12	FORM1	FORM0
bit 15							bit 8
	D/M/ 0	D/M/ 0	D/M/ 0	11.0			
				0-0			
hit 7	001(02	331(01	00100		AGAIN	SAM	bit 0
							Dit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	d as '0'	
R = Readable	bit	W = Writable b	oit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADON: A/D C	perating Mode	bit				
	1 = A/D Conv 0 = A/D Conv	erter module is	operating				
bit 14		ted: Read as '0	,				
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit				
	1 = Discontin 0 = Continue	ues module opera	eration when o	levice enters Id	lle mode		
bit 12-11	Unimplement	ted: Read as '0	,				
bit 10	MODE12: 12-	Bit Operation N	lode bit				
	1 = 12-bit A/E) operation					
	0 = 10-bit A/E) operation					
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits (see	the following for	ormats)		
	11 = Fractional	al result, signed	l, left-justified	off instified			
	01 = Decimal	result, signed,	right-justified	en-justineu			
	00 = Absolute	decimal result,	unsigned, rig	ht-justified			
bit 7-4	SSRC<3:0>: 3	Sample Clock S	Source Select	bits			
	1111 = Not av	vailable; do not	use				
	1000 = Not av	vailable; do not	use				
	0111 = Intern	al counter ends	sampling and	I starts convers	ion (auto-conv	ert)	
	0101 = Timer	1 event ends sa	ampling and st	arts conversior	n		
	0100 = CTML	J event ends sa	mpling and sta	arts conversion			
	0011 = Timer	5 event ends sa	ampling and st	arts conversion	1		
	0010 = Imer	event ends sam	inpling and star	ts conversion	1		
	0000 = Cleari	ng the SAMP b	it in software e	ends sampling a	and begins cor	iversion	
bit 3	Unimplement	ted: Read as '0	,				
bit 2	ASAM: A/D S	ample Auto-Sta	rt bit				
	1 = Sampling 0 = Sampling	begins immedi begins when th	ately after the ne SAMP bit is	last conversior manually set	n; SAMP bit is a	auto-set	
bit 1	SAMP: A/D S	ample Enable b	oit				
	1 = A/D Sam 0 = A/D Sam	ple-and-Hold an ple-and-Hold ar	nplifiers are sa nplifiers are ho	ampling olding			
bit 0	DONE: A/D C	onversion Statu	is bit				
	$1 = A/D \operatorname{conv}$	ersion cycle has	s completed				
	$0 = A/D \operatorname{conv}$	ersion cycle has	s not started o	r is in progress			

REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1

24.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", Section 20. "Comparator Module Voltage Reference Module" (DS39709).

24.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_		_		—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0	
bit 7							bit 0	
								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-8	Unimplemen	ted: Read as ')'					
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit				
	1 = CVREF ci	rcuit is powere	d on					
	0 = CVREF CI	rcuit is powere	d down					
bit 6	CVROE: Com	parator VREF (Dutput Enable	bit				
	1 = CVREF VC	oltage level is o	utput on the C	VREF pin	oin			
hit 5			Source Selectic	on hit	JIII			
DIL 5		tor reference s						
	$1 - \text{Comparator reference source, CVRSRC = VREFT - VREFT 0 = \text{Comparator reference source, CVRSRC = AVDD} - \text{AVSS}$							
bit 4-0	CVR<4:0>: Comparator VREF Value Selection $0 \le CVR<4:0> \le 31$ bits							
	When CVRSS = 1:							
	CVREF = (VREF-) + (CVR<4:0>/32) • (VREF+ – VREF-)							
	When CVRSS	<u>S = 0:</u>						
	$CVREF = (AVSS) + (CVR < 4:0 > /32) \cdot (AVDD - AVSS)$							

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHA	RACTER	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units				Conditions	
		Data EEPROM Memory						
D140	Epd	Cell Endurance	100,000	—	—	E/W		
D141	Vprd	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage	
D143A	TIWD	Self-Timed Write Cycle Time	—	4	—	ms		
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	_	10M	_	E/W		
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated	
D145	Iddpd	Supply Current During Programming	—	7	_	mA		

TABLE 29-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 29-13: DC CHARACTERISTICS: COMPARATOR SPECIFICATIONS

Operatir	Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments			
D300	VIOFF	Input Offset Voltage	_	20	40	mV				
D301	VICM	Input Common-Mode Voltage	0	_	Vdd	V				
D302	CMRR	Common-Mode Rejection Ratio	55	—	—	dB				

TABLE 29-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated)									
Param No.	Symbol	Characteristic Min Typ Max Units Comments							
VRD310	CVRES	Resolution	_	_	Vdd/32	LSb			
VRD311	CVRAA	Absolute Accuracy	—	—	AVDD – 1.5	LSb			
VRD312	CVRur	Unit Resistor Value (R)	_	2k	—	Ω			

TABLE 29-23: CLKO AND I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Conditions					
DO31	TIOR	Port Output Rise Time	_	10	25	ns			
DO32	TIOF	Port Output Fall Time	—	10	25	ns			
DI35	TINP	INTx Pin High or Low Time (output)	20	—	_	ns			
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү			

Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

FIGURE 30-29: VIL/VIH vs. VDD (I²C[™], TEMPERATURES AS NOTED)

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е			
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	Ν		48		
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.127 REF			
Overall Width	Е	6.00 BSC			
Exposed Pad Width	E2	4.45 4.60 4.			
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

NOTES: