

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka304-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	23
3.0	СРИ	
4.0	Memory Organization	35
5.0	Flash Program Memory	57
6.0	Data EEPROM Memory	63
7.0	Resets	69
8.0	Interrupt Controller	
9.0	Oscillator Configuration	115
10.0	Power-Saving Features	125
11.0	I/O Ports	135
12.0	Timer1	139
13.0	Timer2/3 and Timer4/5	141
14.0	Input Capture with Dedicated Timers	147
15.0	Output Compare with Dedicated Timers	151
16.0	Serial Peripheral Interface (SPI)	
17.0		
18.0	Universal Asynchronous Receiver Transmitter (UART)	177
19.0	Real-Time Clock and Calendar (RTCC)	
20.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	199
21.0	High/Low-Voltage Detect (HLVD)	205
22.0	12-Bit A/D Converter with Threshold Detect	
23.0	Comparator Module	225
24.0	Comparator Voltage Reference	229
25.0	Charge Time Measurement Unit (CTMU)	
26.0	Special Features	239
27.0	Development Support	251
	Instruction Set Summary	
	Electrical Characteristics	
30.0	DC and AC Characteristics Graphs and Tables	295
31.0	Packaging Information	325
Appe	endix A: Revision History	351
Index	κ	353
The I	Microchip Web Site	359
	omer Change Notification Service	
Cust	omer Support	359
Read	der Response	360
Prod	uct Identification System	

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24FV32KA304 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are different from each other in four ways:

- Flash program memory (16 Kbytes for PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
- Available I/O pins and ports (18 pins on two ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
- 4. Members of the PIC24FV32KA301 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV32KA304), accommodate an operating VDD range of 2.0V to 5.5V, and have an on-board Voltage Regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by "F" (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number					Pin Number	•				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
C3INA	18	26	23	15	16	18	26	23	15	16	Ι	ANA	Comparator 3 Input A (+)
C3INB	17	25	22	14	15	17	25	22	14	15	I	ANA	Comparator 3 Input B (-)
C3INC	2	2	27	19	21	2	2	27	19	21	1	ANA	Comparator 3 Input C (+)
C3IND	4	4	1	21	23	4	4	1	21	23	1	ANA	Comparator 3 Input D (-)
C3OUT	12	17	14	44	48	12	17	14	44	48	0	—	Comparator 3 Output
CLK I	7	9	6	30	33	7	9	6	30	33	I	ANA	Main Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0	_	System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	I	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	I	ST	
CN2	2	2	27	19	21	2	2	27	19	21	I	ST	
CN3	3	3	28	20	22	3	3	28	20	22	I	ST	
CN4	4	4	1	21	23	4	4	1	21	23	I	ST	
CN5	5	5	2	22	24	5	5	2	22	24	I	ST	
CN6	6	6	3	23	25	6	6	3	23	25	I	ST	
CN7	_	7	4	24	26		7	4	24	26	I	ST	
CN8	14	20	17	7	7				_		I	ST	
CN9		19	16	6	6		19	16	6	6	I	ST	
CN10		—	—	27	29				27	29	I	ST	
CN11	18	26	23	15	16	18	26	23	15	16	1	ST	
CN12	17	25	22	14	15	17	25	22	14	15	1	ST	
CN13	16	24	21	11	12	16	24	21	11	12	1	ST	
CN14	15	23	20	10	11	15	23	20	10	11	1	ST	
CN15		22	19	9	10		22	19	9	10	Ι	ST]
CN16		21	18	8	9		21	18	8	9	Ι	ST	
CN17		—	—	3	3		_	_	3	3	1	ST	
CN18	_	_	_	2	2	—	_	_	2	2	Ι	ST]
CN19		_	_	5	5	—	_		5	5	1	ST]
CN20		_	—	4	4	_			4	4	I	ST	
CN21	13	18	15	1	1	13	18	15	1	1	I	ST]
CN22	12	17	14	44	48	12	17	14	44	48	1	ST	

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
CN23	11	16	13	43	47	11	16	13	43	47	I	ST	Interrupt-on-Change Inputs
CN24		15	12	42	46	-	15	12	42	46	1	ST	
CN25		_	_	37	40	-			37	40	1	ST	
CN26		_	_	38	41				38	41	I	ST	
CN27		14	11	41	45		14	11	41	45	I	ST	
CN28		_	_	36	39				36	39	I	ST	
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	
CN31		_	_	26	28	—	_	—	26	28	I	ST	
CN32		_	—	25	27	—	—	—	25	27	1	ST	
CN33		_	—	32	35	—	—	—	32	35	1	ST	
CN34		_	—	35	38	—	—	—	35	38	I	ST	
CN35		_	_	12	13	—	_	—	12	13	I	ST	
CN36		_	_	13	14	—	_	—	13	14	I	ST	
CVREF	17	25	22	14	15	17	25	22	14	15	I	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	I	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	3	28	20	22	3	3	28	20	22	I	ANA	Comparator Reference Negative Input Voltage
CTCMP	4	4	1	21	23	4	4	1	21	23	I	ANA	CTMU Comparator Input
CTED1	14	20	17	7	7	11	2	27	19	21	I	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	I	ST	
CTED3	_	19	16	6	6	_	19	16	6	6	I	ST	
CTED4	13	18	15	1	1	13	18	15	1	1	1	ST	
CTED5	17	25	22	14	15	17	25	22	14	15	I	ST	
CTED6	18	26	23	15	16	18	26	23	15	16	I	ST	
CTED7	_	_	_	5	5	_	—	_	5	5	I	ST	
CTED8	_	_	—	13	14	—	—	—	13	14	I	ST	
CTED9	_	22	19	9	10	—	22	19	9	10	I	ST	
CTED10	12	17	14	44	48	12	17	14	44	48	I	ST]
CTED11	_	21	18	8	9	—	21	18	8	9	I	ST]
CTED12	5	5	2	22	24	5	5	2	22	24	I	ST]
CTED13	6	6	3	23	25	6	6	3	23	25	1	ST	1

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
RC0	_	_	_	25	27	_	—	_	25	27	I/O	ST	PORTC Pins
RC1	_	_	_	26	28	_	_	_	26	28	I/O	ST	
RC2	_	_	_	27	29	_	_	_	27	29	I/O	ST	
RC3	_	_		36	39		_		36	39	I/O	ST	
RC4	_	_	_	37	40	_	_	_	37	40	I/O	ST	
RC5	_	_	_	38	41	_	_	_	38	41	I/O	ST	
RC6	_	_	_	2	2	_	_	_	2	2	I/O	ST	
RC7	_	_	_	3	3	_	_	_	3	3	I/O	ST	
RC8	_	_	_	4	4	_	_	_	4	4	I/O	ST	
RC9	_	_	_	5	5	_	_	_	5	5	I/O	ST	
REFO	18	26	23	15	16	18	26	23	15	16	0	_	Reference Clock Output
RTCC	17	25	22	14	15	17	25	22	14	15	0	_	Real-Time Clock/Calendar Output
SCK1	15	22	19	9	10	15	22	19	9	10	I/O	ST	SPI1 Serial Input/Output Clock
SCK2	2	14	11	38	41	2	14	11	38	41	I/O	ST	SPI2 Serial Input/Output Clock
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	l ² C	I2C1 Clock Input/Output
SCL2	18	7	4	24	26	18	7	4	24	26	I/O	l ² C	I2C2 Clock Input/Output
SCLKI	10	12	9	34	37	10	12	9	34	37	I	ST	Digital Secondary Clock Input
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	l ² C	I2C1 Data Input/Output
SDA2	6	6	3	23	25	6	6	3	23	25	I/O	l ² C	I2C2 Data Input/Output
SDI1	17	21	18	8	9	17	21	18	8	9	I	ST	SPI1 Serial Data Input
SDI2	4	19	16	36	39	4	19	16	36	39	I	ST	SPI2 Serial Data Input
SDO1	16	24	21	11	12	16	24	21	11	12	0	_	SPI1 Serial Data Output
SDO2	3	15	12	37	40	3	15	12	37	40	0	—	SPI2 Serial Data Output
SOSCI	9	11	8	33	36	9	11	8	33	36	I	ANA	Secondary Oscillator Input
SOSCO	10	12	9	34	37	10	12	9	34	37	0	ANA	Secondary Oscillator Output
SS1	18	26	23	15	16	18	26	23	15	16	0	_	SPI1 Slave Select
SS2	15	23	20	35	38	15	23	20	35	38	0	_	SPI2 Slave Select

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—			IPL3 ⁽¹⁾	PSV	—	_
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	Clearable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less
bit 2	PSV: Program Space Visibility in Data Space Enable bit
	1 = Program space is visible in data space
	0 = Program space is not visible in data space
bit 1-0	Unimplemented: Read as '0'

Note 1: User interrupts are disabled when IPL3 = 1.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware division for 16-bit divisor.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

TABLE 4-3: CPU CORE REGISTERS MAP

IADEE -	т-∪.																	
File Name	Start Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								WF	REG0								0000
WREG1	0002								WF	REG1								0000
WREG2	0004								WF	REG2								0000
WREG3	0006								WF	REG3								0000
WREG4	0008								WF	REG4								0000
WREG5	000A								WF	REG5								0000
WREG6	000C								WF	REG6								0000
WREG7	000E								WF	REG7								0000
WREG8	0010								WF	REG8								0000
WREG9	0012				WREG9 C											0000		
WREG10	0014																0000	
WREG11	0016								WR	EG11								0000
WREG12	0018								WR	EG12								0000
WREG13	001A								WR	EG13								0000
WREG14	001C								WR	EG14								0000
WREG15	001E								WR	EG15								0000
SPLIM	0020								SF	PLIM								XXXX
PCL	002E								F	PCL								0000
PCH	0030	_	_	_	_	_	_	_	_	_				PCH				0000
TBLPAG	0032		_		—	—		—	—				TBI	_PAG				0000
PSVPAG	0034			PSVPAG												0000		
RCOUNT	0036			RCOUNT x													XXXXX	
SR	0042	_	_		-	-		_	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044		_	-	_	_		_	—	—	_	_	-	IPL3	PSV	—	_	0000
DISICNT	0052		_							DISIC	NT							XXXX

DS39995D-page 39

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—	0000
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	_	_	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCXORH	0646	X31	X30	X29	X28	X27	X26	X25	X24	X23	X22	X21	X20	X19	X18	X17	X16	0000
CRCDATL	0648								CRCDA	TL								XXXX
CRCDATH	064A								CRCDA	ГН								XXXX
CRCWDATL	064C		CRCWDATL												XXXX			
CRCWDATH	064E		CRCWDATH													XXXX		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: CLOCK CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	RETEN	—	DPSLP	CM	PMSLP	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	_	COSC2	COSC1	COSC0	_	NOSC2	NOSC1	NOSC0	CLKLOCK	_	LOCK	_	CF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN	RCDIV2	RCDIV1	RCDIV0	_	_	_	_	_	_	_	_	3140
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000
REFOCON	074E	ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0	_	_	_	_	_	_	_	_	0000
HLVDCON	0756	HLVDEN	_	HLSIDL	_	_	_	_	-	VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

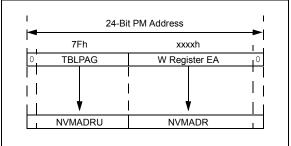
2: OSCCON register Reset values are dependent on the Configuration Fuses and by type of Reset.

TABLE 4-23: DEEP SLEEP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DSCON	0758	DSEN	_	—	—	_	_	_	RTCCWDIS	_	—	—		—	ULPWDIS	DSBOR	RELEASE	0000
DSWAKE	075A	_	_	_	_	-	-	_	DSINT0	DSFLT	_	_	DSWDT	DSRTCC	DSMCLR	_	DSPOR	0000
DSGPR0 ⁽¹⁾	075C		DSGPR0 00						0000									
DSGPR1 ⁽¹⁾	075E									DSGPR1								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The Deep Sleep registers, DSGPR0 and DSGPR1, are only reset on a VDD POR event.


6.3 NVM Address Register

As with Flash program memory, the NVM Address registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space. Instead, they directly capture the EA<23:0> of the last table write instruction that has been executed and selects the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS

6.4 Data EEPROM Operations

The EEPROM block is accessed using table read and write operations similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The C30 C compiler includes library procedures to automatically perform the table read and table write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the C30 compiler libraries.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0		
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE		OC3IE			
bit 15	1						bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own		
bit 15	U2TXIE: UAR	RT2 Transmitter	Interrupt Ena	ble bit					
		equest is enab							
	•	equest is not e							
bit 14		RT2 Receiver Ir	•	e bit					
	•	equest is enab							
h it 40		equest is not e							
bit 13		nal Interrupt 2 equest is enab							
		equest is enab							
bit 12		Interrupt Enabl							
		equest is enab							
		equest is not e							
bit 11	T4IE: Timer4	Interrupt Enabl	e bit						
	•	equest is enab							
	-	equest is not e							
bit 10	-	ted: Read as '							
bit 9	-	ut Compare 3 Ii	-	e bit					
		equest is enab							
bit 8-5	-	equest is not e ted: Read as '							
bit 4	-	nal Interrupt 1							
		request is enab							
		request is not e							
bit 3	CNIE: Input C	Change Notifica	tion Interrupt	Enable bit					
	-	equest is enab	=						
	0 = Interrupt r	equest is not e	nabled						
bit 2	CMIE: Comparator Interrupt Enable bit								
	•	equest is enab							
		equest is not e							
bit 1		ster I2C1 Even	-	able bit					
	•	equest is enab							
hit 0		equest is not e		lo hit					
bit 0		ve I2C1 Event I							
	⊥ – menupt r	equest is enab	nabled						

REGISTER 8-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 8-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	—	—			—			
bit 15							bit 8			
U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
		IC3IE				SPI2IE	SPF2IE			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit		U = Unimplen	nented bit, read	l as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-6	Unimplemen	ted: Read as '	o'							
bit 5	IC3IE: Input C	Capture Channe	el 3 Interrupt E	nable bit						
	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	request is not e	nabled							
bit 4-2	Unimplemen	ted: Read as '	D'							
bit 1	SPI2IE: SPI2	Event Interrup	t Enable bit							
	1 = Interrupt r	1 = Interrupt request is enabled								
	0 = Interrupt r	request is not e	nabled							
bit 0	SPF2IE: SPI2	2 Fault Interrup	t Enable bit							
	1 = Interrupt r	request is enab	led							
	∩ = Interrupt r	request is not e	nahled							

0 = Interrupt request is not enabled

9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 26.0 "Special Features"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and FSCM function are disabled. This is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically, as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT, FSCM or RTCC with LPRC as a clock source is enabled) or SOSC (if SOSCEN remains enabled).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

22.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", Section 51. "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (Internal and External)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU and a configurable results buffer. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 22-1.

22.1 A/D Control Registers

The 12-bit A/D Converter module uses up to 43 registers for its operation. All registers are mapped in the data memory space.

22.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to eleven control and status registers:

- AD1CON1: A/D Control Register 1
- AD1CON2: A/D Control Register 2
- AD1CON3: A/D Control Register 3
- AD1CON5: A/D Control Register 5
- AD1CHS: A/D Sample Select Register
- AD1CHITH and AD1CHITL: A/D Scan Compare Hit Registers
- AD1CSSL and AD1CSSH: A/D Input Scan Select Registers
- AD1CTMUENH and AD1CTMUENL: CTMU Enable Registers

The AD1CON1, AD1CON2 and AD1CON3 registers (Register 22-1, Register 22-2 and Register 22-3) control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion triggers, and manually controlling the sample/convert sequences. The AD1CON5 register (Register 22-4) specifically controls features of the Threshold Detect operation, including its function in power-saving modes.

The AD1CHS register (Register 22-5) selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The AD1CHITH and AD1CHITL registers (Register 22-6 and Register 22-7) are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases,

indicate if a match condition has occurred. AD1CHITL is always implemented, whereas AD1CHITH may not be implemented in devices with 16 or fewer channels.

The AD1CSSH/L registers (Register 22-8 and Register 22-9) select the channels to be included for sequential scanning.

The AD1CTMUENH/L registers (Register 22-10 and Register 22-11) select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. AD1CTMUENL is always implemented, whereas AD1CTMUENH may not be implemented in devices with 16 or fewer channels.

22.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port RAM, called ADC1BUF. The buffer is composed of at least the same number of word locations as there are external analog channels for a particular device, with a maximum number of 32. The number of buffer addresses is always even. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADC1BUF0 through ADC1BUFn (up to 31).

The A/D result buffers are both readable and writable. When the module is active (AD1CON<15> = 1), the buffers are read-only, and store the results of A/D conversions. When the module is inactive (AD1CON<15> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations.

Buffer contents are not cleared when the module is deactivated with the ADON bit (AD1CON1<15>). Conversion results and any programmed threshold values are maintained when ADON is set or cleared.

REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

bit 4	CREF: Comparator x Reference Select bits (non-inverting input)
	 1 = Non-inverting input connects to the internal CVREF voltage 0 = Non-inverting input connects to the CxINA pin
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator x Channel Select bits
	11 = Inverting input of the comparator connects to VBG
	10 = Inverting input of the comparator connects to the CxIND pin
	01 = Inverting input of the comparator connects to the CxINC pin

00 = Inverting input of the comparator connects to the CxINB pin

REGISTER 23-2: CMSTAT: COMPARATOR x MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	_	C3EVT	C2EVT	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	 CMIDL: Comparator x Stop in Idle Mode bit 1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational 0 = Continues operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
—		—	_	—		GSS0	GWRP
bit 7	•		•				bit 0
Legend:							
R = Readable	hit	C = Clearable	hit	U = Unimplem	onted hit read	1 26 '0'	
R = Readable	, DIL		, DIL		chica bit, icac		

bit 7-2	Unimplemented: Read as '0'
bit 1	GSS0: General Segment Code Flash Code Protection bit
	1 = No protection0 = Standard security is enabled
bit 0	GWRP: General Segment Code Flash Write Protection bit
	1 = General segment may be written0 = General segment is write-protected

REGISTER 26-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

REGISTER 26-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
IESO	LPRCSEL	SOSCSRC	_	—	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:										
R = Reada	ble bit	P = Programmable bit	U = Unimplemented bit, read as '0'							
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 7	IESO: Internal External Switchover bit									
		 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) 								
bit 6	LPRCSEL	LPRCSEL: Internal LPRC Oscillator Power Select bit								
	1 = High-Power/High-Accuracy mode 0 = Low-Power/Low-Accuracy mode									
bit 5	SOSCSRC: Secondary Oscillator Clock Source Configuration bit									
		analog crystal function is avai crystal is disabled; digital SCI		-						
bit 4-3	Unimplen	nented: Read as '0'								
bit 2-0	FNOSC<2	::0>: Oscillator Selection bits								
	000 = Fas	t RC Oscillator (FRC)								
		t RC Oscillator with Divide-by-	N with PLL module (FRCDI	V+PLL)						

- 010 = Primary Oscillator (XT, HS, EC)
- 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
- 100 = Secondary Oscillator (SOSC)
- 101 = Low-Power RC Oscillator (LPRC)
- 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
- 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)

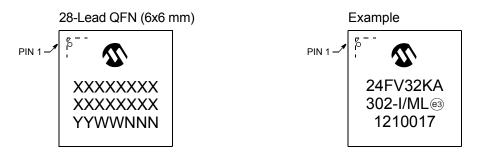
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1		
FWDTEN	1 WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0		
bit 7	ł						bit		
Legend:									
R = Readable bit		P = Programmable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 7,5	11 = WDT is e	I>: Watchdog Tir enabled in hardw controlled with the	vare						
	 10 = WDT is controlled with the SWDTEN bit setting 01 = WDT is enabled only while device is active; WDT is disabled in Sleep, SWDTEN bit is disabled 00 = WDT is disabled in hardware; SWDTEN bit is disabled 								
bit 6	 WINDIS: Windowed Watchdog Timer Disable bit 1 = Standard WDT is selected; windowed WDT is disabled 0 = Windowed WDT is enabled; note that executing a CLRWDT instruction while the WDT is disabled hardware and software (FWDTEN<1:0> = 00 and SWDTEN (RCON<5>) = 0) will not cause device Reset 								
bit 4	FWPSA: WDT Prescaler bit 1 = WDT prescaler ratio of 1:128 0 = WDT prescaler ratio of 1:32								
bit 3-0	WDTPS<3:0> 1111 = 1:32,7 1110 = 1:16,3 1101 = 1:8,19 1100 = 1:4,09 1011 = 1:2,04 1010 = 1:1,02 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4	884 92 96 48 24	er Postscale \$	Select bits					

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description				
#text	Means literal defined by "text"				
(text)	Means "content of text"				
[text]	Means "the location addressed by text"				
{ }	Optional field or operation				
<n:m></n:m>	Register bit field				
.b	Byte mode selection				
.d	Double-Word mode selection				
.S	Shadow register select				
.W	Word mode selection (default)				
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$				
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero				
Expr	Absolute address, label or expression (resolved by the linker)				
f	File register address ∈ {0000h1FFFh}				
lit1	1-bit unsigned literal $\in \{0,1\}$				
lit4	4-bit unsigned literal $\in \{015\}$				
lit5	5-bit unsigned literal ∈ {031}				
lit8	8-bit unsigned literal ∈ {0255}				
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode				
lit14	14-bit unsigned literal ∈ {016384}				
lit16	16-bit unsigned literal ∈ {065535}				
lit23	23-bit unsigned literal \in {08388608}; LSB must be '0'				
None	Field does not require an entry, may be blank				
PC	Program Counter				
Slit10	10-bit signed literal ∈ {-512511}				
Slit16	16-bit signed literal ∈ {-3276832767}				
Slit6	6-bit signed literal ∈ {-1616}				
Wb	Base W register ∈ {W0W15}				
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }				
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }				
Wm,Wn	Dividend, Divisor working register pair (direct addressing)				
Wn	One of 16 working registers ∈ {W0W15}				
Wnd	One of 16 destination working registers ∈ {W0W15}				
Wns	One of 16 source working registers ∈ {W0W15}				
WREG	W0 (working register used in File register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }				
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				

20-Lead SOIC (7.50 mm)

Example


Example

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent				
	n: Name					
1101	Company					
	Address					
	City / State / ZIP / Country					
	Telephone: ()					
Арр	lication (optional):					
Wou	Ild you like a reply? Y N					
Dev	ice: PIC24FV32KA304 Family	Literature Number: DS39995D				
Que	stions:					
1.	What are the best features of this document?					
2.	How does this document meet your hardware and s	software development needs?				
3.	Do you find the organization of this document easy to follow? If not, why?					
4.	What additions to the document do you think would	enhance the structure and subject?				
5.	What deletions from the document could be made without affecting the overall usefulness?					
6.	Is there any incorrect or misleading information (wh	at and where)?				
7.	How would you improve this document?					