

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka304-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

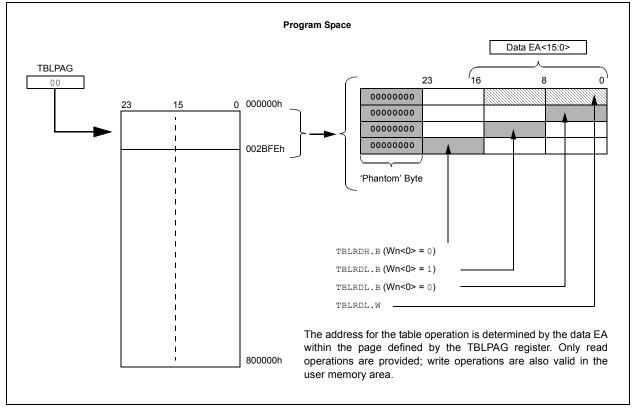
TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE ⁽¹⁾	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE ^(1,2)	CN9PDE ⁽¹⁾	CN8PDE ⁽³⁾	CN7PDE ⁽¹⁾	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CNOPDE	0000
CNPD2	0058	CN31PDE ^(1,2)	CN30PDE	CN29PDE	CN28PDE ^(1,2)	CN27PDE ⁽¹⁾	CN26PDE ^(1,2)	CN25PDE ^(1,2)	CN24PDE ⁽¹⁾	CN23PDE	CN22PDE	CN21PDE	CN20PDE ^(1,2)	CN19PDE ^(1,2)	CN18PDE ^(1,2)	CN17PDE ^(1,2)	CN16PDE ⁽¹⁾	0000
CNPD3	005A	_		_	_	-	_	_	-	_	_	_	CN36PDE ^(1,2)	CN35PDE ^(1,2)	CN34PDE ^(1,2)	CN33PDE ^(1,2)	CN32PDE ^(1,2)	0000
CNEN1	0062	CN15IE ⁽¹⁾	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE ^(1,2)	CN9IE ⁽¹⁾	CN8IE ⁽³⁾	CN7IE ⁽¹⁾	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	CN31IE ^(1,2)	CN30IE	CN29IE	CN28IE ^(1,2)	CN27IE ⁽¹⁾	CN26IE ^(1,2)	CN25IE ^(1,2)	CN24IE ⁽¹⁾	CN23IE	CN22IE	CN21IE	CN20IE ^(1,2)	CN19IE ^(1,2)	CN18IE ^(1,2)	CN17IE ^(1,2)	CN16IE ⁽¹⁾	0000
CNEN3	0066	_		_	_	_	_	_	-	_	_	_	CN36IE ^(1,2)	CN35IE ^(1,2)	CN34IE ^(1,2)	CN33IE ^(1,2)	CN32IE ^(1,2)	0000
CNPU1	006E	CN15PUE ⁽¹⁾	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE ^(1,2)	CN9PUE ⁽¹⁾	CN8PUE ⁽³⁾	CN7PUE ⁽¹⁾	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2	0070	CN31PUE ^(1,2)	CN30PUE	CN29PUE	CN28PUE ^(1,2)	CN27PUE ⁽¹⁾	CN26PUE ^(1,2)	CN25PUE ^(1,2)	CN24PUE ⁽¹⁾	CN23PUE	CN22PUE	CN21PUE	CN20PUE ^(1,2)	CN19PUE ^(1,2)	CN18PUE ^(1,2)	CN17PUE ^(1,2)	CN16PUE ⁽¹⁾	0000
CNPU3	0072	_	_	—	_	_	_	_	_		—	_	CN36PUE ^(1,2)	CN35PUE ^(1,2)	CN34PUE ^(1,2)	CN33PUE ^(1,2)	CN32PUE ^(1,2)	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.


3: These bits are not implemented in FV devices.

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the table read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and table read procedures (builtin_tblrdl) from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

```
int attribute ((space(eedata))) eeData = 0x1234;
                                          // Data read from EEPROM
int data;
/*_____
                                       _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the read
_____
*/
  unsigned int offset;
   \ensuremath{//} Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData);
                                           // Initialize EE Data page pointer
  offset = __builtin_tbloffset(&eeData);
data = __builtin_tblrdl(offset);
                                            // Initizlize lower word of address
                                            // Write EEPROM data to write latch
```

REGISTER	8-4: INTC	ON2: INTERR	UPT CONTE	ROL REGIST	ER2				
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	—	_	_	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—		—		—	INT2EP	INT1EP	INT0EP		
bit 7							bit 0		
Legend:		HSC = Hardwa	are Settable/C						
R = Readabl	le bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	ALTIVT: Enat	ole Alternate Inte	errupt Vector ⁻	lable bit					
		rnate Interrupt \ ndard (default) Ir	· ·	,					
bit 14	DISI: DISI In	struction Status	bit						
		ruction is active							
	0 = DISI inst	ruction is not ac	tive						
bit 13-3	Unimplemen	ted: Read as '0	3						
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select	bit				
		s on the negatives on the positive	0						
bit 1	INT1EP: External Interrupt 1 Edge Detect Polarity Select bit								
	1 = Interrupt i	s on the negativ	e edge						
	0 = Interrupt i	s on the positive	e edge						
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select	bit				
		s on the negativ							
	0 = Interrupt i	s on the positive	e edge						

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

REGISTER 8-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0

bit 7

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

REGISTER 8-31: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—			—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4 **CTMUIP<2:0>:** CTMU Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

•

bit 0

The following code sequence for a clock switch is recommended:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8>, in two back-to-back instructions.
- 3. Write new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0>, in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

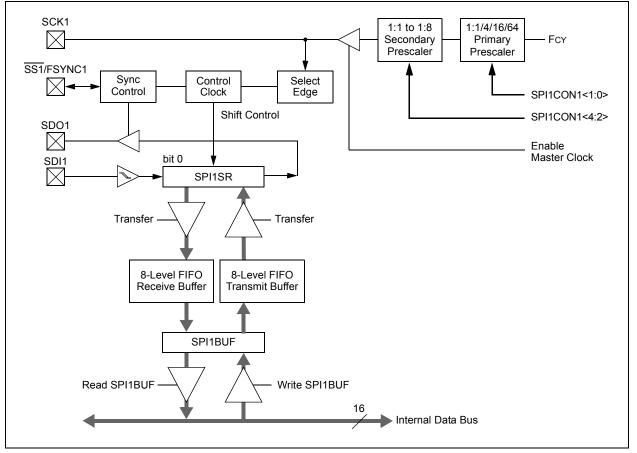
;Place the new oscillator selection in WO
;OSCCONH (high byte) Unlock Sequence
MOV #OSCCONH, w1
MOV #0x78, w2
MOV #0x9A, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Set new oscillator selection
MOV.b WREG, OSCCONH
;OSCCONL (low byte) unlock sequence
MOV #OSCCONL, w1
MOV #0x46, w2
MOV #0x57, w3
MOV.b w2, [w1]
MOV.b w3, [w1]
;Start oscillator switch operation
BSET OSCCON, #0

9.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FV32KA304 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIVx bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.


To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the ROSEL bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches. To set up the SPI1 module for the Enhanced Buffer Master (EBM) mode of operation:

- 1. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 1.
- 3. Clear the SPIROV bit (SPI1STAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).
- 6. Write the data to be transmitted to the SPI1BUF register. Transmission (and reception) will start as soon as data is written to the SPI1BUF register.

To set up the SPI1 module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPI1BUF register.
- 2. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SS1 pin.
- 6. Clear the SPIROV bit (SPI1STAT<6>).
- Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).

FIGURE 16-2: SPI1 MODULE BLOCK DIAGRAM (ENHANCED BUFFER MODE)

REGISTER 16-1:

R/W-0 U-0 R/W-0 U-0 U-0 R-0, HSC R-0, HSC R-0, HSC SPIEN SPIBEC0 SPISIDL SPIBEC2 SPIBEC1 bit 15 bit 8 R-0, HSC R/C-0, HS R/W-0, HSC R/W-0 R/W-0 R/W-0 R-0, HSC R-0, HSC SPIROV SPIRBF SRMPT SRXMPT SISEL2 SISEL1 SISEL0 SPITBF bit 7 bit 0 HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPI transfers pending. Slave mode: Number of SPI transfers unread. bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and ready to send or receive 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded (the user software has not read the previous data in the SPI1BUF register) 0 = No overflow has occurred bit 5 **SRXMPT:** SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty 0 = Receive FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data byte is shifted into the SPIxSR: as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set)

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
bit 15		-	•		·		bit 8
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit C
Legend:		HC = Hardwa	re Clearable bit				
R = Readat	le hit	W = Writable			nented bit, read	as '0'	
-n = Value a		1' = Bit is set	JIL	'0' = Bit is clea		x = Bit is unkn	
	al FUR	I - DILIS SEL			aleu		OWIT
bit 15	12CEN: 12Cx	Enable bit					
		he I2Cx module					3
bit 14		ited: Read as '0		are controlled	by port functio	10	
bit 13	-	x Stop in Idle M					
		ues module ope		e device enters	an Idle mode		
		s module opera					
bit 12	SCLREL: SC	Lx Release Co	ntrol bit (when c	operating as I ² 0	C slave)		
	1 = Releases 0 = Holds SC	SCLx clock	ock stretch)				
	If STREN = 1						
		V (i.e., software					
	lf STREN = 0	eginning of the	slave transmiss	ion. Hardware	is clear at the e	end of slave rec	eption.
		<u>.</u> 6 (i.e., software	may only write	'1' to release	clock). Hardwa	re is clear at th	e beainnina o
	slave transmi						5
bit 11	IPMIEN: Intel	lligent Periphera	al Management	Interface (IPM	I) Enable bit		
		port mode is en port mode is dis		esses are Ackn	owledged		
bit 10	A10M: 10-Bit	Slave Address	ing bit				
	-	is a 10-bit slav					
	0 = I2CxADD	is a 7-bit slave	address				
bit 9		able Slew Rate					
		control is disab					
bit 8	SMEN: SMBI	us Input Levels	bit				
		/O pin threshold		h the SMBus s	pecification		
		the SMBus inpu		_			
bit 7		ral Call Enable	· ·	•	,		
		interrupt when	a general call a	address is rece	ived in the I2C	xRSR (module	is enabled for
	0 = General	i) call address is o	disabled				
bit 6		x Clock Stretch		en operating as	s I ² C slave)		
		Inction with the	-	on operating at			
	1 = Enables s	software or rece	ives clock strete	•			
		-	eives clock stret				

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	—		—	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit C
Legend:		C = Clearabl	e hit	HS = Hardwar	e Settable bit	HSC = Hardware S	Settable/Clearable bit
R = Readat	ole hit	W = Writable		U = Unimplem			
-n = Value a		'1' = Bit is se		'0' = Bit is clear		x = Bit is unknown	
		1 - Dit 13 30					
bit 15	ACKSTAT:	Acknowledge	e Status bit				
		was detected					
		as detected la					
				Acknowledge.			
bit 14		ransmit Statu rating as I ² C I		cable to master	transmit oner	ration)	
		transmit is in			transmit oper		
		transmit is no		,			
	Hardware is	s set at the beg	inning of the r	master transmis	sion; hardware	is clear at the end of	slave Acknowledge
bit 13-11	Unimplem	ented: Read	as '0'				
bit 10	BCL: Mast	er Bus Collisi	on Detect bit				
			een detected	d during a mast	er operation		
	0 = No coll	ision s set at the d	otoption of a	hua colligion			
bit 9		Seneral Call S					
DIL 9		al call address		h			
		al call address					
	Hardware i	s set when a	n address ma	atches the gene	eral call addres	s; hardware is clea	ar at Stop detection.
bit 8	ADD10: 10	-Bit Address	Status bit				
		address was r					
		address was r		uto of the motok	ad 10 bit addr	ana hardwara ia ala	ar at Stop detection
bit 7		Cx Write Coll		•		ess, naioware is cle	ar at Stop detection
					d because the	e I ² C module is bus	M
	0 = No coll			in register falle			y
			currence of a	a write to I2CxT	RN while bus	y (cleared by softwa	are).
bit 6	12COV: 12C	Cx Receive O	verflow Flag	bit			
	-		while the I20	CxRCV register	is still holding	the previous byte	
	0 = No ove		lomat to tran			laarad by aaffwara)	
bit 5				ng as I ² C slave		leared by software)	
bit 5		es that the las)		
				ed was data ed was the dev	vice address		
						a write to I2CxTRN	or by reception of a
	slave byte.						

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0				
bit 15							bit 8				
U-0	R/W-x	R/W-x	R/W-x	R/W-x							
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0				
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	Unimplement	ted: Read as '0	,								
bit 14-12	MINTEN<2:0	>: Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits						
	Contains a va	lue from 0 to 5									
bit 11-8	MINONE<3:0	>: Binary Code	d Decimal Val	ue of Minute's 0	Ones Digit bits						
	Contains a va	lue from 0 to 9									
bit 7	Unimplemen	ted: Read as '	o'								
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits										
	Contains a value from 0 to 5.										
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits										
	Contains a va	lue from 0 to 9									

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

REGISTER 22-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_		—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
		—	—	—		CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CHH<17:16>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For All Other Values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

REGISTER 22-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7	•	•	•		•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For all other values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

TABLE 22-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format/ Equivalent Decimal Value		16-Bit Signed Fractional Fo Equivalent Decimal Val	
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998
		•••			
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001
		•••			
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000

FIGURE 22-5: A/D OUTPUT DATA FORMATS (10-BIT)

						d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
	I			I							I	I			
s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0
	s0 d09	s0 s0 d09 d08	s0 s0 s0 d09 d08 d07	s0 s0 s0 s0 d09 d08 d07 d06	s0 s0 s0 s0 s0 d09 d08 d07 d06 d05	s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 d04	0 0 0 0 0 0 d09 s0 s0 s0 s0 s0 s0 d09 d09 d08 d07 d06 d05 d04 d03	0 0 0 0 0 0 d09 d08 s0 s0 s0 s0 s0 s0 d09 d08 d09 d08 d07 d06 d05 d04 d03 d02	0 0 0 0 0 0 d09 d08 d07 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d09 d08 d07 d06 d05 d04 d03 d02 d01	0 0 0 0 0 0 0 000	0 0	0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0

TABLE 22-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/ Equivalent Decimal Value		16-Bit Signed Integer Forr Equivalent Decimal Valu	
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022
		•••			
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1
		•••			
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024

DC CH	ARACTE	RISTICS		rd Opera ng tempe	•	prditions: 1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3X -40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units Conditions				
	Vol	Output Low Voltage								
DO10		All I/O Pins	—	—	0.4	V	IOL = 8.0 mA	VDD = 4.5V		
			—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V		
			—	—	0.4	V	IOL = 3.5 mA	VDD = 2.0V		
DO16		OSC2/CLKO	_	_	0.4	V	IOL = 2.0 mA	VDD = 4.5V		
			—	—	0.4	V	IOL = 1.2 mA	VDD = 3.6V		
			—	—	0.4	V	IOL = 0.4 mA	VDD = 2.0V		
	Vон	Output High Voltage								
DO20		All I/O Pins	3.8	—	—	V	IOH = -3.5 mA	VDD = 4.5V		
			3	—	—	V	IOH = -3.0 mA	VDD = 3.6V		
			1.6	_	—	V	IOH = -1.0 mA	VDD = 2.0V		
DO26		OSC2/CLKO	3.8	_	—	V	Іон = -2.0 mA	VDD = 4.5V		
			3	_	—	V	IOH = -1.0 mA	VDD = 3.6V		
			1.6	_	_	V	Іон = -0.5 mA	VDD = 2.0V		

TABLE 29-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC СН4	ARACTI	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions									
		Program Flash Memory										
D130	Eр	Cell Endurance	10,000 ⁽²⁾	—	—	E/W						
D131	Vpr	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage					
D133A	Tiw	Self-Timed Write Cycle Time	_	2	—	ms						
D134	TRETD	Characteristic Retention	40	_	—	Year	Provided no other specifications are violated					
D135	IDDP	Supply Current During Programming		10	—	mA						

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

DC CHA	RACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Min	Conditions						
		Data EEPROM Memory								
D140	Epd	Cell Endurance	100,000	—	_	E/W				
D141	Vprd	VDD for Read	Vmin	—	3.6	V	Vмın = Minimum operating voltage			
D143A	TIWD	Self-Timed Write Cycle Time	—	4	—	ms				
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	_	10M	_	E/W				
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated			
D145	Iddpd	Supply Current During Programming	—	7		mA				

TABLE 29-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 29-13: DC CHARACTERISTICS: COMPARATOR SPECIFICATIONS

Operati	Dperating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated)											
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments					
D300	VIOFF	Input Offset Voltage	_	20	40	mV						
D301	VICM	Input Common-Mode Voltage	0		Vdd	V						
D302	CMRR	Common-Mode Rejection Ratio	55	—	—	dB						

TABLE 29-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +125°C (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments	
VRD310	CVRES	Resolution		—	Vdd/32	LSb		
VRD311	CVRAA	Absolute Accuracy	_		AVDD – 1.5	LSb		
VRD312	CVRur	Unit Resistor Value (R)	_	2k	—	Ω		

		$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OS50	Fplli	PLL Input Frequency Range	4	—	8	MHz	ECPLL, HSPLL modes, -40°C \leq TA \leq +85°C	
OS51	Fsys	PLL Output Frequency Range	16	—	32	MHz	$-40^{\circ}C \le TA \le +85^{\circ}C$	
OS52	TLOCK	PLL Start-up Time (Lock Time)	_	1	2	ms		
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over a 100 ms period	

TABLE 29-20: PLL CLOCK TIMING SPECIFICATIONS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-21: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
F20	Internal FRC Accuracy @ 8 MHz ⁽¹⁾									
	FRC	-2	_	+2	%	+25°C	$\begin{array}{l} 3.0V \leq V\text{DD} \leq 3.6\text{V}, \mbox{ F device} \\ 3.2V \leq V\text{DD} \leq 5.5\text{V}, \mbox{ FV device} \end{array}$			
		-5	—	+5	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \ \text{F} \ \text{device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \ \text{FV} \ \text{device} \end{array}$			
	LPRC @ 31 kHz ⁽²⁾	•	•	•	•					
F21		-15	_	15	%					

Note 1: Frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.

TABLE 29-22: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
	TFRC	FRC Start-up Time	—	5	_	μS			
	TLPRC	LPRC Start-up Time	—	70	—	μS			

Note 1: These parameters are characterized but not tested in manufacturing.

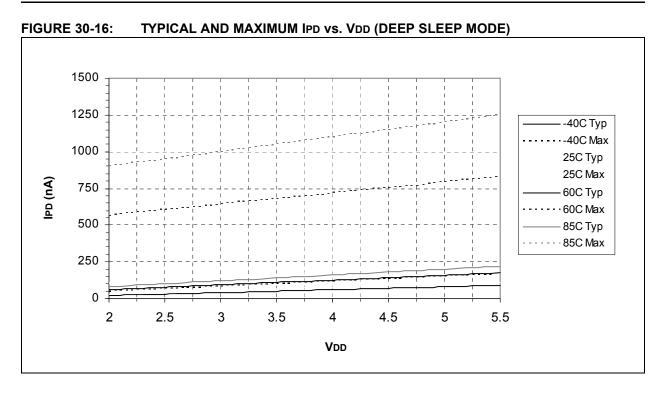
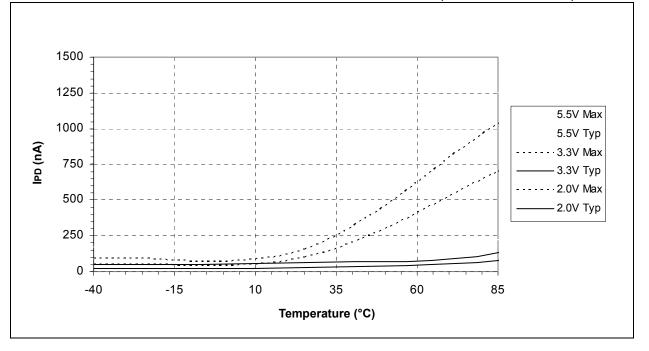



FIGURE 30-17: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)

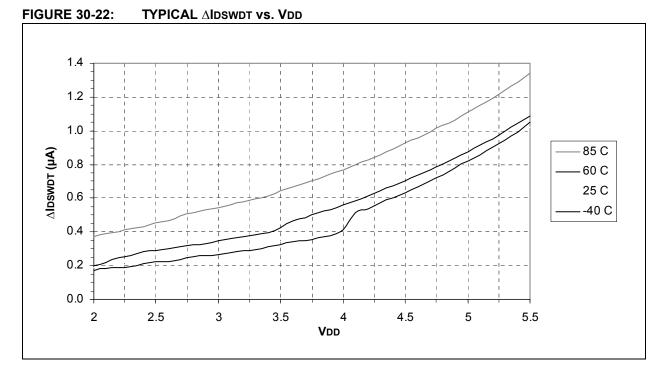
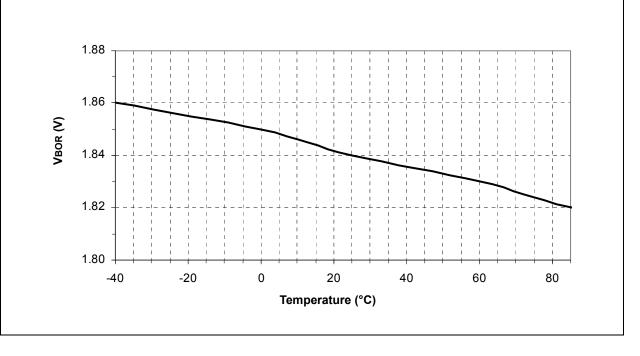
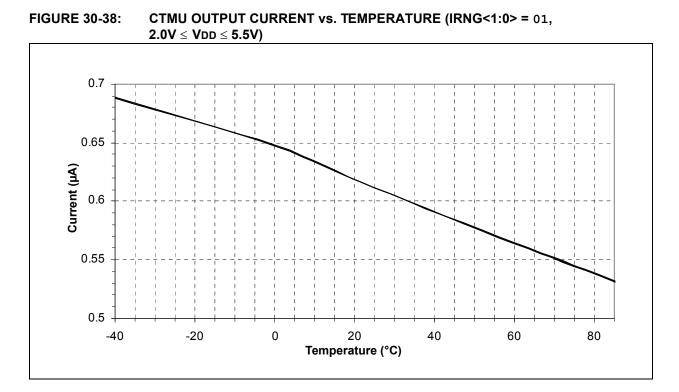




FIGURE 30-23: TYPICAL VBOR vs. TEMPERATURE (BOR TRIP POINT 3)

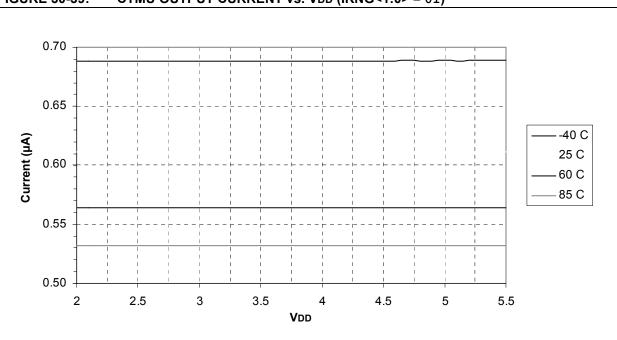


FIGURE 30-39: CTMU OUTPUT CURRENT vs. VDD (IRNG<1:0> = 01)

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-076-4

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.