

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka304-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables (IVT) is provided in Section 8.1 "Interrupt Vector Table (IVT)".

4.1.3 DATA EEPROM

In the PIC24FV32KA304 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using table read and write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV32KA304 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see **Section 26.0 "Special Features"**.

TABLE 4-1:DEVICE CONFIGURATION
WORDS FOR PIC24FV32KA304
FAMILY DEVICES

Configuration Words	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

msw Address	most significant wor	rd lea	ast significant word	PC Address (Isw Address)
	23	16	8	0
000001h	0000000			000000h
000003h	0000000			000002h
000005h	0000000			000004h
000007h	0000000			000006h
		~		
	Program Memory 'Phantom' Byte (read as '0')	Instructio	on Width	

TABLE 4-24: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽¹⁾
NVMCON	0760	WR	WREN	WRERR	PGMONLY	_	—	—	—	—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	_	—		—			-	_	NVMKEY C						0000		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-25: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN	—	ULPSIDL	—	—	_		ULPSINK		-	_	_	—	—	_		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	—	—	ADC1MD	0000
PMD2	0772	_	_	_	_	_	IC3MD	IC2MD	IC1MD	_	_	_	_	_	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	_	CRCPMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0776	-	_		—	_		—	—	ULPWUMD	—	_	EEMD	REFOMD	CTMUMD	HLVDMD	—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note:	The TBLRDH and TBLWTH instructions are
	not used while accessing data EEPROM
	memory.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
   int attribute ((space(auto psv))) progAddr = 0x1234; // Global variable located in Pgm Memory
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                         // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                         // Initialize lower word of address
   builtin tblwtl(offset, 0x0000);
                                                          // Set base address of erase block
                                                          // with dummy latch write
   NVMCON = 0 \times 4058;
                                                          // Initialize NVMCON
   asm("DISI #5");
                                                           // Block all interrupts for next 5
                                                           // instructions
    builtin write NVM();
                                                          // C30 function to perform unlock
                                                           // sequence and set WR
```

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operation	ns	
	MOV	#0x4004, W0	;	
	MOV	W0, NVMCON	; In	itialize NVMCON
;	Set up a poi	nter to the first program memo:	ry lo	cation to be written
;	program memo	ry selected, and writes enabled	d	
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	; In	itialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An	example program memory address
;	Perform the	TBLWT instructions to write the	e lat	ches
;	Oth_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	; Wr	ite PM low word into program latch
	TBLWTH	W3, [W0++]	; Wr	ite PM high byte into program latch
;	1st_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	; Wr	ite PM low word into program latch
	TBLWTH	W3, [W0++]	; Wr	ite PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BITE_2, W3	;	the DM last and the second states
	TBTMLT	W2, [W0]	; Wr	ite PM low word into program latch
	TBLWIH	W3, [W0++]	; Wr	ite PM nign byte into program latch
	32nd program	word		
<i>'</i>	MOV	 #LOW WORD 31 W2		
	MOV	#HIGH BYTE 31. W3	<i>.</i>	
	TRIWTT.	W2. [W0]	. Wr	ite PM low word into program latch
	ТВІ.МТН	W3. [W0]	: Wr	ite PM high byte into program latch
	1DDW111		, 111	ree in high byce inco program ideen

	00. 104.		I LAO OIAI				
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
	_	CTMUIF	_				HLVDIF
bit 15	·						bit 8
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
	—	—	_	CRCIF	U2ERIF	U1ERIF	—
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	CTMUIF: CTI	MU Interrupt Fla	ag Status bit				
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 12-9	Unimplemen	ted: Read as ')'				
bit 8	HLVDIF: High	n/Low-Voltage [Detect Interrup	t Flag Status bi	t		
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 7-4	Unimplemen	ted: Read as ')'				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred				
bit 0	Unimplemen	ted: Read as ')'				
	•						

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	—	—	—	
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit		mented bit, read		
-n = Value a	t POR	'1' = Bit is set		"O" = Bit is cle	eared	x = Bit is unkr	nown
hit 1E	Unimplanan	ted: Dood oo (o '				
			U Driarity bita				
DIT 14-12	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•	pr.o	g. eet p. e.	,			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as	0,				
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete Ir	terrupt Priority	bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interru	pt Priority bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	• 001 - Internu	nt in Driarity 1					
	001 = Interru	puis Phonity 1 pt source is dis	abled				

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

(1)

REGISTER	10-2: DSW	AKE: DEEP	SLEEP WAKE	-UP SOURC	E REGISTEF	(⁽¹⁾					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS				
	—	—	_	_	_		DSINT0				
bit 15				·			bit 8				
R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS				
DSFLT			DSWDT	DSRTCC	DSMCLR		DSPOR ^(2,3)				
bit 7							bit 0				
Legend:		HS = Hardwa	re Settable bit								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unl	known				
bit 15-9	Unimplemer	nted: Read as '	0'								
bit 8	DSINT0: Dee	ep Sleep Interru	pt-on-Change b	it							
	1 = Interrupt-	on-change was	asserted during	g Deep Sleep							
	0 = Interrupt-on-change was not asserted during Deep Sleep										
bit 7	DSFLT: Deep	Sleep Fault D	etect bit								
	1 = A Fault (ccurred during	Deep Sleep an	d some Deep S	Sleep configura	ation settings	may have been				
	0 = No Fault	was detected	during Deep Sle	ер							
bit 6-5	Unimplemer	ted: Read as '	0'								
bit 4	DSWDT: Dee	ep Sleep Watch	dog Timer Time	-out bit							
	1 = The Dee	p Sleep Watcho	log Timer timed	out during Dee	p Sleep						
	0 = The Dee	p Sleep Watcho	log Timer did no	t time out durin	ig Deep Sleep						
bit 3	DSRTCC: De	eep Sleep Real	-Time Clock and	I Calendar (RT	CC) Alarm bit						
	1 = The Real	-Time Clock an	d Calendar trigg	ered an alarm	during Deep S	leep					
	0 = The Real	-Time Clock an	d Calendar did r	not trigger an a	larm during De	ep Sleep					
bit 2	DSMCLR: D	eep Sleep MCL	R Event bit								
	1 = The MCL 0 = The MCL	. <u>R</u> pin was activ .R pin was not a	e and was asse active, or was ac	rted during Dee tive, but not as	ep Sleep serted during	Deep Sleep					
bit 1	Unimplemer	nted: Read as '	0'								
bit 0	DSPOR: Dee	ep Sleep Power	-on Reset Even	t bit ^(2,3)							
	1 = The VDD	supply POR cir	cuit was active a	and a POR eve	ent was detecte	ed					
	0 = The V DD	supply POR cir	cuit was not act	ive, or was acti	ve, but did not	detect a POF	R event				
Note 1: A	Il register bits a	are cleared whe	n the DSEN (DS	SCON<15>) bit	is set.						
0. A	ll register bite	ro rooot only in	the end of a D		ide of Doop Cl	oon mada ay	aant hit				

All register bits are reset only in the case of a POR event outside of Deep Sleep mode, except bit, 2: DSPOR, which does not reset on a POR event that is caused due to a Deep Sleep exit.

3: Unlike the other bits in this register, this bit can be set outside of Deep Sleep.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	
TON	—	TSIDL	_	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾	
bit 15							bit 8	
								
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0	
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	_	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'		
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown								
							-	
bit 15	TON: Timer1	On bit						
	1 = Starts 16	-bit Timer1						
	0 = Stops 16	-bit limer1						
DIT 14		ted: Read as ')' Aada hit					
DIE 13	1 = Discontinu	ues module on	noue bil aration when c	levice enters ld	lle mode			
	0 = Continues	s module opera	tion in Idle mo	ide	ne mode			
bit 12-10	Unimplemen	ted: Read as ')'					
bit 9-8	T1ECS<1:0>	: Timer1 Extend	led Clock Sele	ect bits ⁽¹⁾				
	11 = Reserve	ed; do not use						
	10 = Timer1	uses the LPRC	as the clock s					
	00 = Timer1 u	uses the Secon	dary Oscillato	r (SOSC) as the	e clock source			
bit 7	Unimplemen	ted: Read as 'd)'	、 ,				
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit				
	When TCS =	<u>1:</u>						
	This bit is ign	ored.						
	$\frac{When ICS =}{1 = Gated tin}$	<u>0:</u> ne accumulatio	n is enabled					
	0 = Gated tin	ne accumulation	n is disabled					
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits				
	11 = 1:256							
	10 = 1:64 01 = 1:8							
	00 = 1:1							
bit 3	Unimplemen	ted: Read as 'd)'					
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	lect bit			
	When TCS =	<u>1:</u>						
	1 = Synchro	nizes external o t synchronize e	clock input Internal clock i	nput				
	When TCS =			nput				
	This bit is igno	ored.						
bit 1	TCS: Timer1	Clock Source S	Select bit					
	1 = Timer1 cl	lock source is s	elected by T1	ECS<1:0>				
L:1 C	0 = Internal c	clock (Fosc/2)	.,					
U JIQ	Unimplemen	ted: Read as ')					
Note 1: ⊤	he T1ECSx bits	are valid only w	vhen TCS = 1					

19.2.4 RTCC CONTROL REGISTERS

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0
bit 15							bit 8
]
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0
bit 7	L	I	I			I	bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	RTCEN: RTC	C Enable bit ⁽²⁾					
	1 = RTCC mo	odule is enable	d				
h:+ 1 1		baule is disable	:0 ,				
DIL 14) Agiotoro \//rito E				
DIL 13	1 = RTCVAL	H and RTCVAL	l registers car	hable bli	w the user		
	0 = RTCVAL	H and RTCVAL	L registers are	locked out from	n being written	to by the user	
bit 12	RTCSYNC: R	TCC Value Re	gisters Read S	ynchronization	bit	-	
	1 = RTCVAL	H, RTCVALL ar	nd ALCFGRPT	registers can c	hange while re	ading due to a	rollover ripple
	resulting	in an invalid da	ta read. If the r	register is read	twice and resu	Its in the same	data, the data
		sumed to be v	alid. ALCECEPT r	egisters can be	read without o	oncern over a	rollover ripple
bit 11		alf Second Stat	tue hit(3)	egisters can be		oncent over a	
bit II	1 = Second h	alf period of a	second				
	0 = First half	period of a sec	ond				
bit 10	RTCOE: RTC	C Output Enab	ole bit				
	1 = RTCC ou	tput is enabled					
	0 = RTCC ou	tput is disabled	1				
bit 9-8	RTCPTR<1:0	>: RTCC Value	e Register Wind	dow Pointer bits			
	The RTCPTR	orresponding F <1:0> value dec	crements on ev	jisters when rea erv read or write	e of RTCVALH	until it reaches	'ALL registers.
	RTCVAL<15:8	3>:			•••••		
	00 = MINUTE	S					
	01 = WEEKD	AY					
	10 = MONTH 11 = Reserve	d					
	RTCVAL<7:0>	>:					
	00 = SECONI	DS					
	01 = HOURS						
	10 = DAY 11 = YEAR						

Note 1: The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- **3:** This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

· · · · -							
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
Legend:							
bit 7		•		•		•	bit 0
	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15	•	•	•	•		•	bit 8
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5. bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9. bit 7 Unimplemented: Read as '0' bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5. bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

bit 8

bit 0

REGISTER 20-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0			
bit 15		•		- -	•		bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0			
bit 7		•			•	•	bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-13	Unimplemen	ted: Read as ')'							
bit 12-8	DWIDTH<4:0	>: Data Width	Select bits							
	Defines the width of the data word (Data Word Width = (DWIDTH<4:0>) + 1).									

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits Defines the length of the CRC polynomial (Polynomial Length = (PLEN<4:0>) + 1).

REGISTER 22-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—	—	—	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CHH<17:16>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For All Other Values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

REGISTER 22-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7		•					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For all other values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—			-
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	CTMUEN: C	TMU Enable bit					
	1 = Module is	s enabled s disabled					
bit 14	Unimplemen	ted: Read as '0	,				
bit 13		CTMU Stop in Ic	lle Mode bit				
	1 = Discontir	nues module ope	eration when	device enters l	dle mode		
	0 = Continue	s module opera	tion in Idle mo	ode			
bit 12	TGEN: Time	Generation Ena	ble bit				
	1 = Enables	edge delay gen	eration				
1.11.44	0 = Disables	edge delay gen	eration				
DIT 11	EDGEN: Edg	e Enable bit					
	0 = Edges an	re blocked					
bit 10	EDGSEQEN:	Edge Sequenc	e Enable bit				
	1 = Edge 1 e	event must occu	r before Edge	2 event can o	ccur		
	0 = No edge	sequence is ne	eded				
bit 9	IDISSEN: An	alog Current So	urce Control b	oit			
	1 = Analog c	urrent source ou	utput is ground	ded			
hit Q			utput is not gro	ounded			
DILO		wut nigger Com					
	0 = Trigger of	output is disabled	d l				
bit 7-0	Unimplemen	ted: Read as '0	,				
	-						

REGISTER 25-1: CTMUCON1: CTMU CONTROL REGISTER 1

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta A/D, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

FIGURE 29-16: UARTX BAUD RATE GENERATOR OUTPUT TIMING

FIGURE 29-17: UARTX START BIT EDGE DETECTION

TABLE 29-35: UARTx TIMING REQUIREMENTS

AC CHAR			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Symbol	Characteristics	Min	Тур	Max	Units			
TLW	UxBCLK High Time	20	Tcy/2	_	ns			
THW	UxBCLK Low Time	20	(TCY * UXBRG) + TCY/2	—	ns			
TBLD	UxBCLK Falling Edge Delay from UxTX	-50	—	50	ns			
Твнр	UxBCLK Rising Edge Delay from UxTX	Tcy/2 – 50	—	Tcy/2 + 50	ns			
Тwak	Minimum Low on UxRX Line to Cause Wake-up	—	1	—	μS			
Тстѕ	Minimum Low on UxCTS Line to Start Transmission	Тсу	_	_	ns			
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns			
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	—	TCY + TSETUP	ns			

FIGURE 30-25: TYPICAL VOH vs. IOH (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le VDD \le 5.5V$)

FIGURE 30-33: TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins N		48		
Pitch	е	0.40 BSC		
Overall Height	Α	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.45	4.60	4.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
Fror	n. Namo			
1101				
	Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Арр	lication (optional):			
Wou	Ild you like a reply? Y N			
Dev	ice: PIC24FV32KA304 Family	Literature Number: DS39995D		
Que	stions:			
1.	What are the best features of this document?			
2.	How does this document meet your hardware and s	software development needs?		
3.	Do you find the organization of this document easy to follow? If not, why?			
4.	What additions to the document do you think would	enhance the structure and subject?		
5.	What deletions from the document could be made without affecting the overall usefulness?			
6.	Is there any incorrect or misleading information (wh	at and where)?		
7.	How would you improve this document?			