

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka304t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: DEVICE FEATURES FOR THE PIC24F32KA304 FAMILY

Features	PIC24F16KA301	PIC24F32KA301	PIC24F16KA302	PIC24F32KA302	PIC16F16KA304	PIC24F32KA304	
Operating Frequency			DC – 32 I	MHz			
Program Memory (bytes)	16K	32K	16K	32K	16K	32K	
Program Memory (instructions)	5632	11264	5632	11264	5632	11264	
Data Memory (bytes)			2048				
Data EEPROM Memory (bytes)			512				
Interrupt Sources (soft vectors/ NMI traps)			30 (26/-	4)			
I/O Ports	PORTA<6:0>, PORTB<15:12, 9:7, 4, 2:0>		PORTA<7:0>, PORTB<15:0>		PORTA<11:0>, PORTB<15:0>, PORTC<9:0>		
Total I/O Pins	18		24		39		
Timers: Total Number (16-bit)			5				
32-Bit (from paired 16-bit timers)	2						
Input Capture Channels		3					
Output Compare/PWM Channels			3				
Input Change Notification Interrupt	17	7	23		38		
Serial Communications: UART SPI (3-wire/4-wire)			2				
I ² C™			2				
12-Bit Analog-to-Digital Module (input channels)	12	2	1:	3	1	6	
Analog Comparators			3				
Resets (and delays)		, BOR, RESET Instruction, Ha (F		, Configurati			
Instruction Set	76 E	Base Instruction	ns, Multiple A	ddressing M	ode Variation	S	
Packages	20-F PDIP/SSC		28-1 SPDIP/SSOF		44-Pin QI 48-Pin		

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC				
_	_	_	—	—	—	—	DC				
bit 15							bit 8				
R/W-0, HSC ⁽¹⁾		R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC				
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С				
bit 7							bit (
Lagandi		HSC = Hardwa	ra Cattabla/	Nooroblo hit							
Legend: R = Readable	hit	W = Writable bi			mented bit, rea	ad as 'O'					
-n = Value at P		'1' = Bit is set	ι	'0' = Bit is cle		x = Bit is unk	nown				
	on				arca						
bit 15-9	Unimplemente	d: Read as '0'									
bit 8	DC: ALU Half C										
		from the 4 th low-	-order bit (foi	byte-sized da	ta) or 8 th Iow-o	rder bit (for wo	rd-sized data				
	of the resul		oth .								
	-	ut from the 4 th or			sult has occurr	ed					
bit 7-5		Interrupt Priority									
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled										
	110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13)										
	101 = CPU Interrupt Priority Level is 3 (13) 100 = CPU Interrupt Priority Level is 4 (12)										
		errupt Priority Lev									
		errupt Priority Lev									
		errupt Priority Lev									
bit 4	RA: REPEAT LC	errupt Priority Lev									
bit 4	$1 = \text{REPEAT} \log 1$	-									
		p not in progress	S								
bit 3	N: ALU Negativ	e bit									
	1 = Result was	•									
		non-negative (ze	ero or positiv	ve)							
bit 2	OV: ALU Overfl										
	1 = Overflow or 0 = No overflow	curred for signe	d (2's compl	ement) arithme	etic in this arith	nmetic operatio	on				
bit 1	Z: ALU Zero bit										
	1 = An operatio	n, which effects					esult)				
bit 0	C: ALU Carry/B				, , , , , , , , , , , , , , , , , , ,	,	,				
	1 = A carry-out	from the Most S at from the Most									
Note 1: The	IPLx Status bits	are read-onlv wh	en NSTDIS	(INTCON1<1	5>) = 1.						
	IPL<2:0> Status	•				o form the CPL	J Interrupt				
	rity I aval (IPI) T										

Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

5.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information on Flash pro-						
	gramming, refer to the "PIC24F Family						
	Reference Manual", Section 4. "Program						
	Memory" (DS39715).						

The PIC24FV32KA304 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FV32KA304 device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program mode Entry voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self Programming (RTSP) is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.

5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the table read and write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

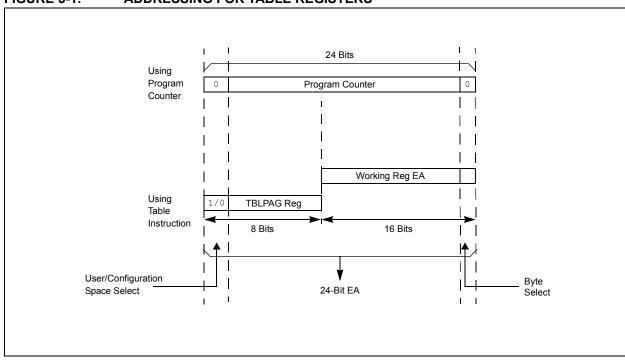


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
 - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOPx bits to '011000' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

MOV #0x4058, W0	;
MOV W0, NVMCON	; Initialize NVMCON
Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W	0 ; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts
	for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the table read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and table read procedures (builtin_tblrdl) from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

```
int attribute ((space(eedata))) eeData = 0x1234;
                                          // Data read from EEPROM
int data;
/*_____
                                       _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the read
_____
*/
  unsigned int offset;
   \ensuremath{//} Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData);
                                           // Initialize EE Data page pointer
  offset = __builtin_tbloffset(&eeData);
data = __builtin_tblrdl(offset);
                                            // Initizlize lower word of address
                                            // Write EEPROM data to write latch
```

8.3 Interrupt Control and Status Registers

The PIC24FV32KA304 family of devices implements a total of 23 registers for the interrupt controller:

- INTCON1
- INTCON2
- · IFS0, IFS1, IFS3 and IFS4
- · IEC0, IEC1, IEC3 and IEC4
- IPC0 through IPC5, IPC7 and IPC15 through IPC19
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-33, in the following sections.

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

bit 7 5	IPL<2:0>: CPU Interrupt Priority Level	Status hits (2,3)
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level	Status Dits

- 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
 - 110 = CPU Interrupt Priority Level is 6 (14)
 - 101 = CPU Interrupt Priority Level is 5 (13)
 - 100 = CPU Interrupt Priority Level is 4 (12)
 - 011 = CPU Interrupt Priority Level is 3 (11)
 - 010 = CPU Interrupt Priority Level is 2 (10)
 - 001 = CPU Interrupt Priority Level is 1 (9)
 - 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.
 - 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - **3:** The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

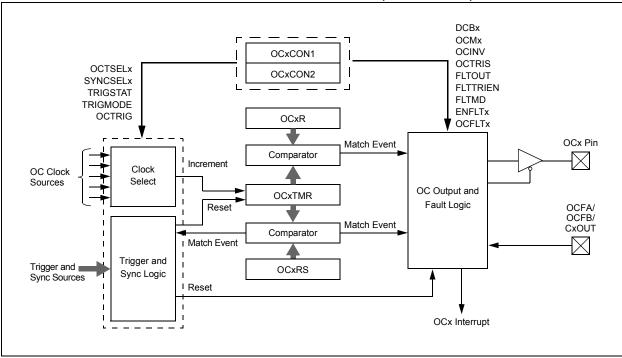
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0	
_	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—	
bit 7							bit 0	
Legend:		C = Clearable	bit	HSC = Hardware Settable/Clearable bit				
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	c = Bit is unknown	
bit 15-4	Unimplemen	ted: Read as ')'					
bit 3	IPL3: CPU In	terrupt Priority	Level Status bi	t ⁽²⁾				
		rupt Priority Le rupt Priority Le						
bit 1-0	Unimplemen	ted: Read as ')'					
Note 1: Se	ee Register 3-2	for the descript	ion of this hit v	which is not der	dicated to inter	runt control fun	ctions	
	ne IPL3 bit is co	-				-		
							2	

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 8-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—		_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-1 Unimplemented: Read as '0'


bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable Bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0
bit 7		1				1	bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as ')'				
bit 14-12	-	: UART1 Rece		riority bits			
		pt is Priority 7 (=	-			
	•		0 . ,	• /			
	•						
	001 = Interru						
	-	ot source is dis					
bit 11	-	ted: Read as '					
bit 10-8		SPI1 Event Int	, ,				
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as ')'				
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Inf	errupt Priority I	oits			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
	-	ted: Read as '					
hit 3		imer3 Interrupt					
			•	interrunt)			
	111 = Interru	nt is Priority 7 (
	111 = Interruj •	pt is Priority 7 (nignest priority	interrupt)			
bit 3 bit 2-0	111 = Interruj •	pt is Priority 7 (nignest priority	interrupt)			
	• • 001 = Interru			interrupt)			

FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

15.4 Subcycle Resolution

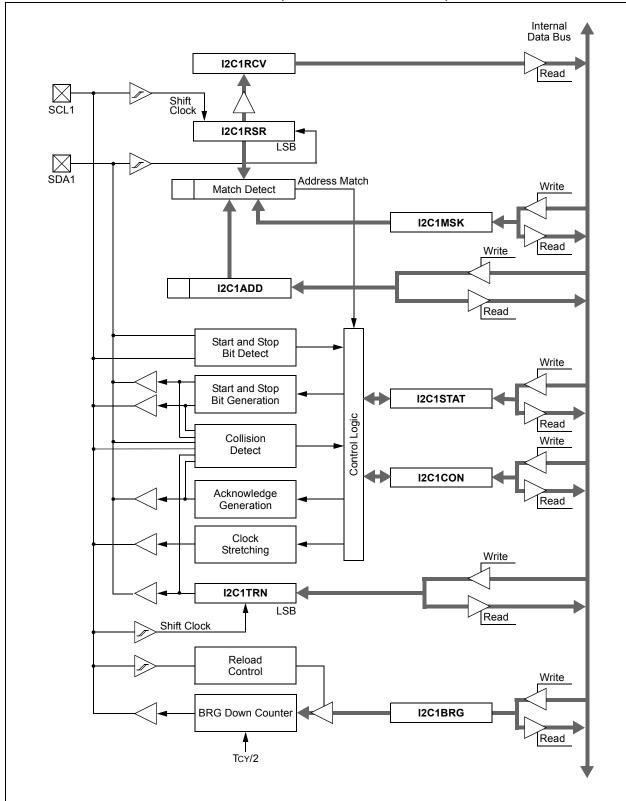
The DCBx bits (OCxCON2<10:9>) provide for resolution better than one instruction cycle. When used, they delay the falling edge generated from a match event by a portion of an instruction cycle.

For example, setting DCB<1:0> = 10 causes the falling edge to occur halfway through the instruction cycle in which the match event occurs, instead of at the beginning. These bits cannot be used when OCM<2:0> = 001. When operating the module in PWM mode (OCM<2:0> = 110 or 111), the DCBx bits will be double-buffered. The DCBx bits are intended for use with a clock source identical to the system clock. When an OCx module with enabled prescaler is used, the falling edge delay caused by the DCBx bits will be referenced to the system clock period, rather than the OCx module's period.

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Prescaler Ratio	8	1	1	1	1	1	1
Period Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TADLE 13-2. EXAMPLE PWW FREQUENCIES AND RESULUTIONS AT 10 MIPS (FCY = 10 MID)	TABLE 15-2 :	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz) ⁽¹⁾
---	---------------------	--


PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Prescaler Ratio	8	1	1	1	1	1	1
Period Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

FIGURE 17-1: I²C[™] BLOCK DIAGRAM (I2C1 MODULE IS SHOWN)

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r	—	ASINT1	ASINT0
bit 15							bit
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—		WM1	WM0	CM1	CM0
bit 7							bit
Legend:		r = Reserved	bit				
R = Readabl	e bit	W = Writable	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	ASEN: Auto- 1 = Auto-sca 0 = Auto-sca		₍ (1)				
bit 14	1 = Returns	Power Enable bi to Low-Power n s in Full-Power r	node after sca				
bit 13	1 = CTMU is	TMU Request b s enabled when s not enabled by	the A/D is ena	abled and active			
bit 12	1 = Band ga	nd Gap Requesi p is enabled wh p is not enabled	en the A/D is	enabled and act	live		
bit 11	Reserved: N	laintain as '0'					
bit 10	Unimplemer	nted: Read as ')'				
bit 9-8	ASINT<1:0>	: Auto-Scan (Th	reshold Detec	t) Interrupt Mod	e bits		
	10 = Interru	pt after a Thresh pt after a valid c pt after a Thresh errupt	ompare has o	ccurred		compare has o	occurred
bit 7-4	Unimplemer	nted: Read as ')'				
bit 3-2	11 = Reserv 10 = Auto-co match, 01 = Conver when a	Vrite Mode bits ved ompare only (co as defined by th rt and save (cor a match, as defin v operation (con	ne CMx and A oversion result ned by the CM	SINTx bits, occu s are saved to lx bits, occurs)	urs) locations as de	etermined by th	ne register bi
bit 1-0	CM<1:0>: Co	ompare Mode bi	ts				
	by the of 10 = Inside V corresp 01 = Greate	Window mode corresponding bu Window mode (v ponding buffer pa r Than mode (va egister)	uffer pair) alid match occ ir)	urs if the convers	sion result is ins	side the window	defined by th
		han mode (valid	match occurs	if the result is le	ss than the val	ue in the corres	ponding buff

Note 1: When using auto-scan with Threshold Detect (ASEN = 1), do not configure the sample clock source to Auto-Convert mode (SSRCx = 7). Any other available SSRCx selection is valid. To use auto-convert as the sample clock source (SSRCx = 7), make sure ASEN is cleared.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15	·	·			·		bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7	I				1		bit
Legend:							
R = Readabl	le bit	W = Writable I	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	CH0NB<2:0> 111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0 000 = AVss		annel 0 Negati	ve Input Select	bits		
bit 12-8	CH0SB<4:0>	S/H Amplifier	Positive Input	Select for MUX	B Multiplexer	Setting bits	
bit 12-8	11111 = Unit 11110 = AVC 11101 = AVS 11100 = Upp 11011 = Low 11010 = Inte 11001-1001 10001 = No	S ser guardband ra ver guardband ra rnal Band Gap I 0 = Unimplement channels are co channels are co 15 14 13 12 11 10 5 5 (1) 5 (1) 5 (2) 4 3 2 1	o not use ail (0.785 * Vor ail (0.215 * Vor Reference (VB nted, do not us onnected, all in	⊃) ⊃) G) (3) se puts are floating	g (used for CTN	MU)	e sensor inpu
	11111 = Unit 11101 = AVS 11101 = Low 1100 = Upp 1011 = Low 1000 = Inte 10001 = Inte 10001 = No 00110 = AN 01101 = AN 01101 = AN 01011 = AN 01011 = AN 01011 = AN 01011 = AN 01001 = AN 01001 = AN 01011 = AN 01001 = AN 01010 = AN 00101 = AN 00011 = AN 00011 = AN 00011 = AN 00011 = AN 00001 = AN	mplemented, do bo ser guardband ra rnal Band Gap I 0 = Unimplementchannels are cochannels are cochannels are co15141312111055(1)55(1)55(2)4321	ail (0.785 * Vor ail (0.215 * Vor Reference (Ve nted, do not us nnected, all in nnected, all in nnected, all in	D) D) G) ⁽³⁾ Se puts are floating puts are floating	g (used for CTN g (used for CTN	MU)	e sensor inpu
bit 12-8 bit 7-5 bit 4-0	11111 = Unit 11101 = AVS 11101 = Low 1100 = Upp 1001 = Low 1000 = Inte 10001 = NO 10000 = NO 0111 = AN ² 0110 = AN ² 0110 = AN ² 0101 = AN ² 0101 = AN ² 0101 = AN ² 0100 = AN ² 0101 = AN ² 0100 = AN ² 0101 = AN ² 0101 = AN ² 00101 = AN ² 00010 = AN ² 00001 = AN ² 00000 = AN ² 00000 = AN ²	mplemented, do pop ser guardband ra ver guardband ra rnal Band Gap I 0 = Unimplement channels are co channels are co 15 14 13 12 11 10 9 3(1) 7(1) 5(2) 4 3 2 1 5 : Sample A Char 2 : Sample A Char 2 5 : Sample A Char 2 : Sample A Char : Sample A Ch	ail (0.785 * Vor ail (0.215 * Vor Reference (VB nted, do not us onnected, all in onnected, all in onnected, all in onnected, all in onnected, all in onnected, all in	5) 5) 6) ⁽³⁾ se puts are floating puts are floating ve Input Select	g (used for CTN g (used for CTN	MU)	e sensor inpu

REGISTER 22-5: AD1CHS: A/D SAMPLE SELECT REGISTER

TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXDperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol	Char	Min	Тур	Max	Units	Conditions			
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾	_	_	1.90	V			
		VDD Transition	HLVDL<3:0> = 0001	1.86	—	2.13	V			
			HLVDL<3:0> = 0010	2.08	—	2.35	V			
			HLVDL<3:0> = 0011	2.22	—	2.53	V			
			HLVDL<3:0> = 0100	2.30	—	2.62	V			
			HLVDL<3:0> = 0101	2.49	—	2.84	V			
			HLVDL<3:0> = 0110	2.73	—	3.10	V			
			HLVDL<3:0> = 0111	2.86	—	3.25	V			
			HLVDL<3:0> = 1000	3.00	—	3.41	V			
			HLVDL<3:0> = 1001	3.16	—	3.59	V			
			HLVDL<3:0> = 1010 ⁽¹⁾	3.33	—	3.79	V			
			HLVDL<3:0> = 1011 ⁽¹⁾	3.53	—	4.01	V			
			HLVDL<3:0> = 1100 ⁽¹⁾	3.74	—	4.26	V			
			HLVDL<3:0> = 1101 ⁽¹⁾	4.00	_	4.55	V			
			HLVDL<3:0> = 1110 ⁽¹⁾	4.28	—	4.87	V			

Note 1: These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

TABLE 29-5: BOR TRIP POINTS

	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended										
Param No.	Sym	Characte	eristic	Min	Тур	Max	Units	Conditions			
DC15		BOR Hysteresis			5		mV				
DC19		BOR Voltage on VDD Transition	BORV<1:0> = 00		_			Valid for LPBOR and DSBOR (Note 1)			
			BORV<1:0> = 01	2.90	3	3.38	V				
			BORV<1:0> = 10	2.53	2.7	3.07	V				
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)			
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)			

Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

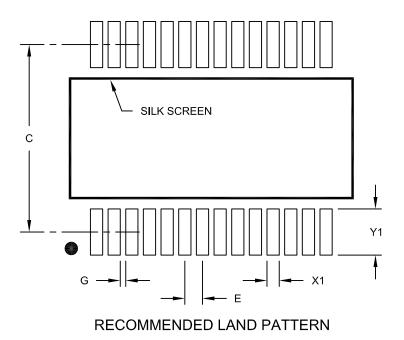
2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

DC CHARA	CTERISTICS		Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial															
	1					≤ TA ≤ +85°C for Industrial ≤ TA ≤ +125°C for Extended												
Parameter No.	Device	Typical ⁽¹⁾	Max	Units		С	onditions											
Power-Dow	n Current (IPD)																	
DC60	PIC24FV32KA3XX		_		-40°C													
		6.0	8.0		+25°C													
		0.0	8.5	μA	+60°C	2.0V												
			9.0		+85°C													
		_	15		+125°C													
			—		-40°C													
		6.0	8.0		+25°C	5.0V												
		0.0	9.0	μA	+60°C		5.0V											
			10.0		+85°C			ļ	ļ	ļ	ļ							
		—	15		+125°C		Sleep Mode ⁽²⁾											
	PIC24F32KA3XX		—		-40°C													
		0.025	0.80		+25°C	1.8V												
		0.020	1.5	μA	+60°C													
			2.0		+85°C													
			7.5		+125°C													
					-40°C													
		0.040	1.0		+25°C													
			2.0	μA	+60°C	3.3V												
			3.0		+85°C													
		—	7.5		+125°C													
DC61	PIC24FV32KA3XX	0.25	—	μA	-40°C	2.0V	Low-Voltage											
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾											
		—	7.5	μA	+125°C	5.0V												
DC70	PIC24FV32KA3XX	0.03	—	μA	-40°C	2.0V												
		0.10	2.0	μA	+85°C	5.0V												
		—	6.0	μA	+125°C	5.0V	Deep Sleep Mode											
	PIC24F32KA3XX	0.02		μA	-40°C	1.8V												
		0.08	1.2	μA	+85°C	3.3V												
		—	1.2	μA	+125°C	3.3V												

TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices. Note 1: Data in the Typical column is at 3.3V, +25°C (PIC24F32KA3XX) or 5.0V, +25°C (PIC24FV32KA3XX) unless otherwise stated. Parameters are for design guidance only and are not tested.


 Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low, PMSLP is set to '0' and WDT, etc., are all switched off.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

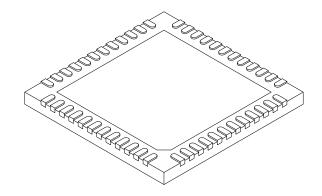
- 4: This current applies to Sleep only.
- 5: This current applies to Sleep and Deep Sleep.
- **6:** This current applies to Deep Sleep only.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Number of Pins	N		48		
Pitch	е		0.40 BSC		
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.127 REF		
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	4.45	4.60	4.75	
Contact Width	b	0.15	0.20	0.25	
Contact Length	L	0.30 0.40 0.50			
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2