

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f16ka304t-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.2 CPU Control Registers

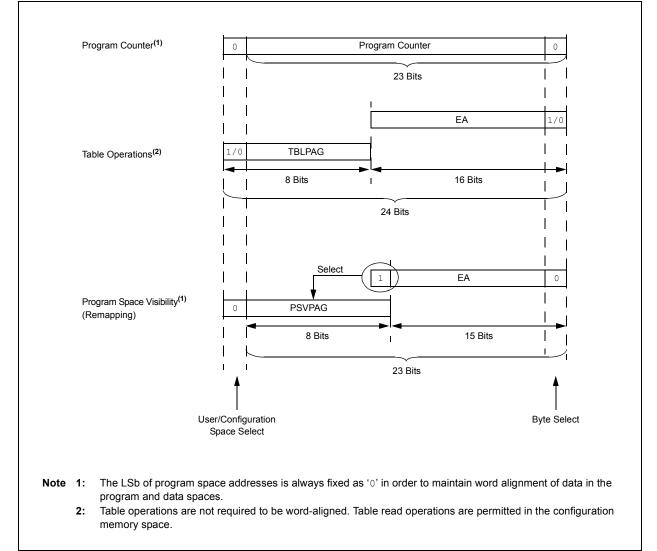
REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC			
_	_	_	—	—	—	—	DC			
bit 15							bit 8			
R/W-0, HSC ⁽¹⁾		R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC			
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С			
bit 7							bit (
Lagandi		HSC = Hardwa	ra Cattabla/	Nooroblo hit						
Legend: R = Readable	hit	W = Writable bi			mented bit, rea	ad as 'O'				
-n = Value at P		'1' = Bit is set	ι	'0' = Bit is cle		x = Bit is unk	nown			
	on				arca					
bit 15-9	Unimplemente	d: Read as '0'								
bit 8	DC: ALU Half C									
		from the 4 th low-	-order bit (foi	byte-sized da	ta) or 8 th Iow-o	rder bit (for wo	rd-sized data			
	of the resul		oth .							
	-	ut from the 4 th or			sult has occurr	ed				
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled									
		errupt Priority Lev errupt Priority Lev		user interrupts	s are disabled					
		errupt Priority Lev								
		errupt Priority Lev								
		errupt Priority Lev								
		errupt Priority Lev								
		errupt Priority Lev								
bit 4	RA: REPEAT LC	errupt Priority Lev								
bit 4	$1 = \text{REPEAT} \log 1$	-								
		p not in progress	S							
bit 3	N: ALU Negativ	e bit								
	1 = Result was	•								
		non-negative (ze	ero or positiv	ve)						
bit 2	OV: ALU Overfl									
	1 = Overflow or 0 = No overflow	curred for signe	d (2's compl	ement) arithme	etic in this arith	nmetic operatio	on			
bit 1	Z: ALU Zero bit									
	1 = An operatio	n, which effects					esult)			
bit 0	C: ALU Carry/B				× ×	,	,			
	1 = A carry-out	from the Most S at from the Most								
Note 1: The	IPLx Status bits	are read-onlv wh	en NSTDIS	(INTCON1<1	5>) = 1.					
	IPL<2:0> Status	•				o form the CPL	J Interrupt			
	rity I aval (IPI) T									

Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

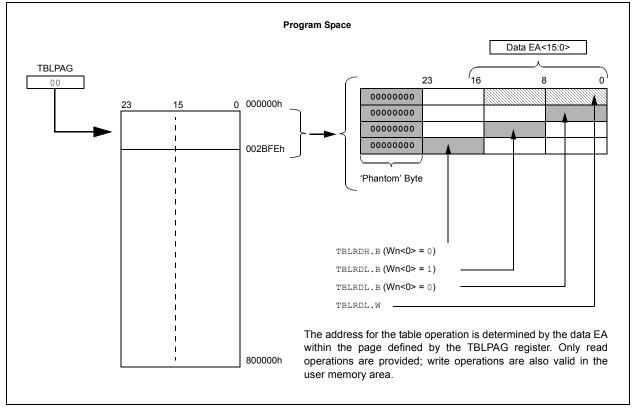
IADLL	4 -J.						JULK											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	—	—	—	_	—	—	—	—	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	-	_	_		_	_	_	_		_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	_	OC3IF	_	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	8800	_	_	_	_	_	_	_	_	-	_	IC3IF	_	_	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF	_	_	_	_	_	_	-	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	-	_	CTMUIF	—	—		—	HLVDIF		—	_	_	CRCIF	U2ERIF	U1ERIF		0000
IFS5	008E		—		_	_		—	—		—		_	—		—	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	_	OC3IE	_	-	_	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	_	_	_	_	_	_	-	_	IC3IE	_	_	_	SPI2IE	SPF2IE	0000
IEC3	009A	_	RTCIE	_	_	_	_	_	_	-	_	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	009C		—	CTMUIE	_	_		—	HLVDIE		—		_	CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	ULPWUIE	0000
IPC0	00A4		T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0		IC1IP2	IC1IP1	IC1IP0	—	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6		T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0		IC2IP2	IC2IP1	IC2IP0	—		—		4444
IPC2	00A8		U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0		SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA		NVMIP2	NVMIP1	NVMIP0	_		—	—		AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC		CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0		MI2C1P2	MI2C1P1	MI2C1P0	—	SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE		_		_	_		—	—		—		_	—	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0		T4IP2	T4IP1	T4IP0	_		—	—		OC3IP2	OC3IP1	OC3IP0	—		—		4040
IPC7	00B2		U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0		INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0	4440
IPC8	00B4		_		_	_		—	—		SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6		_		_	_		—	—		IC3IP2	IC3IP1	IC3IP0	—		—		0040
IPC12	00BC	-	_		—	—	MI2C2IP2	MI2C2IP1	MI2C2IP0		SI2C2IP2	SI2C2IP1	SI2C2IP0	—		—		0440
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	-	_	_	_	_	_	_	_	0400
IPC16	00C4	_	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	-	U1ERIP2	U1ERIP1	U1ERIP0	_	_	_	_	4440
IPC18	00C8	-			—	—		_	_	_	—		_	_	HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	-			—	—		_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	—	_	0040
IPC20	00CC	_	_		_			_		—					ULPWUIP2	ULPWUIP1	ULPWUIP0	0000
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000


Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1> xxxx xxx0 Data EA<15:0> xxxx xxxx xx Data EA<15:0> xxxx xxxx xxxx x	<0>			
Instruction Access	User	0		PC<22:1>		0			
(Code Execution)			0xx xxxx xxxx xxxx xxx0						
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBL	_PAG<7:0>	Data EA<15:0>					
		0 x	XXX XXXX	XXXX XXXX XXXX XXXX					
	Configuration	TBL	TBLPAG<7:0>		Data EA<15:0>				
		1x	XXX XXXX	XXXX XXXX XXXX XXXX					
Program Space Visibility	User	0	PSVPAG<7	:0> ⁽²⁾ Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	XXXX XX	XXX	x xxx xxxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) in the PIC24FV32KA304 family.



In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/0	Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 7 5	IPL<2:0>: CPU Interrupt Priority Level	Status hits (2,3)
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level	Status Dits

- 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled
 - 110 = CPU Interrupt Priority Level is 6 (14)
 - 101 = CPU Interrupt Priority Level is 5 (13)
 - 100 = CPU Interrupt Priority Level is 4 (12)
 - 011 = CPU Interrupt Priority Level is 3 (11)
 - 010 = CPU Interrupt Priority Level is 2 (10)
 - 001 = CPU Interrupt Priority Level is 1 (9)
 - 000 = CPU Interrupt Priority Level is 0 (8)
- Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.
 - 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
 - **3:** The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
	NVMIP2	NVMIP1	NVMIP0									
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0					
bit 7							bit					
Legend:												
R = Readable bit W = Writable bit			bit	U = Unimplei	mented bit, read	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	-	ted: Read as '										
bit 14-12		: NVM Interrup										
	111 = Interru	pt is Priority 7 (highest priority	y interrupt)								
	•											
	• 001 = Interru	pt is Priority 1										
		pt source is dis	abled									
bit 11-7		, ited: Read as '										
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete In	nterrupt Priority	bits							
	AD1IP<2:0>: A/D Conversion Complete Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is Priority 1											
		pt source is dis										
bit 3	Unimplemen	ted: Read as '	0'									
		: UART1 Trans		•								
bit 2-0				(intermed)								
bit 2-0	111 = Interru	pt is Priority 7 (highest priority	y interrupt)								
bit 2-0	111 = Interru •	pt is Priority 7(highest priority	y interrupt)								
bit 2-0		pt is Priority 7(pt is Priority 1	highest priority	y interrupt)								

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

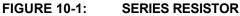
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
—			—		MI2C2IP2	MI2C2IP1	MI2C2IP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
	SI2C2IP2	SI2C2IP1	SI2C2IP0				<u> </u>		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	•	nented bit, read				
-n = Value at POR '1' = E		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15-11	Unimplemen	ted: Read as ')'						
bit 10-8	MI2C2IP <2:0	>: Master I2C2	Event Interru	pt Priority bits					
	• • 001 = Interrup	ot is Priority 7 (l ot is Priority 1 ot source is disa		r interrupt)					
	000 = Interru	Unimplemented: Read as '0'							
bit 7	•	ted: Read as ')'						
bit 7 bit 6-4	Unimplemen	ted: Read as 'd >: Slave I2C2 E		Priority bits					
	Unimplement SI2C2IP<2:0> 111 = Interrup 001 = Interrup	•: Slave I2C2 E ot is Priority 7 (I	vent Interrupt nighest priority						

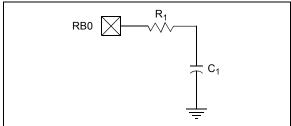
10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.


When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.


This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source. See Example 10-3 for initializing the ULPWU module.

A series resistor, between RB0 and the external capacitor, provides overcurrent protection for the RB0/AN0/ULPWU pin and enables software calibration of the time-out (see Figure 10-1).

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

EXAMPLE 10-3: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//*******************************
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
   LATBbits.LATB0 = 1:
  for(i = 0; i < 10000; i++) Nop();</pre>
//*******
//2. Stop Charging the capacitor
// on RBO
//********************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
TEC5bits.ULPWUTE = 1:
IPC21bits.ULPWUIP = 0x7;
//********
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
   capacitor discharge
ULPWCONbits.ULPEN = 1;
   ULPWCONbit.ULPSINK = 1;
//********
//5. Enter Sleep Mode
//********************************
  Sleep();
//for sleep, execution will
//resume here
```

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON ⁽¹⁾	0-0	TSIDL ⁽¹⁾	0-0	0-0	0-0	0-0	0-0						
bit 15		TSIDL		_			 bit 8						
							bit c						
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0						
_	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		_	TCS ⁽¹⁾							
bit 7							bit 0						
Legend:													
R = Reada		W = Writable	bit	-	nented bit, rea								
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	<u>ו</u>						
1.11.45		o											
bit 15	TON: Timery												
		1 = Starts 16-bit Timery 0 = Stops 16-bit Timery											
bit 14	-	Unimplemented: Read as '0'											
bit 13	-												
	TSIDL: Timery Stop in Idle Mode bit ⁽¹⁾ 1 = Discontinues module operation when device enters Idle mode												
		0 = Continues module operation in Idle mode											
bit 12-7	Unimplemen	ted: Read as '0)'										
bit 6	TGATE: Time	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾											
	When TCS = 1:												
	This bit is ignored.												
	<u>When TCS = 0:</u> 1 = $Cated time conversion is enabled.$												
	 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled 												
bit 5-4		: Timery Input (Select hits(1)									
bit 0 4	11 = 1:256	. Thirdy input (
	10 = 1:64												
	01 = 1:8												
	00 = 1:1												
bit 3-2	•	ted: Read as '0											
bit 1		Clock Source S											
		clock is from th clock (Fosc/2)	e T3CK pin (o	n the rising edg	le)								
bit 0	Unimplemen	ted: Read as ')'										
Note 1:	When 22 hit ener	ation is anabled		- 1) those hite l	have no affact	on Timon (operation	- All timer						

REGISTER 13-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER

Note 1: When 32-bit operation is enabled (TxCON<3> = 1), these bits have no effect on Timery operation. All timer functions are set through the TxCON register.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even numbered module (ICy) provides the Most Significant 16 bits. Wraparounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bit (ICxCON2<8>) for both modules.

14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. If Synchronous mode is to be used, disable the Sync source before proceeding.
- 2. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 3. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/trigger source.
- Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source. If the desired clock source is running, set the ICTSELx bits before the input capture module is enabled, for proper synchronization with the desired clock source.
- 5. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 6. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSELx bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 7. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 8. Enable the selected Sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bit settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the Sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	<u> </u>	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15		COIDE			VVV01102		bit 8
bit 10							bit 0
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—
bit 7			•				bit 0
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	Clearable bit	
R = Readabl	e bit	W = Writable bit		U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	CRCEN: CR	C Enable bit					
	1 = Module 0 = Module						
		chines, pointers a	nd CRCWDAT/	CRCDAT regist	ers are reset:	other SERs an	e NOT reset.
bit 14		nted: Read as '0'					
bit 13	-	C Stop in Idle Mod	e bit				
		inues module ope		vice enters Idle	mode		
	0 = Continu	es module operat	ion in Idle mode	9			
bit 12-8	VWORD<4:0	0>: Pointer Value	bits				
		e number of valid v PLEN<4:0> \leq 7.	vords in the FIF	O, which has a	maximum val	ue of 8 when P	PLEN<4:0> > 7
bit 7	CRCFUL: C	RC FIFO Full bit					
	1 = FIFO is 0 = FIFO is						
bit 6	CRCMPT: C	RC FIFO Empty E	Bit				
	1 = FIFO is						
	0 = FIFO is						
bit 5		CRC interrupt Sele					
	•	t on FIFO is empt t on shift is compl	•				
bit 4	CRCGO: Sta	-		DATTCSULTSTC	auy		
		RC serial shifter					
		rial shifter is turne	ed off				
bit 3	LENDIAN: D	Data Shift Directio	n Select bit				
		ord is shifted into t ord is shifted into t					
bit 2-0	Unimplemer	nted: Read as '0'					

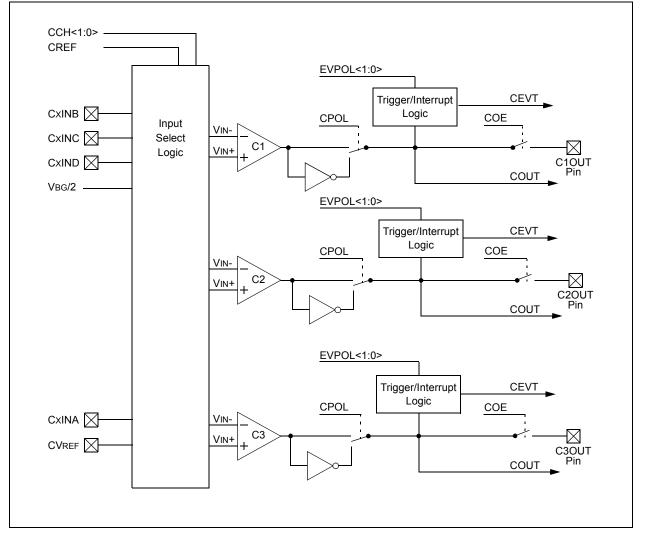
REGISTER 20-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
HLVDEN	_	HLSIDL		—	—	—				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0			
bit 7							bit C			
Legend:										
R = Readabl	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
bit 15	HLVDEN: Hig	gh/Low-Voltage	Detect Powe	r Enable bit						
	1 = HLVD is									
	0 = HLVD is									
bit 14	•	nted: Read as '0								
bit 13		/D Stop in Idle N								
		nues module op es module opera		device enters Id	le mode					
bit 12-8		ited: Read as '0		ouc						
bit 7	-	e Change Direc		t						
	-	-		exceeds trip poir	nt (HLVDL<3:0>	>)				
				falls below trip po	•	,				
bit 6	BGVST: Ban	d Gap Voltage S	Stable Flag bit	t						
		that the band g								
6.4 <i>F</i>		that the band g								
bit 5		al Reference Vo			and the high-v	oltage detect lo	ogic generates			
	 1 = Indicates that the internal reference voltage is stable and the high-voltage detect logic generates the interrupt flag at the specified voltage range 									
				oltage is unstab						
	generate enabled	e the interrupt fi	ag at the spe	cified voltage ra	nge, and the F	ALVD Interrupt	snould not be			
bit 4		ted: Read as '0	,							
bit 3-0	-	High/Low-Volt		n Limit bits						
	1111 = Exter	nal analog inpu	-	ut comes from th	e HLVDIN pin)					
	1110 = Trip 	Point 1 ⁽¹⁾	、 I		. ,					
	1101 = Trip I 1100 = Trip I	Point $2^{(1)}$								
	1100 = 1mp i	onto' /								
	•									
	•									
	0000 = Trip I	Point 15								

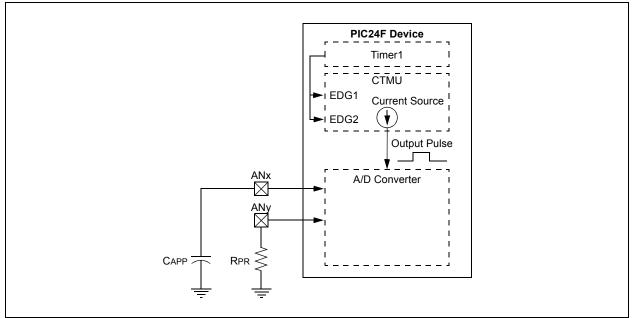
REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

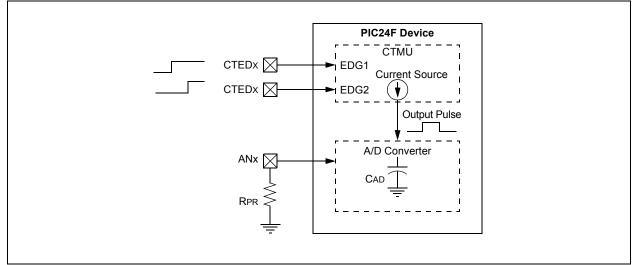

The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.


A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR x MODULE BLOCK DIAGRAM


FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT

25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's Internal Capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	_	_	_	_	_	
bit 23		•					bit 16	
R	R	R	R	R	R	R	R	
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0	
bit 15							bit 8	
R	R	R	R	R	R	R	R	
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0	
bit 7	DEVO	DEV5	DEV4	DEV3	DEVZ	DEVI	bit C	
Legend:								
R = Readabl	e bit	W = Writable bit		U = Unimplem				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 23-16	Unimplemen	ted: Read as ')'					
bit 15-8	FAMID<7:0>:	Device Family	Identifier bits					
	01000101 =	PIC24FV32KA	304 family					
bit 7-0	-							
DIC I = 0	DEV<7:0>: In	dividual Device	Identifier bits					
bit 1-0		dividual Device PIC24FV32KA						
	00010111 = 00000111 =	PIC24FV32KA PIC24FV16KA	304 304					
bit 7-0	00010111 = 00000111 = 00010011 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA	304 304 302					
bit 7-0	00010111 = 00000111 = 00010011 = 00000011 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA	304 304 302 302					
Sit 7-0	00010111 = 00000111 = 00010011 = 00000011 = 00011001 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24FV16KA	304 304 302 302 301					
517-0	00010111 = 00000111 = 00010011 = 00000011 = 00011001 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA	304 304 302 302 301					
<i>bit 7-0</i>	00010111 = 00000111 = 00010011 = 00000011 = 00011001 = 00001001 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24FV16KA	304 304 302 302 301 301					
<i>bit 7-0</i>	00010111 = 00000111 = 00010011 = 00010011 = 00011001 = 00001001 = 00010110 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24F32KA3(PIC24F16KA3(304 304 302 302 301 301 301 04					
<i>bit 7-0</i>	00010111 = 00000111 = 00010011 = 00010011 = 00011001 = 00001001 = 000010110 = 00000110 =	PIC24FV32KA PIC24FV32KA PIC24FV32KA PIC24FV32KA PIC24FV32KA PIC24FV16KA PIC24F32KA3(PIC24F16KA3(PIC24F32KA3(304 304 302 302 301 301 301 04 04 02					
	00010111 = 00000111 = 00010011 = 00010011 = 00011001 = 00001001 = 00001010 = 0000010 = 00010010 =	PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24F32KA3(PIC24F16KA3(304 304 302 302 301 301 301 04 04 02 02					

REGISTER 26-9: DEVID: DEVICE ID REGISTER

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR		$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
		Wb,Ws,Wd				
CHA D	SUBBR	Wb,#lit5,Wd	Wd = lit5 – Wb – (C)	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

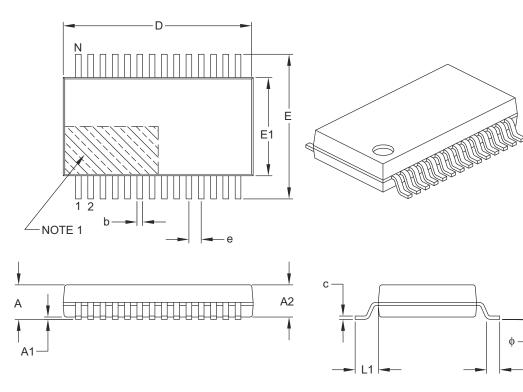
Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾	_	_	1.90	V	
		VDD Transition	HLVDL<3:0> = 0001	1.86	—	2.13	V	
		HLVDL<3:0> = 0010	2.08	—	2.35	V		
			HLVDL<3:0> = 0011	2.22	—	2.53	V	
			HLVDL<3:0> = 0100	2.30	—	2.62	V	
			HLVDL<3:0> = 0101	2.49	—	2.84	V	
			HLVDL<3:0> = 0110	2.73	—	3.10	V	
			HLVDL<3:0> = 0111	2.86	—	3.25	V	
			HLVDL<3:0> = 1000	3.00	—	3.41	V	
			HLVDL<3:0> = 1001	3.16	—	3.59	V	
			HLVDL<3:0> = 1010 ⁽¹⁾	3.33	_	3.79	V	
			HLVDL<3:0> = 1011 ⁽¹⁾	3.53		4.01	V	
			HLVDL<3:0> = 1100 ⁽¹⁾	3.74	—	4.26	V	
			HLVDL<3:0> = 1101 ⁽¹⁾	4.00		4.55	V	
			HLVDL<3:0> = 1110 ⁽¹⁾	4.28	—	4.87	V	

Note 1: These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

TABLE 29-5: BOR TRIP POINTS

Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No. Sym Characteristic Min Typ Max Units Conditions							Conditions	
DC15		BOR Hysteresis			5		mV	
DC19		BOR Voltage on VDD Transition	BORV<1:0> = 00		_			Valid for LPBOR and DSBOR (Note 1)
			BORV<1:0> = 01	2.90	3	3.38	V	
			BORV<1:0> = 10	2.53	2.7	3.07	V	
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)


Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			6
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	_
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1		1.25 REF	
Lead Thickness	с	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	-	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

INDEX

I	١
•	•

A/D	
Buffer Data Formats	
Control Registers	
AD1CHITH/L	
AD1CHS	
AD1CON1	
AD1CON2	
AD1CON3	
AD1CON5	
AD1CSSH/L	
AD1CTMUENH/L	
Module Specifications	
Result Buffers	
Sampling Requirements	
Transfer Function	220
AC Characteristics	
Capacitive Loading Requirements on	
Output Pins	
Comparator	
Comparator Voltage Reference Settling Time	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
Load Conditions and Requirements	
Reset, Watchdog Timer. Oscillator Start-up Ti	mer,
Power-up Timer, Brown-out	
Reset Requirements	
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Baud Rate Generator
Setting as a Bus Master 171
Block Diagrams
12-Bit A/D Converter
12-Bit A/D Converter Analog Input Model
16-Bit Asynchronous Timer3 and Timer5143
16-Bit Synchronous Timer2 and Timer4143
16-Bit Timer1139
Accessing Program Memory with
Table Instructions54
CALL Stack Frame51
Comparator Voltage Reference
Comparator x Module
CPU Programmer's Model31
CRC Module199
CRC Shift Engine 199
CTMU Connections and Internal Configuration
for Capacitance Measurement232
CTMU Typical Connections and Internal Configuration
for Pulse Delay Generation
CTMU Typical Connections and Internal Configuration
for Time Measurement232
Data Access from Program Space
Address Generation52
Data EEPROM Addressing with TBLPAG and
NVM Registers65
High/Low-Voltage Detect (HLVD)
I ² C Module170
Individual Comparator Configurations

Input Capture x	
MCLR Pin Connections	24
On-Chip Regulator Connections	. 248
Output Compare x (16-Bit Mode)	152
Output Compare x (Double-Buffered,	
16-Bit PWM Mode)	. 154
PIC24F CPU Core	30
PIC24FV32KA304 Family (General)	15
PSV Operation	55
Recommended Minimum Connections	23
Reset System	69
RTCC Module	. 185
Serial Resistor	. 131
Shared I/O Port Structure	. 135
Simplified UARTx	. 177
SPI1 Module (Enhanced Buffer Mode)	. 163
SPI1 Module (Standard Buffer Mode)	. 162
System Clock	
Table Register Addressing	57
Timer2/3, Timer4/5 (32-Bit)	
Watchdog Timer (WDT)	. 249
Brown-out Reset	
Trip Points	. 266

С

C Compilers	
MPLAB C18	252
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Basic Sequence for Clock Switching	122
Data EEPROM Bulk Erase	67
Data EEPROM Unlock Sequence	63
Erasing a Program Memory Row, 'C' Language	
Erasing a Program Memory Row,	
Assembly Language	60
I/O Port Write/Read	
Initiating a Programming Sequence,	
'C' Language	62
Initiating a Programming Sequence,	
Assembly Language	
Loading the Write Buffers, 'C' Language	
Loading the Write Buffers, Assembly Language	61
PWRSAV Instruction Syntax	125
Reading the Data EEPROM Using the	
TBLRD Command	
Setting the RTCWREN Bit	186
Single-Word Erase	
Single-Word Write to Data EEPROM	
Ultra Low-Power Wake-up Initialization	
Unlock Sequence	
Code Protection	
Comparator	
Comparator Voltage Reference	
Configuring	
Configuration Bits	
Core Features	11
CPU	
ALU	
Control Registers	
Core Registers	
Programmer's Model	29