

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	18
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka301t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE I-I. DEVICE FEATO						
Features	PIC24FV16KA301	PIC24FV32KA301	PIC24FV16KA302	PIC24FV32KA302	PIC24FV16KA304	PIC24FV32KA304
Operating Frequency			DC – 32 I	MHz		
Program Memory (bytes)	16K	32K	16K	32K	16K	32K
Program Memory (instructions)	5632	11264	5632	11264	5632	11264
Data Memory (bytes)			2048			
Data EEPROM Memory (bytes)			512			
Interrupt Sources (soft vectors/ NMI traps)			30 (26/	4)		
I/O Ports	PORTA<5:0> PORTB<15:12,9:7,4,2:0>		PORTA<7,5:0> PORTB<15:0>		PORTA<11:7,5:0> PORTB<15:0> PORTC<9:0>	
Total I/O Pins	17	7	23		3	8
Timers: Total Number (16-bit)			5			
32-Bit (from paired 16-bit timers)			2			
Input Capture Channels			3			
Output Compare/PWM Channels			3			
Input Change Notification Interrupt	16	6	2	2	3	7
Serial Communications: UART SPI (3-wire/4-wire)			2			
I ² C™			2			
12-Bit Analog-to-Digital Module (input channels)	12	2	1:	3	1	6
Analog Comparators			3			
Resets (and delays)		BOR, RESET Instruction, Ha		, Configurati		
Instruction Set	76 B	ase Instructio	ns, Multiple A	ddressing M	ode Variation	s
Packages	20-F PDIP/SSC		28- SPDIP/SSOF		44-Pin QI 48-Pin	

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		F					FV						
	Pin Number				Pin Number								
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
T1CK	13	18	15	1	1	13	18	15	1	1	Т	ST	Timer1 Clock
T2CK	18	26	23	15	16	18	26	23	15	16	Ι	ST	Timer2 Clock
ТЗСК	18	26	23	15	16	18	26	23	15	16	I	ST	Timer3 Clock
T4CK	6	6	3	23	25	6	6	3	23	25	I	ST	Timer4 Clock
T5CK	6	6	3	23	25	6	6	3	23	25	Ι	ST	Timer5 Clock
U1CTS	12	17	14	44	48	12	17	14	44	48	Ι	ST	UART1 Clear-to-Send Input
U1RTS	13	18	15	1	1	13	18	15	1	1	0	_	UART1 Request-to-Send Output
U1RX	6	6	3	2	2	6	6	3	2	2	I	ST	UART1 Receive
U1TX	11	16	13	3	3	11	16	13	3	3	0	—	UART1 Transmit
U2CTS	10	12	9	34	37	10	12	9	34	37	Ι	ST	UART2 Clear-to-Send Input
U2RTS	9	11	8	33	36	9	11	8	33	36	0	_	UART2 Request-to-Send Output
U2RX	5	5	2	22	24	5	5	2	22	24	I	ST	UART2 Receive
U2TX	4	4	1	21	23	4	4	1	21	23	0	_	UART2 Transmit
ULPWU	4	4	1	21	23	4	4	1	21	23	I	ANA	Ultra Low-Power Wake-up Input
VCAP	_	—	_	—	_	14	20	17	7	7	Р	—	Core Power
Vdd	20	28,13	25,10	17,28,40	18,30,43	20	28,13	25,10	17,28,40	18,30,43	Р	—	Device Digital Supply Voltage
VREF+	2	2	27	19	21	2	2	27	19	21	Ι	ANA	A/D Reference Voltage Input (+)
VREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	A/D Reference Voltage Input (-)
Vss	19	27,8	24,5	16,29,39	17,31,42	19	27,8	24,5	16,29,39	17,31,42	Р	_	Device Digital Ground Return

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FV32KA304 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

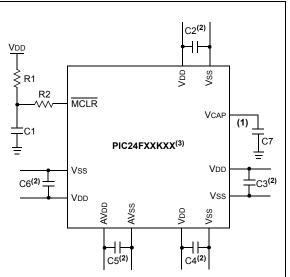
- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pins (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:


• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic

C7: 10 µF, 16V tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for explanation of VCAP pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

^{3:} Some PIC24F K parts do not have a regulator.

2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.

Ceramic capacitors are suitable for use with the internal Voltage Regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10 μ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex: $\pm 15\%$ over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of $\pm 22\%$. Due to the extreme temperature tolerance, a 10 μ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal Voltage Regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.

FIGURE 2-4: DC BIAS VOLTAGE vs. CAPACITANCE **CHARACTERISTICS** Change (%) 0 -10 16V Capacitor -20 -30 Capacitance -40 10V Capacitor -50 -60 -70 6.3V Capacitor -80 -9 10 11 12 13 2 8 DC Bias Voltage (VDC)

When selecting a ceramic capacitor to be used with the internal Voltage Regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 3.3V or 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 9.0 "Oscillator Configuration"** for details).

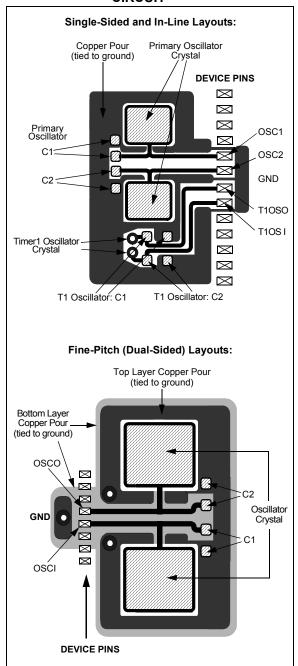
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):


- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC™ and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k Ω to 10 k Ω resistor to Vss on unused pins and drive the output to logic low.

FIGURE 2-5: SUGGESTED PLACEMENT

OF THE OSCILLATOR CIRCUIT

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC						
_	_	_	—	—	—	—	DC						
bit 15							bit 8						
R/W-0, HSC ⁽¹⁾		R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC						
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С						
bit 7							bit (
Lagandi		HSC = Hardwa	ra Cattabla/	Nooroblo hit									
Legend: R = Readable	hit	W = Writable bi			mented bit, rea	ad as 'O'							
-n = Value at P		'1' = Bit is set	ι	'0' = Bit is cle		x = Bit is unk	nown						
	on				arca								
bit 15-9	Unimplemente	d: Read as '0'											
bit 8	DC: ALU Half C												
		-	-order bit (foi	byte-sized da	ta) or 8 th Iow-o	rder bit (for wo	rd-sized data						
	 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th or 8th low-order bit of the result has occurred 												
	-				sult has occurr	ed							
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)												
	111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled												
	110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13)												
	100 = CPU Interrupt Priority Level is 4 (12)												
	011 = CPU Interrupt Priority Level is 3 (11)												
	010 = CPU Interrupt Priority Level is 2 (10)												
	001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)												
bit 4	RA: REPEAT LC												
bit 4		-											
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress												
bit 3	N: ALU Negativ	e bit											
	1 = Result was negative												
		non-negative (ze	ero or positiv	ve)									
bit 2	OV: ALU Overflow bit												
	 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred 												
bit 1	Z: ALU Zero bit												
	1 = An operatio	n, which effects					esult)						
bit 0	C: ALU Carry/B				× ×	,	,						
	1 = A carry-out	from the Most S at from the Most											
Note 1: The	IPLx Status bits	are read-onlv wh	en NSTDIS	(INTCON1<1	5>) = 1.								
	IPL<2:0> Status	•				o form the CPL	J Interrupt						
	rity I aval (IPI) T												

Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

R/W-0, HS	S R/W-0, HS	R/W-0	R/W-0	U-0	R/C-0, HS	R/W-0	R/W-0
TRAPR	IOPUWR	SBOREN	RETEN ⁽³⁾	—	DPSLP	CM	PMSLP
bit 15							bit 8
R/W-0, H	S R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0
		<u> </u>					
Legend:		C = Clearable			re Settable bit		
R = Reada		W = Writable b	bit	•	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	TRAPR: Tran	Reset Flag bit					
	=	onflict Reset has	occurred				
		onflict Reset has					
bit 14	IOPUWR: Ille	gal Opcode or l	Jninitialized W	Access Reset	Flag bit		
	1 = An illegal Pointer c	l opcode detecti aused a Reset	on, an illegal a	ddress mode o	or Uninitialized V	V register used	as an Address
	0 = An illegal	I opcode or Unir	nitialized W Re	set has not oc	curred		
bit 13	SBOREN: So	oftware Enable/E	Disable of BOF	R bit			
		irned on in softw irned off in softw					
bit 12	RETEN: Rete	ention Sleep Mo	de control bit ⁽³	6)			
		d voltage supply d voltage supply					
bit 11	Unimplemen	ted: Read as '0	3				
bit 10	DPSLP: Deep	p Sleep Mode F	lag bit				
	•	ep has occurred ep has not occu					
bit 9	CM: Configur	ation Word Misr	natch Reset F	lag bit			
	Ų	uration Word Mis uration Word Mis			ed		
bit 8	PMSLP: Proc	gram Memory Po	ower During S	leep bit			
		memory bias vo memory bias v mode				the Voltage Re	gulator enters
bit 7	-	nal Reset (MCLF	R) Pin bit				
Sit 7	1 = A Master	Clear (pin) Reso Clear (pin) Reso	et has occurre				
bit 6		ire Reset (Instru					
	1 = A reset	instruction has I instruction has I	peen executed				
Note 1:	All of the Reset a cause a device		be set or clear	ed in software.	Setting one of the	nese bits in soft	ware does not
2:	If the FWDTEN SWDTEN bit se	x Configuration I	bit is '1' (unpro	ogrammed), the	e WDT is always	enabled regar	dless of the
3:	This is implement	-	V32KA3XX pa	arts only; not us	sed on PIC24F3	2KA3XX device	es.

REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0		
_	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—		
bit 7							bit 0		
Legend:		C = Clearable	bit	HSC = Hardware Settable/Clearable bit					
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	x = Bit is unknown		
bit 15-4	Unimplemen	ted: Read as ')'						
bit 3	IPL3: CPU In	terrupt Priority	Level Status bi	t ⁽²⁾					
 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less 									
bit 1-0	Unimplemen	ted: Read as ')'						
Note 1: Se	ee Register 3-2	for the descript	ion of this hit v	which is not der	dicated to inter	runt control fun	ctions		
	ne IPL3 bit is co	-				-			
							2		

Note: Bit 2 is described in Section 3.0 "CPU".

11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FV32KA304 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the ICN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately, using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

Note: Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs $\$
NOP;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
Equivalent ` C' Code	
TRISB = 0xFF00;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP();	//Delay 1 cycle
if(PORTBbits.RB13 == 1)	// execute following code if PORTB pin 13 is set.
{	
}	

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Output Compare x Stop in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-10	OCTSEL<2:0>: Output Compare x Timer Select bits
	111 = System clock
	110 = Reserved
	101 = Reserved 100 = Timer1
	011 = Timer5
	010 = Timer4
	001 = Timer3
	000 = Timer2
bit 9	ENFLT2: Comparator Fault Input Enable bit
	1 = Comparator Fault input is enabled
	0 = Comparator Fault input is disabled
bit 8	ENFLT1: OCFB Fault Input Enable bit
	1 = OCFB Fault input is enabled
	0 = OCFB Fault input is disabled
bit 7	ENFLT0: OCFA Fault Input Enable bit
	 1 = OCFA Fault input is enabled 0 = OCFA Fault input is disabled
bit 6	
DILO	OCFLT2: PWM Comparator Fault Condition Status bit 1 = PWM comparator Fault condition has occurred (this is cleared in hardware only)
	0 = PWM comparator Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 5	OCFLT1: PWM OCFB Fault Input Enable bit
Dit 0	1 = PWM OCFB Fault condition has occurred (this is cleared in hardware only)
	0 = PWM OCFB Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 4	OCFLT0: PWM OCFA Fault Condition Status bit
	1 = PWM OCFA Fault condition has occurred (this is cleared in hardware only)
	0 = PWM OCFA Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 3	TRIGMODE: Trigger Status Mode Select bit
	1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
	0 = TRIGSTAT is only cleared by software
Note 1:	The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use

Note 1: The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This output compare module⁽¹⁾
 - 11110 = **Reserved** 11101 = Reserved 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1
 - 01010 = Input Capture 5⁽²⁾
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Do not use an output compare module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as Sync sources.
 - 3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCMx bits (OCxCON1<2:0>) = 001.

REGISTER 18-3: UXTXREG: UARTX TRANSMIT REGISTER

U-x	U-x	U-x	U-x	U-x	U-x	U-x	W-x
—	_	—	—	—	—	—	UTX8
bit 15				•			bit 8
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0
bit 7							bit 0
•							
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-9 Unimplemented: Read as '0'

bit 8 UTX8: UARTx Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UTX<7:0>: UARTx Data of the Transmitted Character bits

REGISTER 18-4: UXRXREG: UARTX RECEIVE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
	—	—	—	—	—	—	URX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| URX7 | URX6 | URX5 | URX4 | URX3 | URX2 | URX1 | URX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9 Unimplemented: Read as '0'

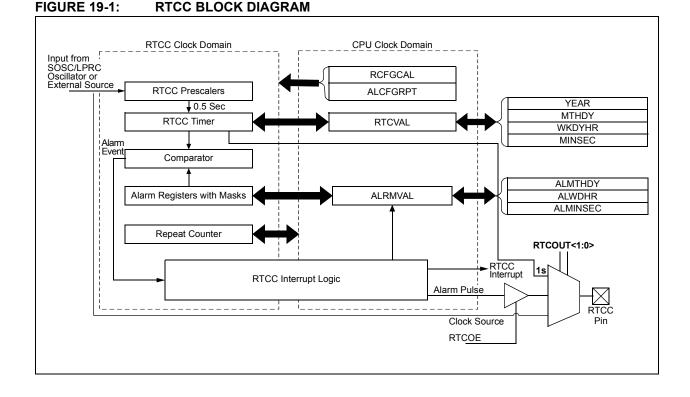
bit 8 URX8: UARTx Data of the Received Character bit (in 9-bit mode)

bit 7-0 URX<7:0>: UARTx Data of the Received Character bits

19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- · Operates in Deep Sleep mode
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- · Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long-term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long-term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

19.1 RTCC Source Clock

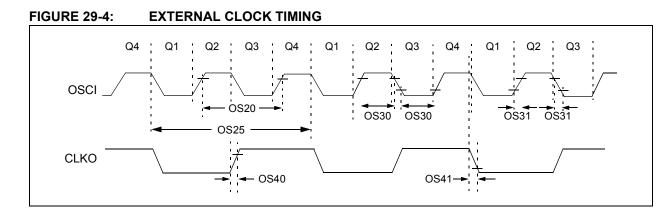
The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

© 2011-2013 Microchip Technology Inc.

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month	Day	Hours	Minutes	Seconds
0000 - Every half second 0001 - Every second					:	•
0010 - Every 10 seconds					•	s
0011 - Every minute					:	s s
0100 - Every 10 minutes					m	ss
0101 - Every hour					mm	ss
0110 - Every day				hh	mm	ss
0111 - Every week	d			hh	mm	ss
1000 - Every month			d d	hh	mm	ss
1001 - Every year ⁽¹⁾		m m /	d d	hh	mm	ss
Note 1: Annually, except whe	n configured fo	r February 29				

19.5 POWER CONTROL

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current low-power mode (Sleep, Deep Sleep, etc.).


To enable this feature, the RTCC must be enabled (RTCEN = 1), the PWCEN register bit must be set and the RTCC pin must be driving the PWC control signal (RTCOE = 1 and RTCOUT<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCPOL register bit. Active-low or active-high may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin. This setting is able to drive the GND pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

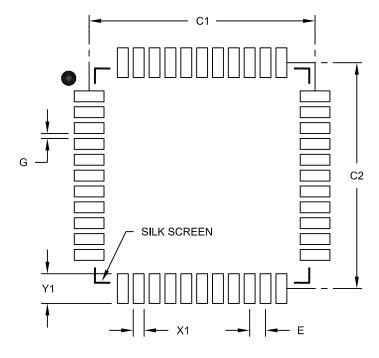
REGISTER 25-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is Comparator 3 output 1110 = Edge 2 source is Comparator 2 output 1101 = Edge 2 source is Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is IC3 1010 = Edge 2 source is IC2 1001 = Edge 2 source is IC1 1000 = Edge 2 source is CTED13⁽²⁾ 0111 = Edge 2 source is CTED12^(1,2) 0110 = Edge 2 source is CTED11^(1,2) 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is OC1 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FWDTEN	1 WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	4						bit
Legend:							
R = Reada	ble bit	P = Programm	nable bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7,5	11 = WDT is ϵ	I>: Watchdog Tir enabled in hardw controlled with th	vare				
	01 = WDT is e 00 = WDT is c	enabled only whi disabled in hardw	ile device is a vare; SWDTE	ctive; WDT is dis		o, SWDTEN bi	t is disabled
bit 6	1 = Standard 0 = Windowe	dowed Watchdog WDT is selected d WDT is enable and software (eset	d; windowed V ed; note that e	NDT is disabled executing a CLRW			
bit 4		F Prescaler bit scaler ratio of 1:1 scaler ratio of 1:3					
bit 3-0	WDTPS<3:0> 1111 = 1:32,7 1110 = 1:16,3 1101 = 1:8,19 1000 = 1:4,09 1011 = 1:2,04 1010 = 1:1,02 1001 = 1:512 1000 = 1:512 1000 = 1:256 0111 = 1:128 0100 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2	884 92 96 88 24	er Postscale \$	Select bits			

A 0 0''			Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX					
AC CHARACTERISTICS		Operating temperature			$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Sym	Characteristic	Min Ty		Max	Units	Conditions	
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 8	MHz MHz	EC ECPLL	
OS15		Oscillator Frequency	0.2 4 4 31	 	4 25 8 33	MHz MHz MHz kHz	XT HS XTPLL SOSC	
OS20	Tosc	Tosc = 1/Fosc	—	—	_	_	See Parameter OS10 for Fosc value	
OS25	TCY	Instruction Cycle Time ⁽²⁾	62.5	—	DC	ns		
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	_	ns	EC	
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	_	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns		
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns		

TABLE 29-19: EXTERNAL CLOCK TIMING REQUIREMENTS


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The instruction cycle period (TcY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

3: Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	/ILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

INDEX

I	١
•	•

A/D	
Buffer Data Formats	
Control Registers	
AD1CHITH/L	
AD1CHS	
AD1CON1	
AD1CON2	
AD1CON3	
AD1CON5	
AD1CSSH/L	
AD1CTMUENH/L	
Module Specifications	
Result Buffers	
Sampling Requirements	
Transfer Function	220
AC Characteristics	
Capacitive Loading Requirements on	
Output Pins	
Comparator	
Comparator Voltage Reference Settling Time	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
Load Conditions and Requirements	
Reset, Watchdog Timer. Oscillator Start-up Ti	mer,
Power-up Timer, Brown-out	
Reset Requirements	
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Baud Rate Generator
Setting as a Bus Master 171
Block Diagrams
12-Bit A/D Converter
12-Bit A/D Converter Analog Input Model
16-Bit Asynchronous Timer3 and Timer5143
16-Bit Synchronous Timer2 and Timer4143
16-Bit Timer1139
Accessing Program Memory with
Table Instructions54
CALL Stack Frame51
Comparator Voltage Reference
Comparator x Module
CPU Programmer's Model31
CRC Module199
CRC Shift Engine 199
CTMU Connections and Internal Configuration
for Capacitance Measurement232
CTMU Typical Connections and Internal Configuration
for Pulse Delay Generation
CTMU Typical Connections and Internal Configuration
for Time Measurement232
Data Access from Program Space
Address Generation52
Data EEPROM Addressing with TBLPAG and
NVM Registers65
High/Low-Voltage Detect (HLVD)
I ² C Module170
Individual Comparator Configurations

Input Capture x	
MCLR Pin Connections	24
On-Chip Regulator Connections	. 248
Output Compare x (16-Bit Mode)	152
Output Compare x (Double-Buffered,	
16-Bit PWM Mode)	. 154
PIC24F CPU Core	30
PIC24FV32KA304 Family (General)	15
PSV Operation	55
Recommended Minimum Connections	23
Reset System	69
RTCC Module	. 185
Serial Resistor	. 131
Shared I/O Port Structure	. 135
Simplified UARTx	. 177
SPI1 Module (Enhanced Buffer Mode)	. 163
SPI1 Module (Standard Buffer Mode)	. 162
System Clock	
Table Register Addressing	57
Timer2/3, Timer4/5 (32-Bit)	
Watchdog Timer (WDT)	. 249
Brown-out Reset	
Trip Points	. 266

С

C Compilers	
MPLAB C18	252
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Basic Sequence for Clock Switching	122
Data EEPROM Bulk Erase	67
Data EEPROM Unlock Sequence	63
Erasing a Program Memory Row, 'C' Language	
Erasing a Program Memory Row,	
Assembly Language	60
I/O Port Write/Read	
Initiating a Programming Sequence,	
'C' Language	62
Initiating a Programming Sequence,	
Assembly Language	
Loading the Write Buffers, 'C' Language	
Loading the Write Buffers, Assembly Language	61
PWRSAV Instruction Syntax	125
Reading the Data EEPROM Using the	
TBLRD Command	
Setting the RTCWREN Bit	186
Single-Word Erase	
Single-Word Write to Data EEPROM	
Ultra Low-Power Wake-up Initialization	
Unlock Sequence	
Code Protection	
Comparator	
Comparator Voltage Reference	
Configuring	
Configuration Bits	
Core Features	11
CPU	
ALU	
Control Registers	
Core Registers	
Programmer's Model	29

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12