

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                        |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | PIC                                                                           |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                               |
| Peripherals                | Brown-out Detect/Reset, HLVD, POR, PWM, WDT                                   |
| Number of I/O              | 18                                                                            |
| Program Memory Size        | 32KB (11K x 24)                                                               |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | 512 x 8                                                                       |
| RAM Size                   | 2K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                   |
| Data Converters            | A/D 12x12b                                                                    |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 20-SSOP (0.209", 5.30mm Width)                                                |
| Supplier Device Package    | 20-SSOP                                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka301t-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility"). PIC24FV32KA304 family devices implement a total of 1024 words of data memory. If an EA points to a location outside of this area, an all zero word or byte will be returned.

### 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.



#### FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FV32KA304 FAMILY DEVICES

| File Name | Addr | Bit 15 | Bit 14 | Bit 13   | Bit 12 | Bit 11         | Bit 10     | Bit 9  | Bit 8  | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|----------|--------|----------------|------------|--------|--------|-------|-------|--------|--------|-------|-------|-------|-------|---------------|
| TMR1      | 0100 |        |        |          |        |                |            |        | TN     | /IR1  |       |        |        |       |       |       |       | 0000          |
| PR1       | 0102 |        |        |          |        |                |            |        | Р      | R1    |       |        |        |       |       |       |       | FFFF          |
| T1CON     | 0104 | TON    | —      | TSIDL    | —      | —              | —          | T1ECS1 | T1ECS0 | —     | TGATE | TCKPS1 | TCKPS0 | —     | TSYNC | TCS   | _     | 0000          |
| TMR2      | 0106 |        |        |          |        |                |            |        | TN     | IR2   |       |        |        |       |       |       |       | 0000          |
| TMR3HLD   | 0108 |        |        |          |        |                |            |        | TMR    | 3HLD  |       |        |        |       |       |       |       | 0000          |
| TMR3      | 010A |        |        |          |        |                |            |        | ΤN     | /IR3  |       |        |        |       |       |       |       | 0000          |
| PR2       | 010C |        |        |          |        |                |            |        | Р      | R2    |       |        |        |       |       |       |       | 0000          |
| PR3       | 010E |        |        |          |        |                |            |        | Р      | R3    |       |        |        |       |       |       |       | FFFF          |
| T2CON     | 0110 | TON    | —      | TSIDL    | —      | —              | —          | _      | _      | —     | TGATE | TCKPS1 | TCKPS0 | T32   | —     | TCS   |       | FFFF          |
| T3CON     | 0112 | TON    | _      | TSIDL    | —      | —              | —          | _      | _      | —     | TGATE | TCKPS1 | TCKPS0 | —     | —     | TCS   | _     | 0000          |
| TMR4      | 0114 |        |        |          |        |                |            |        | TN     | /IR4  |       |        |        |       |       |       |       | 0000          |
| TMR5HLD   | 0116 |        |        |          |        |                |            |        | TMR    | 5HLD  |       |        |        |       |       |       |       | 0000          |
| TMR5      | 0118 |        |        |          |        |                |            |        | ΤN     | 1R5   |       |        |        |       |       |       |       | 0000          |
| PR4       | 011A |        |        |          |        |                |            |        | Р      | R4    |       |        |        |       |       |       |       | FFFF          |
| PR5       | 011C |        |        |          |        |                |            |        | Р      | R5    |       |        |        |       |       |       |       | FFFF          |
| T4CON     | 011E | TON    | —      | TSIDL    | —      | —              | —          | _      | _      | —     | TGATE | TCKPS1 | TCKPS0 | T45   | _     | TCS   | _     | 0000          |
| T5CON     | 0120 | TON    | —      | TSIDL    | —      | —              | —          | _      | _      | —     | TGATE | TCKPS1 | TCKPS0 | —     | _     | TCS   | _     | 0000          |
| Lananda   |      |        |        | Desetual |        | the last and a | la sins al |        |        |       |       |        |        |       |       |       |       |               |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### **TABLE 4-7**: INPUT CAPTURE REGISTER MAP

|              | 1    |        |        |        |          | 1        | 1        |       |       | 1      | 1        |       | 1        |          | 1        | 1        | 1        |               |
|--------------|------|--------|--------|--------|----------|----------|----------|-------|-------|--------|----------|-------|----------|----------|----------|----------|----------|---------------|
| File<br>Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12   | Bit 11   | Bit 10   | Bit 9 | Bit 8 | Bit 7  | Bit 6    | Bit 5 | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | All<br>Resets |
| IC1CON1      | 0140 | _      | _      | ICSIDL | ICTSEL2  | ICTSEL1  | ICTSEL0  | —     | _     | _      | ICI1     | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC1CON2      | 0142 | —      | —      | —      | _        | —        | —        |       | IC32  | ICTRIG | TRIGSTAT |       | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC1BUF       | 0144 |        |        |        |          |          |          |       |       | IC1BU  | F        |       |          |          |          |          |          | 0000          |
| IC1TMR       | 0146 |        |        |        |          |          |          |       |       | IC1TM  | R        |       |          |          |          |          |          | XXXX          |
| IC2CON1      | 0148 | _      | _      | ICSIDL | IC2TSEL2 | IC2TSEL1 | IC2TSEL0 |       | _     | _      | ICI1     | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC2CON2      | 014A | _      | _      | _      | _        | _        | _        | -     | IC32  | ICTRIG | TRIGSTAT | —     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC2BUF       | 014C |        |        |        |          |          |          |       |       | IC2BU  | F        |       |          |          |          |          |          | 0000          |
| IC2TMR       | 014E |        |        |        |          |          |          |       |       | IC2TM  | R        |       |          |          |          |          |          | XXXX          |
| IC3CON1      | 0150 | —      | _      | ICSIDL | IC3TSEL2 | IC3TSEL1 | IC3TSEL0 |       | _     | _      | ICI1     | ICI0  | ICOV     | ICBNE    | ICM2     | ICM1     | ICM0     | 0000          |
| IC3CON2      | 0152 | —      | _      | _      | _        | _        | _        | -     | IC32  | ICTRIG | TRIGSTAT | —     | SYNCSEL4 | SYNCSEL3 | SYNCSEL2 | SYNCSEL1 | SYNCSEL0 | 000D          |
| IC3BUF       | 0154 |        |        |        |          |          |          |       |       | IC3BU  | F        |       |          |          |          |          |          | 0000          |
| IC3TMR       | 0156 |        |        |        |          |          |          |       |       | IC3TM  | R        |       |          |          |          |          |          | XXXX          |

PIC24FV32KA304 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### TABLE 4-24: NVM REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12  | Bit 11 | Bit 10 | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets <sup>(1)</sup> |
|-----------|------|--------|--------|--------|---------|--------|--------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|------------------------------|
| NVMCON    | 0760 | WR     | WREN   | WRERR  | PGMONLY | _      | —      | —     | —     | —     | ERASE | NVMOP5 | NVMOP4 | NVMOP3 | NVMOP2 | NVMOP1 | NVMOP0 | 0000                         |
| NVMKEY    | 0766 | _      | —      |        | —       |        |        | -     | _     |       |       |        | NVM    | KEY    |        |        |        | 0000                         |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

#### TABLE 4-25: ULTRA LOW-POWER WAKE-UP REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13  | Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|---------|--------|--------|--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------|---------------|
| ULPWCON   | 0768 | ULPEN  | —      | ULPSIDL | —      | —      | _      |       | ULPSINK |       | -     | _     | _     | —     | —     | _     |       | 0000          |

**Legend:** — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

### TABLE 4-26: PMD REGISTER MAP

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8 | Bit 7   | Bit 6 | Bit 5 | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0  | All<br>Resets |
|-----------|------|--------|--------|--------|--------|--------|--------|--------|-------|---------|-------|-------|--------|--------|--------|--------|--------|---------------|
| PMD1      | 0770 | T5MD   | T4MD   | T3MD   | T2MD   | T1MD   | —      | —      | —     | I2C1MD  | U2MD  | U1MD  | SPI2MD | SPI1MD | —      | —      | ADC1MD | 0000          |
| PMD2      | 0772 | _      | _      | _      | _      | _      | IC3MD  | IC2MD  | IC1MD | _       | _     | _     | _      | _      | OC3MD  | OC2MD  | OC1MD  | 0000          |
| PMD3      | 0774 | _      | _      | _      | _      | _      | CMPMD  | RTCCMD | _     | CRCPMD  | _     | _     | _      | _      | _      | I2C2MD | _      | 0000          |
| PMD4      | 0776 | -      | _      |        | —      | _      |        | —      | —     | ULPWUMD | —     | _     | EEMD   | REFOMD | CTMUMD | HLVDMD | —      | 0000          |

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

#### 5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
  - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
  - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
  - c) Write 55h to NVMKEY.
  - d) Write AAh to NVMKEY.
  - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
  - a) Set the NVMOPx bits to '011000' to configure for row programming. Clear the ERASE bit and set the WREN bit.
  - b) Write 55h to NVMKEY.
  - c) Write AAh to NVMKEY.
  - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

| ; Set up NVMCON f | for row erase operation    |                                     |
|-------------------|----------------------------|-------------------------------------|
| MOV #0            | 0x4058, W0 ;               |                                     |
| MOV WO            | 0, NVMCON ;                | Initialize NVMCON                   |
| ; Init pointer to | o row to be ERASED         |                                     |
| MOV #t            | tblpage(PROG_ADDR), W0 ;   |                                     |
| MOV WO            | 0, TBLPAG ;                | Initialize PM Page Boundary SFR     |
| MOV #t            | tbloffset(PROG_ADDR), W0 ; | Initialize in-page EA[15:0] pointer |
| TBLWTL WO         | 0, [WO] ;                  | Set base address of erase block     |
| DISI #5           | 5 ;                        | Block all interrupts                |
|                   |                            | for next 5 instructions             |
| MOV #0            | 0x55, W0                   |                                     |
| MOV WO            | 0, NVMKEY ;                | Write the 55 key                    |
| MOV #0            | OxAA, W1 ;                 |                                     |
| MOV W1            | 1, NVMKEY ;                | Write the AA key                    |
| BSET NV           | VMCON, #WR ;               | Start the erase sequence            |
| NOP               | ;                          | Insert two NOPs after the erase     |
| NOP               | ;                          | command is asserted                 |
|                   |                            |                                     |

#### EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

#### 6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing a bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin the erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

#### 6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in the previous section) if the PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- 3. Program the data word into the EEPROM:
  - Configure the NVMCON register to program one EEPROM word (NVMCON<5:0> = 0001xx).
  - Clear the NVMIF status bit and enable the NVM interrupt (optional).
  - Write the key sequence to NVMKEY.
  - Set the WR bit to begin the erase cycle.
  - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
  - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

### EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON =  $0 \times 4050;$ 

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

```
// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();
```

# EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

```
int attribute ((space(eedata))) eeData = 0x1234;
                                                // New data to write to EEPROM
 int newData;
/*_____
                  _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the write
*/
  unsigned int offset;
  // Set up NVMCON to erase one word of data EEPROM
  NVMCON = 0 \times 4004;
  \ensuremath{//} Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData);
                                               // Initialize EE Data page pointer
                                               // Initizlize lower word of address
  offset = __builtin_tbloffset(&eeData);
  builtin tblwtl(offset, newData);
                                                // Write EEPROM data to write latch
  asm volatile ("disi #5");
                                                // Disable Interrupts For 5 Instructions
   builtin write NVM();
                                                // Issue Unlock Sequence & Start Write Cycle
  while (NVMCONbits.WR=1);
                                                // Optional: Poll WR bit to wait for
                                                // write sequence to complete
```

| R/W-0         | R/W-0                              | R/W-0                               | R/W-0            | R/W-0             | U-0              | R/W-0           | U-0     |
|---------------|------------------------------------|-------------------------------------|------------------|-------------------|------------------|-----------------|---------|
| U2TXIE        | U2RXIE                             | INT2IE                              | T5IE             | T4IE              | —                | OC3IE           | _       |
| bit 15        | -                                  |                                     |                  |                   |                  |                 | bit 8   |
|               |                                    |                                     |                  |                   |                  |                 |         |
| U-0           | U-0                                | U-0                                 | R/W-0            | R/W-0             | R/W-0            | R/W-0           | R/W-0   |
|               |                                    |                                     | INT1IE           | CNIE              | CMIE             | MI2C1IE         | SI2C1IE |
| Dit 7         |                                    |                                     |                  |                   |                  |                 | bit 0   |
| Legend:       |                                    |                                     |                  |                   |                  |                 |         |
| R = Readable  | e bit                              | W = Writable                        | bit              | U = Unimplen      | nented bit, read | d as '0'        |         |
| -n = Value at | POR                                | '1' = Bit is set                    |                  | '0' = Bit is clea | ared             | x = Bit is unkn | own     |
|               |                                    |                                     |                  |                   |                  |                 |         |
| bit 15        | U2TXIE: UAF                        | RT2 Transmitter                     | Interrupt Ena    | ble bit           |                  |                 |         |
|               | 1 = Interrupt I                    | request is enab                     | led              |                   |                  |                 |         |
| bit 11        |                                    | request is not e                    | nabled           | - hit             |                  |                 |         |
| DIC 14        | 1 = Interrunt                      | RIZ Receiver Ir                     |                  |                   |                  |                 |         |
|               | 0 = Interrupt i                    | request is enab                     | nabled           |                   |                  |                 |         |
| bit 13        | INT2IE: Exter                      | rnal Interrupt 2                    | Enable bit       |                   |                  |                 |         |
|               | 1 = Interrupt i                    | request is enab                     | led              |                   |                  |                 |         |
|               | 0 = Interrupt I                    | request is not e                    | nabled           |                   |                  |                 |         |
| bit 12        | T5IE: Timer5                       | Interrupt Enabl                     | e bit            |                   |                  |                 |         |
|               | $\perp$ = Interrupt i              | request is enab                     | ied<br>nabled    |                   |                  |                 |         |
| bit 11        | T4IE: Timer4                       | Interrupt Enabl                     | e bit            |                   |                  |                 |         |
|               | 1 = Interrupt i                    | request is enab                     | led              |                   |                  |                 |         |
|               | 0 = Interrupt i                    | request is not e                    | nabled           |                   |                  |                 |         |
| bit 10        | Unimplemen                         | ted: Read as '                      | )'               |                   |                  |                 |         |
| bit 9         | OC3IE: Outpu                       | ut Compare 3 Ii                     | nterrupt Enable  | e bit             |                  |                 |         |
|               | 1 = Interrupt i<br>0 = Interrupt i | request is enab<br>request is not e | ied<br>nabled    |                   |                  |                 |         |
| bit 8-5       | Unimplemen                         | ited: Read as '                     | )'               |                   |                  |                 |         |
| bit 4         | INT1IE: Exter                      | rnal Interrupt 1                    | Enable bit       |                   |                  |                 |         |
|               | 1 = Interrupt i                    | request is enab                     | led              |                   |                  |                 |         |
|               | 0 = Interrupt i                    | request is not e                    | nabled           |                   |                  |                 |         |
| bit 3         | CNIE: Input C                      | Change Notifica                     | tion Interrupt E | Enable bit        |                  |                 |         |
|               | $\perp$ = Interrupt i              | request is enab                     | ied<br>nabled    |                   |                  |                 |         |
| bit 2         | CMIE: Compa                        | arator Interrupt                    | Enable bit       |                   |                  |                 |         |
|               | 1 = Interrupt i                    | ,<br>request is enab                | led              |                   |                  |                 |         |
|               | 0 = Interrupt i                    | request is not e                    | nabled           |                   |                  |                 |         |
| bit 1         | MI2C1IE: Ma                        | ster I2C1 Even                      | t Interrupt Ena  | ble bit           |                  |                 |         |
|               | 1 = Interrupt I                    | request is enab                     | led<br>nabled    |                   |                  |                 |         |
| bit 0         | SI2C1IF: Slav                      | ve I2C1 Event I                     | nterrupt Enabl   | le bit            |                  |                 |         |
| 5100          | 1 = Interrupt I                    | request is enab                     | led              |                   |                  |                 |         |
|               | 0 = Interrupt i                    | request is not e                    | nabled           |                   |                  |                 |         |
|               |                                    |                                     |                  |                   |                  |                 |         |

## REGISTER 8-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

| U-0                 | U-0                                                                                   | U-0                                                                                             | U-0                                                           | U-0                               | U-0              | U-0      | U-0   |
|---------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|------------------|----------|-------|
| —                   | —                                                                                     | —                                                                                               | —                                                             | _                                 | —                | —        | —     |
| bit 15              |                                                                                       |                                                                                                 |                                                               |                                   |                  |          | bit 8 |
|                     |                                                                                       |                                                                                                 |                                                               |                                   |                  |          |       |
| U-0                 | R/W-1                                                                                 | R/W-0                                                                                           | R/W-0                                                         | U-0                               | U-0              | U-0      | U-0   |
| _                   | IC3IP2                                                                                | IC3IP1                                                                                          | IC3IP0                                                        | —                                 |                  | —        |       |
| bit 7               |                                                                                       |                                                                                                 |                                                               |                                   |                  |          | bit 0 |
|                     |                                                                                       |                                                                                                 |                                                               |                                   |                  |          |       |
| Legend:             |                                                                                       |                                                                                                 |                                                               |                                   |                  |          |       |
| R = Readable        | bit                                                                                   | W = Writable                                                                                    | bit                                                           | U = Unimplen                      | nented bit, read | l as '0' |       |
| -n = Value at       | POR                                                                                   | '1' = Bit is set                                                                                |                                                               | '0' = Bit is clea                 | x = Bit is unkr  | nown     |       |
| bit 15-7<br>bit 6-4 | Unimplemen<br>IC3IP<2:0>: I<br>111 = Interrup<br><br>001 = Interrup<br>000 = Interrup | ted: Read as '(<br>nput Capture C<br>ot is Priority 7 (<br>ot is Priority 1<br>ot source is dis | <sub>o</sub> ,<br>Channel 3 Ever<br>highest priority<br>abled | nt Interrupt Prio<br>r interrupt) | rity bits        |          |       |

#### REGISTER 8-26: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

bit 3-0 Unimplemented: Read as '0'

# 11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

# 11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows the PIC24FV32KA304 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input Change-of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the ICN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately, using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to Vss by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

**Note:** Pull-ups and pull-downs on Change Notification pins should always be disabled whenever the port pin is configured as a digital output.

### EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

| MOV 0xFF00, W0;         | <pre>//Configure PORTB&lt;15:8&gt; as inputs and PORTB&lt;7:0&gt; as outputs</pre> |
|-------------------------|------------------------------------------------------------------------------------|
| NOP;                    | //Delay 1 cycle                                                                    |
| BTSS PORTB, #13;        | //Next Instruction                                                                 |
| Equivalent 'C' Code     |                                                                                    |
| TRISB = 0xFF00;         | //Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs                        |
| NOP();                  | //Delay 1 cycle                                                                    |
| if(PORTBbits.RB13 == 1) | // execute following code if PORTB pin 13 is set.                                  |
| {                       |                                                                                    |
| 3                       |                                                                                    |

#### REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Primary prescale 1:1
  - 10 = Primary prescale 4:1
  - 01 = Primary prescale 16:1
  - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).

#### REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

| R/W-0        | R/W-0            | R/W-0              | U-0                      | U-0               | U-0             | U-0             | U-0    |
|--------------|------------------|--------------------|--------------------------|-------------------|-----------------|-----------------|--------|
| FRMEN        | SPIFSD           | SPIFPOL            |                          | _                 | _               | _               | _      |
| bit 15       | ·                |                    |                          | ·                 |                 |                 | bit 8  |
|              |                  |                    |                          |                   |                 |                 |        |
| U-0          | U-0              | U-0                | U-0                      | U-0               | U-0             | R/W-0           | R/W-0  |
| _            | —                | —                  | —                        | —                 | —               | SPIFE           | SPIBEN |
| bit 7        |                  |                    |                          |                   |                 |                 | bit 0  |
|              |                  |                    |                          |                   |                 |                 |        |
| Legend:      |                  |                    |                          |                   |                 |                 |        |
| R = Readab   | le bit           | W = Writable b     | it                       | U = Unimplem      | nented bit, rea | ad as '0'       |        |
| -n = Value a | t POR            | '1' = Bit is set   |                          | '0' = Bit is clea | ared            | x = Bit is unkr | nown   |
|              |                  |                    |                          |                   |                 |                 |        |
| bit 15       | FRMEN: Fra       | med SPIx Suppo     | ort bit                  |                   |                 |                 |        |
|              | 1 = Framed S     | SPIx support is e  | nabled                   |                   |                 |                 |        |
| bit 14       |                  | SFIX Support is u  | ulso Diroctio            | n Control on SS   | v Din hit       |                 |        |
| DIL 14       | 1 = Frame System | vnc pulse input (  | uise Direction<br>slave) |                   |                 |                 |        |
|              | 0 = Frame System | ync pulse output   | (master)                 |                   |                 |                 |        |
| bit 13       | SPIFPOL: SI      | Plx Frame Sync     | Pulse Polarit            | y bit (Frame mo   | de only)        |                 |        |
|              | 1 = Frame S      | ync pulse is activ | e-high                   |                   |                 |                 |        |
|              | 0 = Frame S      | ync pulse is activ | e-low                    |                   |                 |                 |        |
| bit 12-2     | Unimplemer       | nted: Read as '0   | ,                        |                   |                 |                 |        |
| bit 1        | SPIFE: SPIx      | Frame Sync Pul     | se Edge Sele             | ect bit           |                 |                 |        |
|              | 1 = Frame System | ync pulse coincic  | les with the f           | irst bit clock    |                 |                 |        |
| h:4 0        |                  | ync puise preced   | es the first d           |                   |                 |                 |        |
| DILU         | SPIBEN: SP       | IX Ennanced But    | ier Enable bl            | ι                 |                 |                 |        |
|              | 1 = Enhance      | d buffer is disabl | ed (Legacy n             | node)             |                 |                 |        |
|              |                  |                    | ee (Logady I             |                   |                 |                 |        |
|              |                  |                    |                          |                   |                 |                 |        |

#### 19.2.6 ALRMVAL REGISTER MAPPINGS

# **REGISTER 19-8:** ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER<sup>(1)</sup>

| U-0           | U-0           | U-0                        | R/W-x                                  | R/W-x                | R/W-x           | R/W-x              | R/W-x   |  |  |
|---------------|---------------|----------------------------|----------------------------------------|----------------------|-----------------|--------------------|---------|--|--|
| —             | —             | —                          | MTHTEN0                                | MTHONE3              | MTHONE2         | MTHONE1            | MTHONE0 |  |  |
| bit 15        |               | •                          |                                        |                      | •               | •                  | bit 8   |  |  |
|               |               |                            |                                        |                      |                 |                    |         |  |  |
| U-0           | U-0           | R/W-x                      | R/W-x                                  | R/W-x                | R/W-x           | R/W-x              | R/W-x   |  |  |
| —             | —             | DAYTEN1                    | DAYTEN0                                | DAYONE3              | DAYONE2         | DAYONE1            | DAYONE0 |  |  |
| bit 7         |               |                            | •                                      | •                    |                 |                    | bit 0   |  |  |
|               |               |                            |                                        |                      |                 |                    |         |  |  |
| Legend:       |               |                            |                                        |                      |                 |                    |         |  |  |
| R = Readabl   | e bit         | W = Writable               | Dit U = Unimplemented bit, read as '0' |                      |                 |                    |         |  |  |
| -n = Value at | POR           | '1' = Bit is set           |                                        | '0' = Bit is cleared |                 | x = Bit is unknown |         |  |  |
|               |               |                            |                                        |                      |                 |                    |         |  |  |
| bit 15-13     | Unimplement   | ed: Read as '0'            | ,                                      |                      |                 |                    |         |  |  |
| bit 12        | MTHTEN0: B    | inary Coded De             | ecimal Value of                        | Month's Tens         | Digit bit       |                    |         |  |  |
|               | Contains a va | lue of '0' or '1'.         |                                        |                      | -               |                    |         |  |  |
| bit 11-8      | MTHONE<3:0    | >: Binary Cod              | ed Decimal Va                          | lue of Month's       | Ones Digit bits |                    |         |  |  |
|               | Contains a va | lue from 0 to 9            |                                        |                      | 0               |                    |         |  |  |
| bit 7-6       | Unimplemen    | Unimplemented: Read as '0' |                                        |                      |                 |                    |         |  |  |
|               |               |                            |                                        |                      |                 |                    |         |  |  |

| bit 5-4 | <b>DAYTEN&lt;1:0&gt;:</b> Binary Coded Decimal Value of Day's Tens Digit bits |
|---------|-------------------------------------------------------------------------------|
|         | Contains a value from 0 to 3.                                                 |
| bit 3-0 | DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits              |

Contains a value from 0 to 9.

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

### REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER<sup>(1)</sup>

| U-0    | U-0 | U-0    | U-0    | U-0    | R/W-x  | R/W-x  | R/W-x  |
|--------|-----|--------|--------|--------|--------|--------|--------|
| —      | —   | —      | —      | —      | WDAY2  | WDAY1  | WDAY0  |
| bit 15 |     |        |        |        |        |        | bit 8  |
|        |     |        |        |        |        |        |        |
| U-0    | U-0 | R/W-x  | R/W-x  | R/W-x  | R/W-x  | R/W-x  | R/W-x  |
| —      | —   | HRTEN1 | HRTEN0 | HRONE3 | HRONE2 | HRONE1 | HRONE0 |
| bit 7  |     |        |        |        |        |        | bit 0  |

| Legend:           |                  |                                    |                    |  |
|-------------------|------------------|------------------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |

| bit 15-11<br>bit 10-8 | <b>Unimplemented:</b> Read as '0'<br><b>WDAY&lt;2:0&gt;:</b> Binary Coded Decimal Value of Weekday Digit bits<br>Contains a value from 0 to 6. |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 7-6               | Unimplemented: Read as '0'                                                                                                                     |
| bit 5-4               | <b>HRTEN&lt;1:0&gt;:</b> Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.                                    |
| bit 3-0               | <b>HRONE&lt;3:0&gt;:</b> Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.                                    |

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

| P/M/ 0        | 11-0                            | P/M/0                  | 11-0                       | 11-0               | 11-0             | 11-0             |                  |
|---------------|---------------------------------|------------------------|----------------------------|--------------------|------------------|------------------|------------------|
|               | 0-0                             |                        | 0-0                        | 0-0                | 0-0              | 0-0              | 0-0              |
| hit 15        |                                 | TIEGIDE                |                            |                    |                  |                  | <br>bit 8        |
| bit 15        |                                 |                        |                            |                    |                  |                  | 511 0            |
| R/W-0         | R/W-0                           | R/W-0                  | U-0                        | R/W-0              | R/W-0            | R/W-0            | R/W-0            |
| VDIR          | BGVST                           | IRVST                  | _                          | HLVDL3             | HLVDL2           | HLVDL1           | HLVDL0           |
| bit 7         |                                 |                        |                            |                    |                  |                  | bit 0            |
|               |                                 |                        |                            |                    |                  |                  |                  |
| Legend:       |                                 |                        |                            |                    |                  |                  |                  |
| R = Readable  | e bit                           | W = Writable           | oit                        | U = Unimplem       | nented bit, read | l as '0'         |                  |
| -n = Value at | POR                             | '1' = Bit is set       |                            | '0' = Bit is clea  | ared             | x = Bit is unkn  | own              |
|               |                                 |                        |                            |                    |                  |                  |                  |
| bit 15        | HLVDEN: Hig                     | h/Low-Voltage          | Detect Power               | Enable bit         |                  |                  |                  |
|               | 1 = HLVD is (                   | enabled                |                            |                    |                  |                  |                  |
|               | 0 = HLVD is (                   | disabled               |                            |                    |                  |                  |                  |
| bit 14        | Unimplemen                      | ted: Read as '         | )'<br>A a al a la <b>1</b> |                    |                  |                  |                  |
| DIT 13        | HLSIDL: HLV                     | D Stop in Idle N       | NODE DIT                   | laviaa antara ld   | lla mada         |                  |                  |
|               | 1 = Discontinue<br>0 = Continue | s module opera         | ation in Idle mo           | ide                | lie mode         |                  |                  |
| bit 12-8      | Unimplemen                      | ted: Read as '         | )'                         |                    |                  |                  |                  |
| bit 7         | VDIR: Voltage                   | e Change Direc         | tion Select bit            |                    |                  |                  |                  |
|               | 1 = Event occ                   | urs when volta         | ge equals or e             | xceeds trip poir   | nt (HLVDL<3:0>   | >)               |                  |
|               | 0 = Event occ                   | urs when voltage       | ge equals or fa            | alls below trip po | oint (HLVDL<3    | :0>)             |                  |
| bit 6         | BGVST: Band                     | d Gap Voltage S        | Stable Flag bit            |                    |                  |                  |                  |
|               | 1 = Indicates                   | that the band g        | ap voltage is s            | table              |                  |                  |                  |
| hit E         |                                 | chat the band g        | ap voltage is u            |                    |                  |                  |                  |
| DIL 5         | 1 = Indicates                   | that the interna       | al reference vo            | oltage is stable   | and the high-ve  | oltage detect lo | ogic generates   |
|               | the interr                      | upt flag at the s      | pecified voltag            | je range           | and the high h   |                  | gie generatee    |
|               | 0 = Indicates                   | that the international | al reference vo            | oltage is unstab   | le and the high  | 1-voltage detec  | t logic will not |
|               | generate<br>enabled             | the interrupt th       | ag at the spec             | ined voltage ra    | inge, and the F  | 1LVD Interrupt   | snould not be    |
| bit 4         | Unimplemen                      | ted: Read as '         | )'                         |                    |                  |                  |                  |
| bit 3-0       | HLVDL<3:0>                      | : High/I ow-Volt       | age Detection              | l imit bits        |                  |                  |                  |
|               | 1111 = Exter                    | nal analog inpu        | t is used (input           | t comes from th    | e HLVDIN pin)    |                  |                  |
|               | 1110 = Trip F                   | Point 1 <sup>(1)</sup> |                            |                    |                  |                  |                  |
|               | 1101 = Trip P                   | Point 2(')             |                            |                    |                  |                  |                  |
|               |                                 | ont 5                  |                            |                    |                  |                  |                  |
|               | •                               |                        |                            |                    |                  |                  |                  |
|               | 0000 <b>- T</b> rin <b>F</b>    | Doint 15(1)            |                            |                    |                  |                  |                  |
|               | 0000 = mp P                     | Unit 15'               |                            |                    |                  |                  |                  |

### REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER



|                    |                                                                           | -                                                                                                        |                                    |                                        |                                                         |                                |                |
|--------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------|---------------------------------------------------------|--------------------------------|----------------|
| R/W-0              | R/W-0                                                                     | R/W-0                                                                                                    | R/W-0                              | R/W-0                                  | R/W-0                                                   | U-0                            | U-0            |
| PVCFG              | 1 PVCFG0                                                                  | NVCFG0                                                                                                   | OFFCAL                             | BUFREGEN                               | CSCNA                                                   | —                              |                |
| bit 15             |                                                                           |                                                                                                          |                                    |                                        |                                                         |                                | bit 8          |
|                    |                                                                           |                                                                                                          |                                    |                                        |                                                         |                                |                |
| R/W-0              | R/W-0                                                                     | R/W-0                                                                                                    | R/W-0                              | R/W-0                                  | R/W-0                                                   | R/W-0                          | R/W-0          |
| BUFS <sup>(1</sup> | ) SMPI4                                                                   | SMPI3                                                                                                    | SMPI2                              | SMPI1                                  | SMPI0                                                   | BUFM <sup>(1)</sup>            | ALTS           |
| bit 7              |                                                                           |                                                                                                          |                                    |                                        |                                                         |                                | bit 0          |
|                    |                                                                           |                                                                                                          |                                    |                                        |                                                         |                                |                |
| Legend:            |                                                                           |                                                                                                          |                                    |                                        |                                                         |                                |                |
| R = Read           | able bit                                                                  | W = Writable                                                                                             | bit                                | U = Unimplem                           | ented bit, read                                         | as '0'                         |                |
| -n = Value         | e at POR                                                                  | '1' = Bit is set                                                                                         |                                    | '0' = Bit is clea                      | ared                                                    | x = Bit is unkno               | own            |
| bit 15-14          | <b>PVCFG&lt;1:0</b> ><br>11 = 4 * Inter<br>10 = 2 * Inter<br>01 = Externa | •: Converter Po<br>mal V <sub>BG</sub> ( <sup>2)</sup><br>mal V <sub>BG</sub> ( <sup>3)</sup><br>I VREF+ | sitive Voltage                     | Reference Conf                         | iguration bits                                          |                                |                |
|                    | 00 <b>= AV</b> DD                                                         |                                                                                                          |                                    |                                        |                                                         |                                |                |
| bit 13             | <b>NVCFG0:</b> Co<br>1 = External                                         | onverter Negativ<br>VREF-                                                                                | ve Voltage Rei                     | ference Configur                       | ation bits                                              |                                |                |
| hit 12             |                                                                           | fset Calibration                                                                                         | Mode Select                        | hit                                    |                                                         |                                |                |
|                    | 1 = Inverting                                                             | and non-invert                                                                                           | ing inputs of c                    | hannel Sample-                         | and-Hold are c                                          | onnected to AV                 | 22             |
|                    | 0 = Inverting                                                             | and non-invert                                                                                           | ing inputs of c                    | hannel Sample-                         | and-Hold are c                                          | onnected to not                | rmal inputs    |
| bit 11             | BUFREGEN:                                                                 | A/D Buffer Re                                                                                            | gister Enable                      | bit                                    |                                                         |                                |                |
|                    | 1 = Conversi                                                              | ion result is loa                                                                                        | ded into a buf                     | fer location deter                     | mined by the o                                          | converted chann                | nel            |
|                    | 0 = A/D resu                                                              | It buffer is treat                                                                                       | ed as a FIFO                       |                                        |                                                         |                                |                |
| bit 10             | CSCNA: Sca                                                                | n Input Selectio                                                                                         | ons for CH0+                       | S/H Input for MU                       | IX A Setting bit                                        |                                |                |
|                    | 1 = Scans in<br>0 = Does not                                              | puts<br>t scan inputs                                                                                    |                                    |                                        |                                                         |                                |                |
| bit 9-8            | Unimplemen                                                                | ited: Read as '                                                                                          | 0'                                 |                                        |                                                         |                                |                |
| bit 7              | BUFS: Buffer                                                              | <sup>-</sup> Fill Status bit <sup>(1</sup>                                                               | )                                  |                                        |                                                         |                                |                |
|                    | 1 = A/D is fill<br>0 = A/D is fill                                        | ing the upper h                                                                                          | alf of the buffe                   | er; user should a<br>er; user should a | ccess data in t<br>ccess data in t                      | he lower half<br>he upper half |                |
| bit 6-2            | SMPI<4:0>: \$                                                             | Sample Rate In                                                                                           | terrupt Select                     | bits                                   |                                                         |                                |                |
|                    | 11111 = Inte<br>11110 = Inte                                              | errupts at the co<br>errupts at the co                                                                   | ompletion of th<br>ompletion of th | e conversion for<br>e conversion for   | <sup>-</sup> each 32nd sa<br><sup>-</sup> each 31st sar | mple<br>nple                   |                |
|                    | •                                                                         |                                                                                                          |                                    |                                        |                                                         |                                |                |
|                    | •<br>00001 = Inte                                                         | errupts at the co                                                                                        | ompletion of th                    | e conversion for                       | every other sample                                      | ample                          |                |
| hit 1              | BUFM: Buffe                                                               | r Fill Mode Sele                                                                                         | -ct hit(1)                         |                                        | cuon cumpic                                             |                                |                |
| bit i              | 1 = Starts fill                                                           | ing the buffer a                                                                                         | it address. AD                     | 1BUF0. on the t                        | first interrupt a                                       | nd AD1BUF(n/2                  | 2) on the next |
|                    | interrupt<br>0 = Starts fil<br>interrupts                                 | (Split Buffer mo<br>ling the buffer<br>s (FIFO mode)                                                     | ode)<br>at address,                | ADCBUF0, and                           | l each sequer                                           | ntial address o                | n successive   |
| Note 1:            | This is only applicused when BUFN                                         | cable when the $I = 1$ .                                                                                 | buffer is used                     | in FIFO mode (I                        | BUFREGEN =                                              | 0). In addition,               | BUFS is only   |
| 2:                 | The voltage refer                                                         | ence settina wi                                                                                          | ll not be withir                   | the specificatio                       | n with VDD bel                                          | ow 4.5V.                       |                |

### REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

3: The voltage reference setting will not be within the specification with VDD below 2.3V.

| U-0                                | U-0 | U-0              | U-0                                | U-0               | U-0  | R/C-1           | R/C-1 |
|------------------------------------|-----|------------------|------------------------------------|-------------------|------|-----------------|-------|
| —                                  |     | —                | —                                  | —                 | —    | GSS0            | GWRP  |
| bit 7                              |     |                  | •                                  |                   |      |                 | bit 0 |
|                                    |     |                  |                                    |                   |      |                 |       |
| Legend:                            |     |                  |                                    |                   |      |                 |       |
| R = Readable bit C = Clearable bit |     | e bit            | U = Unimplemented bit, read as '0' |                   |      |                 |       |
| -n = Value at POR                  |     | '1' = Bit is set |                                    | '0' = Bit is clea | ared | x = Bit is unkr | nown  |

| bit 7-2 | Unimplemented: Read as '0'                                                                             |
|---------|--------------------------------------------------------------------------------------------------------|
| bit 1   | GSS0: General Segment Code Flash Code Protection bit                                                   |
|         | <ul><li>1 = No protection</li><li>0 = Standard security is enabled</li></ul>                           |
| bit 0   | GWRP: General Segment Code Flash Write Protection bit                                                  |
|         | <ul> <li>1 = General segment may be written</li> <li>0 = General segment is write-protected</li> </ul> |

**REGISTER 26-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER** 

#### **REGISTER 26-3:** FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

| R/P-1     | R/P-1   | R/P-1   | U-0 | U-0 | R/P-1  | R/P-1  | R/P-1  |
|-----------|---------|---------|-----|-----|--------|--------|--------|
| IESO      | LPRCSEL | SOSCSRC | —   | —   | FNOSC2 | FNOSC1 | FNOSC0 |
| bit 7 bit |         |         |     |     |        |        | bit 0  |

| Legend:          |                                                                                                                                                                                                  |                                                     |                             |                    |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------|--------------------|--|--|--|--|--|
| R = Readable bit |                                                                                                                                                                                                  | P = Programmable bit                                | U = Unimplemented bit, read | d as '0'           |  |  |  |  |  |
| -n = Value at I  | POR                                                                                                                                                                                              | '1' = Bit is set                                    | '0' = Bit is cleared        | x = Bit is unknown |  |  |  |  |  |
|                  |                                                                                                                                                                                                  |                                                     |                             |                    |  |  |  |  |  |
| bit 7            | IESO: Internal External Switchover bit                                                                                                                                                           |                                                     |                             |                    |  |  |  |  |  |
|                  | <ul> <li>1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled)</li> <li>0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)</li> </ul> |                                                     |                             |                    |  |  |  |  |  |
| bit 6            | LPRCSEL: Internal LPRC Oscillator Power Select bit                                                                                                                                               |                                                     |                             |                    |  |  |  |  |  |
|                  | 1 = High-Pow<br>0 = Low-Powe                                                                                                                                                                     | er/High-Accuracy mode<br>er/Low-Accuracy mode       |                             |                    |  |  |  |  |  |
| bit 5            | SOSCSRC: S                                                                                                                                                                                       | Secondary Oscillator Clock So                       | urce Configuration bit      |                    |  |  |  |  |  |
|                  | <ul> <li>1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins</li> <li>0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin</li> </ul>             |                                                     |                             |                    |  |  |  |  |  |
| bit 4-3          | Unimplement                                                                                                                                                                                      | ted: Read as '0'                                    |                             |                    |  |  |  |  |  |
| bit 2-0          | FNOSC<2:0>                                                                                                                                                                                       | : Oscillator Selection bits                         |                             |                    |  |  |  |  |  |
|                  | 000 = Fast R<br>001 = Fast R                                                                                                                                                                     | C Oscillator (FRC)<br>C Oscillator with Divide-by-N | with PLL module (FRCDIV+PI  | L)                 |  |  |  |  |  |

- 010 = Primary Oscillator (XT, HS, EC)
- 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
- 100 = Secondary Oscillator (SOSC)
- 101 = Low-Power RC Oscillator (LPRC)
- 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
- 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)



| TABLE 29-36: | SPIX MASTER MODE TIMING REQUIREMENTS ( | (CKE = 0) | 1 |
|--------------|----------------------------------------|-----------|---|
|              |                                        |           | 1 |

| AC CHARACTERISTICS |                       |                                            | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{(Industrial)} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{(Extended)} \end{array}$ |                    |     |       |            |
|--------------------|-----------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|------------|
| Param<br>No.       | Symbol                | Characteristic                             | Min                                                                                                                                                                                                                                                                               | Тур <sup>(1)</sup> | Max | Units | Conditions |
| SP10               | TscL                  | SCKx Output Low Time <sup>(2)</sup>        | Tcy/2                                                                                                                                                                                                                                                                             | _                  | _   | ns    |            |
| SP11               | TscH                  | SCKx Output High Time <sup>(2)</sup>       | Tcy/2                                                                                                                                                                                                                                                                             | —                  | _   | ns    |            |
| SP20               | TscF                  | SCKx Output Fall Time <sup>(3)</sup>       | _                                                                                                                                                                                                                                                                                 | 10                 | 25  | ns    |            |
| SP21               | TscR                  | SCKx Output Rise Time <sup>(3)</sup>       |                                                                                                                                                                                                                                                                                   | 10                 | 25  | ns    |            |
| SP30               | TdoF                  | SDOx Data Output Fall Time <sup>(3)</sup>  |                                                                                                                                                                                                                                                                                   | 10                 | 25  | ns    |            |
| SP31               | TdoR                  | SDOx Data Output Rise Time <sup>(3)</sup>  |                                                                                                                                                                                                                                                                                   | 10                 | 25  | ns    |            |
| SP35               | TscH2doV,<br>TscL2doV | SDOx Data Output Valid after<br>SCKx Edge  |                                                                                                                                                                                                                                                                                   |                    | 30  | ns    |            |
| SP40               | TdiV2scH,<br>TdiV2scL | Setup Time of SDIx Data Input to SCKx Edge | 20                                                                                                                                                                                                                                                                                | _                  | _   | ns    |            |
| SP41               | TscH2diL,<br>TscL2diL | Hold Time of SDIx Data Input to SCKx Edge  | 20                                                                                                                                                                                                                                                                                | _                  | _   | ns    |            |

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

**2:** The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.



FIGURE 30-23: TYPICAL VBOR vs. TEMPERATURE (BOR TRIP POINT 3)



# FIGURE 30-30: VIL/VIH vs. VDD (OSCO, TEMPERATURES AS NOTED)



FIGURE 30-31: VIL/VIH vs. VDD (MCLR, TEMPERATURES AS NOTED)



FIGURE 30-36: HLVD TRIP POINT VOLTAGE vs. TEMPERATURE (HLVDL<3:0> = 0000, PIC24F32KA304 FAMILY DEVICES ONLY



FIGURE 30-37: TEMPERATURE SENSOR DIODE VOLTAGE vs. TEMPERATURE (2.0V  $\leq$  VDD  $\leq$  5.5V)



FIGURE 30-46: TYPICAL AlwDT vs. VDD

**∆IWDT (µA)** 

Vdd

FIGURE 30-47: TYPICAL AIDSBOR vs. VDD

Aldsbor (nA)

Vdd

FIGURE 30-49: TYPICAL Vol vs. Iol (GENERAL I/O,  $2.0V \le VDD \le 5.5V$ )

0 Γοι (MA)

# FIGURE 30-50: TYPICAL VOH vs. IOH (GENERAL I/O, AS A FUNCTION OF TEMPERATURE, 2.0V $\leq$ VDD $\leq$ 5.5V)

| (л) нол | - |          | - | _ |  |
|---------|---|----------|---|---|--|
|         |   | IOH (mA) |   |   |  |

### 48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                        | Units     | MILLIMETERS |          |      |  |
|------------------------|-----------|-------------|----------|------|--|
| Dimensi                | on Limits | MIN         | NOM      | MAX  |  |
| Number of Pins         | Ν         | 48          |          |      |  |
| Pitch                  | е         |             | 0.40 BSC |      |  |
| Overall Height         | Α         | 0.45        | 0.50     | 0.55 |  |
| Standoff               | A1        | 0.00        | 0.02     | 0.05 |  |
| Contact Thickness      | A3        | 0.127 REF   |          |      |  |
| Overall Width          | Е         | 6.00 BSC    |          |      |  |
| Exposed Pad Width      | E2        | 4.45        | 4.60     | 4.75 |  |
| Overall Length         | D         | 6.00 BSC    |          |      |  |
| Exposed Pad Length     | D2        | 4.45        | 4.60     | 4.75 |  |
| Contact Width          | b         | 0.15        | 0.20     | 0.25 |  |
| Contact Length         | L         | 0.30        | 0.40     | 0.50 |  |
| Contact-to-Exposed Pad | K         | 0.20        | -        | -    |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2