

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

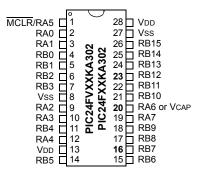
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka302-e-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		N	lemory				MN				(ch)	rs	-	
PIC24F Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Timers 16-Bit	Capture Input	Compare/PWM Output	UART w/ IrDA [®]	IdS	I²C™	12-Bit A/D (Comparators	CTMU (ch)	RTCC
PIC24FV16KA301/ PIC24F16KA301	20	16K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV32KA301/ PIC24F32KA301	20	32K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV16KA302/ PIC24F16KA302	28	16K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV32KA302/ PIC24F32KA302	28	32K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV16KA304/ PIC24F16KA304	44	16K	2K	512	5	3	3	2	2	2	16	3	16	Y
PIC24FV32KA304/ PIC24F32KA304	44	32K	2K	512	5	3	3	2	2	2	16	3	16	Y

Pin Diagrams

28-Pin SPDIP/SSOP/SOIC^(1,2)

2 V 3 C 4 P 5 P 6 A 7 A 8 V 9 C 10 C 11 S 12 S	PIC24FVXXKA302 MCLR/Vpp/RA5 VReF+/CVReF+/AN0/C3INC/CTED1/CN2/RA0 CVREF-/VREF-/AN1/CN3/RA1	PIC24FXXKA302
2 V 3 C 4 P 5 P 6 A 7 A 8 V 9 C 10 C 11 S 12 S	VREF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0	
3 C 4 P 5 P 6 A 7 A 8 V 9 C 10 C 11 S 12 S		
4 P 5 P 6 A 7 A 8 V 9 C 10 C 11 S 12 S	CVREF-/VREF-/AN1/CN3/RA1	VREF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0
5 P 6 A 7 A 8 V 9 C 10 C 11 S 12 S		CVREF-/VREF-/AN1/CN3/RA1
6 A 7 A 8 V 9 C 10 C 11 S 12 S	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
7 A 8 V 9 C 10 C 11 S 12 S	PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX/CN5/RB1
8 V 9 C 10 C 11 S 12 S	AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
9 C 10 C 11 S 12 S	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RB3
10 C 11 S 12 S	Vss	Vss
11 S 12 S	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2
12 S	OSCO/AN14/CLKO/CN29/RA3	OSCO/AN14/CLKO/CN29/RA3
-	SOSCI/AN15/U2RTS/CN1/RB4	SOSCI/AN15/U2RTS/CN1/RB4
13 V	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4
10	Vdd	VDD
14 P	PGED3/ASDA ⁽¹⁾ /SCK2/CN27/RB5	PGED3/ASDA ⁽¹⁾ /SCK2/CN27/RB5
15 P	PGEC3/ASCL ⁽¹⁾ /SDO2/CN24/RB6	PGEC3/ASCL ⁽¹⁾ /SDO2/CN24/RB6
16 U	U1TX/C2OUT/OC1/INT0/CN23/RB7	U1TX/INT0/CN23/RB7
17 S	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
18 S	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
19 S	SDI2/IC1/CTED3/CN9/RA7	SDI2/IC1/CTED3/CN9/RA7
20 V	VCAP	C2OUT/OC1/CTED1/INT2/CN8/RA6
21 P	PGED2/SDI1/OC3/CTED11/CN16/RB10	PGED2/SDI1/OC3/CTED11/CN16/RB10
22 P	PGEC2/SCK1/OC2/CTED9/CN15/RB11	PGEC2/SCK1/OC2/CTED9/CN15/RB11
23 A	AN12/HLVDIN/SS2/IC3/CTED2/INT2/CN14/RB12	AN12/HLVDIN/SS2/IC3/CTED2/CN14/RB12
24 A	AN11/SDO1/OCFB/CTPLS/CN13/RB13	AN11/SDO1/OCFB/CTPLS/CN13/RB13
25 C	CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/RB14	CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/ RB14
26 A	AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
27 V		
28 V	Vss/AVss	Vss/AVss

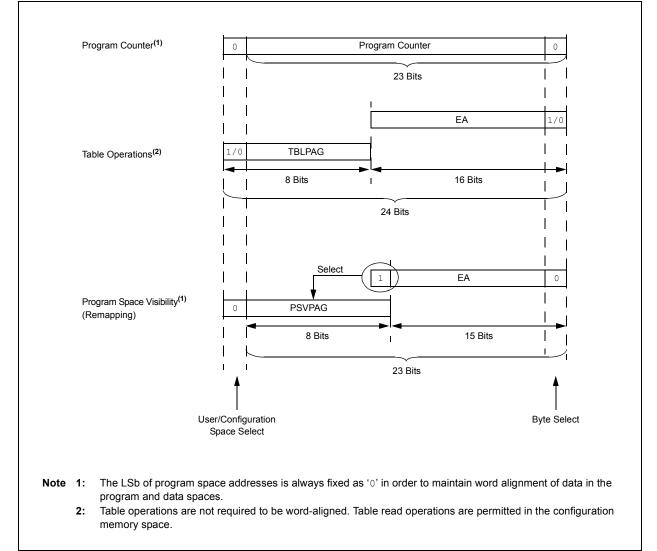
Legend:

Pin numbers in **bold** indicate pin function differences between PIC24FV and PIC24F devices.

Note 1: Alternative multiplexing for SDA1 (ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.

2: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V tolerant.

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)


			F					FV					
			Pin Number				Pin Number						
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
C3INA	18	26	23	15	16	18	26	23	15	16	Ι	ANA	Comparator 3 Input A (+)
C3INB	17	25	22	14	15	17	25	22	14	15	I	ANA	Comparator 3 Input B (-)
C3INC	2	2	27	19	21	2	2	27	19	21	1	ANA	Comparator 3 Input C (+)
C3IND	4	4	1	21	23	4	4	1	21	23	1	ANA	Comparator 3 Input D (-)
C3OUT	12	17	14	44	48	12	17	14	44	48	0	—	Comparator 3 Output
CLK I	7	9	6	30	33	7	9	6	30	33	I	ANA	Main Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0	_	System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	I	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	I	ST	
CN2	2	2	27	19	21	2	2	27	19	21	I	ST	
CN3	3	3	28	20	22	3	3	28	20	22	I	ST	
CN4	4	4	1	21	23	4	4	1	21	23	I	ST	
CN5	5	5	2	22	24	5	5	2	22	24	I	ST	
CN6	6	6	3	23	25	6	6	3	23	25	I	ST	
CN7	_	7	4	24	26		7	4	24	26	I	ST	
CN8	14	20	17	7	7				_		I	ST	
CN9		19	16	6	6		19	16	6	6	I	ST	
CN10		—	—	27	29				27	29	I	ST	
CN11	18	26	23	15	16	18	26	23	15	16	1	ST	
CN12	17	25	22	14	15	17	25	22	14	15	1	ST	
CN13	16	24	21	11	12	16	24	21	11	12	1	ST	
CN14	15	23	20	10	11	15	23	20	10	11	1	ST	
CN15		22	19	9	10		22	19	9	10	Ι	ST]
CN16		21	18	8	9		21	18	8	9	Ι	ST	
CN17		—	—	3	3		_	_	3	3	1	ST	
CN18	_	_	_	2	2	_	_	_	2	2	Ι	ST]
CN19		_	_	5	5	—	_		5	5	1	ST]
CN20		_	—	4	4	_			4	4	I	ST	
CN21	13	18	15	1	1	13	18	15	1	1	I	ST]
CN22	12	17	14	44	48	12	17	14	44	48	1	ST	

	Access	Program Space Address								
Access Type	Space	<23>	<22:16>	<15>	<15> <14:1>					
Instruction Access	User	0	0 PC<22:1>							
(Code Execution)			0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT (Byte/Word Read/Write)	User	TBL	_PAG<7:0>	Data EA<15:0>						
		0 x	XXX XXXX	XXXX XXXX XXXX XXXX						
	Configuration	TBL	_PAG<7:0>	Data EA<15:0>						
		1x	XXX XXXX							
Program Space Visibility	User	0	PSVPAG<7	:0> ⁽²⁾ Data EA<14:0> ⁽¹⁾						
(Block Remap/Read)		0	XXXX XX	XXX						

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) in the PIC24FV32KA304 family.

8.3 Interrupt Control and Status Registers

The PIC24FV32KA304 family of devices implements a total of 23 registers for the interrupt controller:

- INTCON1
- INTCON2
- · IFS0, IFS1, IFS3 and IFS4
- · IEC0, IEC1, IEC3 and IEC4
- IPC0 through IPC5, IPC7 and IPC15 through IPC19
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-33, in the following sections.

REGISTER 8-3:	INTCON1: INTERRUPT CONTROL REGISTER 1	

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:		HS = Hardware Settable	bit	
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	NSTDIS: Ir	nterrupt Nesting Disable bit		
		ot nesting is disabled		
	0 = Interru	ot nesting is enabled		
bit 14-5	Unimplem	ented: Read as '0'		
bit 4	MATHERR	: Arithmetic Error Trap Statu	s bit	
	1 = Overflo	w trap has occurred		
	0 = Overflo	w trap has not occurred		
bit 3	ADDRERR	: Address Error Trap Status	bit	
	1 = Addres	s error trap has occurred		
	0 = Addres	s error trap has not occurred	l	
bit 2	STKERR:	Stack Error Trap Status bit		
	1 = Stack e	error trap has occurred		
	0 = Stack e	error trap has not occurred		
bit 1	OSCFAIL:	Oscillator Failure Trap Status	s bit	
	- ···			

1 = Oscillator failure trap has occurred

0 = Oscillator failure trap has not occurred

bit 0 Unimplemented: Read as '0'

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

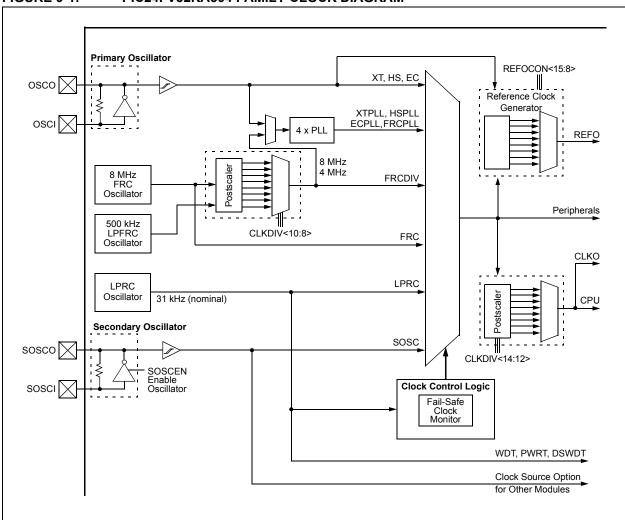
bit 0 INTOIE: External Interrupt 0 Enable bit

- 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled

REGISTER 8-21: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	MI2C1P2	MI2C1P1	MI2C1P0	—	SI2C1P2	SI2C1P1	SI2C1P0
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
-:. 4 C		tad. Daad aa (<u>.</u>				
bit 15	-	ited: Read as '		rupt Drigrity b	ita		
bit 14-12			lotification Inter	-	115		
	• •	puis Phonty 7 (highest priority	mterrupt)			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	CMIP<2:0>:	Comparator Int	errupt Priority b	its			
	111 = Interru	pt is Priority 7 (highest priority	interrupt)			
	•						
	•	untin Duinuity (
		pt is Priority 1 pt source is dis	abled				
bit 7		ited: Read as '					
bit 6-4	-		Event Interrupt	Priority hits			
			highest priority	•			
	•		ingricor priority	interrupt)			
	•						
		pt is Priority 1 pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	-		vent Interrupt F	riority bits			
			highest priority	-			
	•		- · ·	• •			
	•						
	•						
		pt is Priority 1 pt source is dis					

9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "PIC24F Family Reference Manual", Section 38. "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24FV32KA304 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FV32KA304 FAMILY CLOCK DIAGRAM

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or cleared when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 Read – indicates data transfer is output from the slave
	0 = Write – indicates data transfer is input to the slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty

Hardware is set when the software writes to I2CxTRN; hardware is clear at the completion of data transmission.

18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 18-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 provides the calculation of the baud rate error for the following conditions:

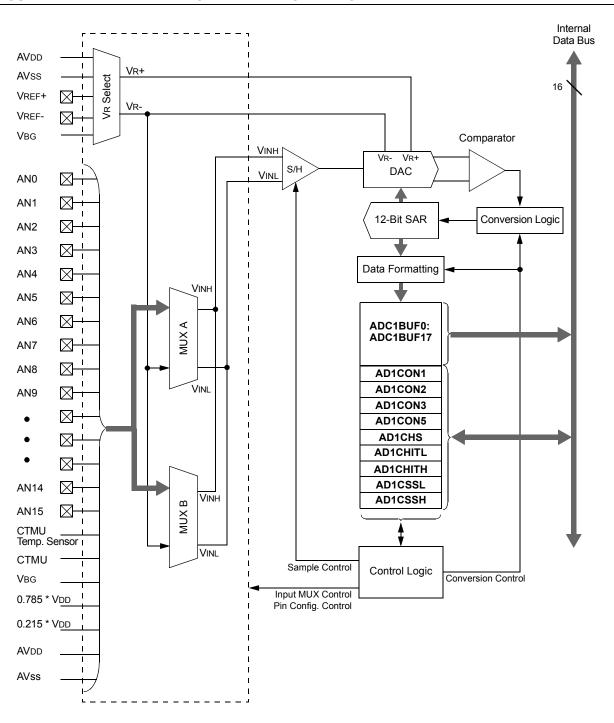
- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 18-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$


Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	=	FCY/(16 (UxBRG + 1))
Solving for UxBRG va	lue	:
UxBRG		((FCY/Desired Baud Rate)/16) - 1
UxBRG	=	((400000/9600)/16) - 1
UxBRG	=	25
Calculated Baud Rate	=	4000000/(16 (25 + 1))
	=	9615
Error	=	(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate
	=	(9615 - 9600)/9600
	=	0.16%
Note 1: Based on	Fc	Y = FOSC/2; Doze mode and PLL are disabled.

FIGURE 22-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

NOTES:

REGISTER 26-4: FOSC: OSCILLATOR CONFIGURATION REGISTER										
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0			
bit 7							bit 0			

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit
	 1 = Secondary oscillator is configured for high-power operation 0 = Secondary oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits
	 11 = Primary oscillator/external clock input frequency is greater than 8 MHz 10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz 01 = Primary oscillator/external clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected

R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
DSWDTEN	DSBOREN	_	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0			
bit 7							bit 0			
Legend:										
R = Readabl	le bit	P = Program	nable bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 7			chdog Timer Er	nable bit						
	1 = DSWDT is 0 = DSWDT is									
bit 6			Power BOR En on Deep Sleep							
	1 = Deep Slee	p BOR is enab	led in Deep Sle bled in Deep Sle	ер						
bit 5	Unimplement		•	- 1						
bit 4	DSWDTOSC:	DSWDT Refer	ence Clock Sele	ect bit						
			ne reference clo							
			he reference clo							
bit 3-0		-	p Watchdog Tin			C A				
	•		this creates an	• •	ase time unit o	r i ms.				
			7 days) nominal avs) nominal	I						
	1110 = 1:536,870,912 (6.4 days) nominal 1101 = 1:134,217,728 (38.5 hours) nominal									
	1100 = 1:33,554,432 (9.6 hours) nominal									
	1011 = 1:8,388,608 (2.4 hours) nominal 1010 = 1:2,097,152 (36 minutes) nominal									
	1010 = 1.2,091 1001 = 1:524,2									
	1000 = 1:131,0									
	0111 = 1:32,76									
		3,192 (8.5 seconds) nominal 2,048 (2.1 seconds) nominal								
	0101 = 1.2,040 0100 = 1:512 (
	0011 = 1:128 (
	0010 = 1:32 (3									
	0001 = 1:8 (8.3									

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	Wn = Wn – lit10 – (\overline{C})	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG - f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
i	SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
			$Wd = Ws - Wb - (\overline{C})$	1	1	
	SUBBR	Wb,Ws,Wd				C, DC, N, OV, Z
ONAD	SUBBR	Wb,#lit5,Wd	Wd = lit5 – Wb – (C)	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

TABLE 29-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	Pint + Pi/o		W	
Maximum Allowed Power Dissipation	PDMAX	(TJ — ΤΑ)/θJ	JA	W

TABLE 29-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin SPDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60	_	°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	—	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71	_	°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	_	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHA	RACTERI	STICS	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic				Typ ⁽¹⁾	Max	Units	Conditions	
DC10	Vdd	Supply Voltage	1.8	_	3.6	V	For F devices	
			2.0		5.5	V	For FV devices	
DC12			1.5		_	V	For F devices	
		Voltage ⁽²⁾	1.7		_	V	For FV devices	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V		
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—		V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

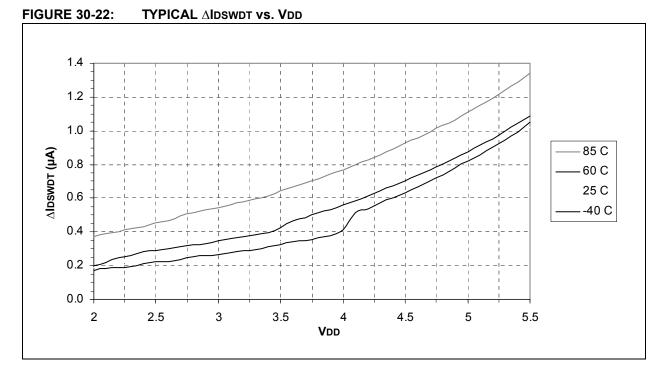
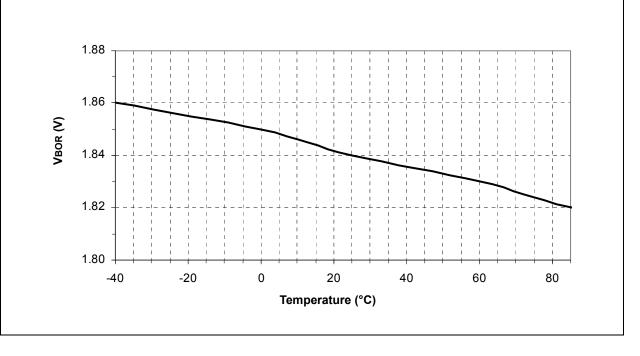



FIGURE 30-23: TYPICAL VBOR vs. TEMPERATURE (BOR TRIP POINT 3)

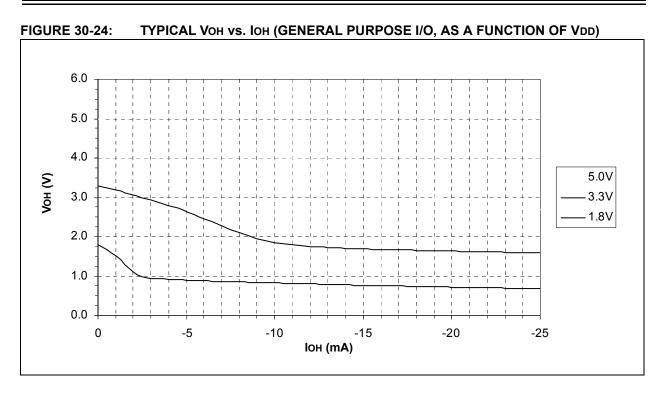
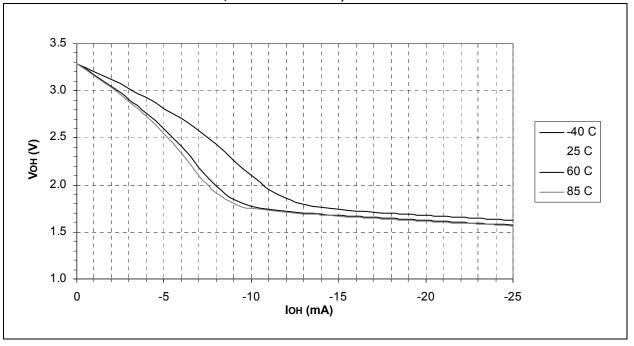
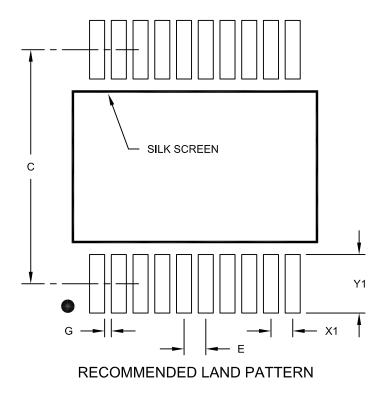




FIGURE 30-25: TYPICAL VOH vs. IOH (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le VDD \le 5.5V$)

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension	Dimension Limits			MAX	
Contact Pitch	act Pitch E				
Contact Pad Spacing	С		7.20		
Contact Pad Width (X20)	X1			0.45	
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A