

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka302-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS

	F			FV									
			Pin Number					Pin Number			1		
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
AN0	2	2	27	19	21	2	2	27	19	21	I	ANA	A/D Analog Inputs
AN1	3	3	28	20	22	3	3	28	20	22	I	ANA	
AN2	4	4	1	21	23	4	4	1	21	23	I	ANA]
AN3	5	5	2	22	24	5	5	2	22	24	Т	ANA	
AN4	6	6	3	23	25	6	6	3	23	25	Т	ANA	
AN5	_	7	4	24	26	-	7	4	24	26	I	ANA	
AN6	_	_	—	25	27	-	_	_	25	27	I	ANA	
AN7	_	_	_	26	28	-	_	_	26	28	I	ANA	
AN8	—	—	—	27	29	_	_	—	27	29	I	ANA	
AN9	18	26	23	15	16	18	26	23	15	16	I	ANA	
AN10	17	25	22	14	15	17	25	22	14	15	I	ANA	
AN11	16	24	21	11	12	16	24	21	11	12	I	ANA	
AN12	15	23	20	10	11	15	23	20	10	11	I	ANA	
AN13	7	9	6	30	33	7	9	6	30	33	I	ANA	
AN14	8	10	7	31	34	8	10	7	31	34	I	ANA	
AN15	9	11	8	33	36	9	11	8	33	36	I	ANA	
ASCL1	—	15	12	42	46	—	15	12	42	46	I/O	l ² C™	Alternate I2C1 Clock Input/Output
ASDA1	—	14	11	41	45	—	14	11	41	45	I/O	l ² C	Alternate I2C1 Data Input/Output
AVDD	20	28	25	17	18	20	28	25	17	18	I	ANA	A/D Supply Pins
AVss	19	27	24	16	17	19	27	24	16	17	I	ANA	
C1INA	8	7	4	24	26	8	7	4	24	26	I	ANA	Comparator 1 Input A (+)
C1INB	7	6	3	23	25	7	6	3	23	25	Т	ANA	Comparator 1 Input B (-)
C1INC	5	5	2	22	24	5	5	2	22	24	Т	ANA	Comparator 1 Input C (+)
C1IND	4	4	1	21	23	4	4	1	21	23	Т	ANA	Comparator 1 Input D (-)
C1OUT	17	25	22	14	15	17	25	22	14	15	0	—	Comparator 1 Output
C2INA	5	5	2	22	24	5	5	2	22	24	I	ANA	Comparator 2 Input A (+)
C2INB	4	4	1	21	23	4	4	1	21	23	I	ANA	Comparator 2 Input B (-)
C2INC	8	7	4	24	26	8	7	4	24	26	I	ANA	Comparator 2 Input C (+)
C2IND	7	6	3	23	25	7	6	3	23	25	Ι	ANA	Comparator 2 Input D (-)
C2OUT	14	20	17	7	7	11	16	13	43	47	0	-	Comparator 2 Output

R/S-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
WR	WREN	WRERR	PGMONLY	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0			
bit 7							bit 0			
Legend:		HC = Hardware	Clearable bit	U = Unimple	mented bit, re	ead as '0'				
R = Readable	e bit	W = Writable bit	S = Settable	bit						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	known			
bit 15	WR: Write Co	ontrol bit (program	or erase)							
	1 = Initiates a	a data FFPROM e	rase or write cv	cle (can be sei	, but not clea	red in softwar	e)			
	0 = Write cycle is complete (cleared automatically by hardware)									
bit 14	WREN: Write Enable bit (erase or program)									
	1 = Enables an erase or program operation									
	0 = No opera	tion allowed (device	ce clears this bit	on completion	of the write/e	erase operatio	on)			
bit 13	WRERR: Wri	te Flash Error Flag	g bit							
	1 = A write	operation is prem	aturely termina	ted (any MCL	R or WDT F	Reset during	programming			
	operation	ו)								
	0 = 1 he write	e operation comple	eted successfully	Ý						
bit 12	PGMONLY: F	Program Only Ena	ble bit							
	1 = Write ope	eration is executed	d without erasing	g target addres	s(es) first					
	0 = Automati	c erase-belore-wr	ite automatically by	an erase of th	e target addr	·ess(es)				
bit 11-7	Unimplemen	ted: Read as '0'	automationity by			000(00).				
bit 6	EDASE: Eras	e Operation Selev	at hit							
bit 0	1 = Performs	an erase operation	on when WR is s	eet						
	0 = Performs	a write operation	when WR is set	t						
bit 5-0	NVMOP<5:0	Programming C	peration Comm	and Byte bits						
	Erase Operat	ions (when ERAS	<u>E bit is '1'):</u>	-						
	011010 = Er a	ases 8 words	·							
	011001 = Er a	ases 4 words								
	011000 = Era	ases 1 word								
		Operations (when		0').						
	0.010×100	ites 1 word	I ERAJE DILIS	<u></u>						

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0	
—	—	—	—	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—	
bit 7							bit 0	
Legend: C = Clearable bit			HSC = Hardware Settable/Clearable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-4 Unimplemented: Read as '0' bit 3 IPL3: CPU Interrupt Priority Level Status bit ⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less								
bit 1-0	Unimplemen	ted: Read as ')'					
 Note 1: See Register 3-2 for the description of this bit, which is not dedicated to interrupt control functions. 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level. 								

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS			
NVMIF		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF			
bit 15				•		•	bit 8			
R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS			
T2IF	OC2IF	IC2IF		T1IF	OC1IF	IC1IF	INT0IF			
bit 7							bit 0			
Legend:		HS = Hardwar	e Settable bit							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown			
			N - 1 - 1 - 1							
bit 15	NVMIF: NVM	Interrupt Flag S	status bit							
	1 = Interrupt r	equest has occ	urred							
bit 14		ted: Read as '0	,							
bit 13		Conversion Com	nlete Interrunt	Flag Status bit	ŀ					
Sit 10	1 = Interrupt r	request has occ	urred		L .					
	0 = Interrupt r	0 = Interrupt request has not occurred								
bit 12	U1TXIF: UART1 Transmitter Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	0 = Interrupt r	equest has not	occurred							
bit 11	U1RXIF: UAF	RT1 Receiver In	terrupt Flag St	atus bit						
	1 = Interrupt r	equest has occ	urred .							
1.11.40	0 = Interrupt r	equest has not	occurred							
Dit 10	SPI1IF: SPI1	Event Interrupt	Flag Status bi	t						
	\perp = Interrupt r	equest has occ	occurred							
bit 9	SPF1IF: SPI1	Fault Interrupt	Flag Status bi	t						
Site	1 = Interrupt r	request has occ	urred							
	0 = Interrupt r	equest has not	occurred							
bit 8	T3IF: Timer3	Interrupt Flag S	tatus bit							
	1 = Interrupt r	equest has occ	urred							
	0 = Interrupt r	equest has not	occurred							
bit 7	T2IF: Timer2	Interrupt Flag S	tatus bit							
	1 = Interrupt r	equest has occ	urred							
hit C		equest has not		nt Elan Statua k	-:+					
DILO	1 = Interrupt r	request has occ	urred	pi riag Status i	JIL					
	0 = Interrupt r	= Interrupt request has not occurred $ = Interrupt request has not occurred$								
bit 5	IC2IF: Input C	Capture Channe	I 2 Interrupt Fl	lag Status bit						
	1 = Interrupt r	equest has occ	urred	3						
	0 = Interrupt r	equest has not	occurred							
bit 4	Unimplemen	ted: Read as '0	,							
bit 3	T1IF: Timer1	Interrupt Flag S	tatus bit							
	1 = Interrupt r	equest has occ	urred							
	0 = Interrupt r	equest has not	occurred							

REGISTER	0-11. IECU	. INTERROFT			JIJIER U		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NVMIE	<u> </u>	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INTOIE
bit /							bit 0
Logondi							
R = Readah	le hit	W = Writable	hit	LI = LInimplem	pented hit rea	d as 'O'	
-n = Value a		'1' = Rit is set	bit	'0' = Bit is clea	ared	x = Rit is unkn	own
							own
bit 15	NVMIE: NVM	1 Interrupt Enab	ole bit				
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	AD1IE: A/D	Conversion Cor	nplete Interrup	t Enable bit			
	1 = Interrupt	request is enab	led				
L:1 4 0		request is not e		LI- L:1			
DIT 12			r interrupt Ena	DIE DIT			
	1 = Interrupt 0 = Interrupt	request is enac	nabled				
bit 11	U1RXIE: UA	RT1 Receiver li	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	enabled				
bit 10	SPI1IE: SPI1	Transfer Com	olete Interrupt	Enable bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 9	SPF1IE: SPI	1 Fault Interrup	t Enable bit				
	1 = Interrupt	request is enab	led				
hit 8	T3IE Timer3	Interrunt Enab	le hit				
bit o	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 7	T2IE: Timer2	Interrupt Enab	le bit				
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 6	OC2IE: Outp	ut Compare Ch	annel 2 Interru	ipt Enable bit			
	1 = Interrupt	request is enac	led				
bit 5		Canture Chann	el 2 Interrunt F	nable bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 4	Unimplemer	nted: Read as '	0'				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	enabled				
bit 2	OC1IE: Outp	ut Compare Ch	annel 1 Interru	ipt Enable bit			
	1 = Interrupt	request is enab	led				
		request is not e	uapieu				

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

		D 444 0	5444.0		D 44/4	D 444 0	DAMA			
0-0	R/W-1			0-0	R/W-1		R/W-U			
	U1RXIP2	U1RXIP1	U1RXIP0		SPI1IP2	SPI1IP1	SPI1IP0			
bit 15							bit 8			
11.0		D/M/ O		11.0		D/M/ O	D/M/ O			
0-0				0-0						
— bit 7	SPF IIP2	SPEIIPI	SPF IIPU	_	1312	13121	1 JIPU bit 0			
							bit 0			
l egend:										
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set	~	'0' = Bit is cle	eared	x = Bit is unkr	nown			
				0 200000						
bit 15	Unimplemen	ted: Read as ')'							
bit 14-12	2 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	:									
	• 001 - Interrupt is Priority 1									
	000 = Interru	pt is Friority 1 pt source is dis	abled							
bit 11	Unimplemen	ted: Read as ')'							
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	bits						
	111 = Interru	pt is Priority 7(highest priority	interrupt)						
	•									
	• 001 - Interru	nt in Driarity 1								
	001 = Interrul	pt is Priority 1 of source is dis	abled							
bit 7	Unimplemen	ted: Read as ')'							
bit 6-4	SPF1IP<2:0>	: SPI1 Fault Int	terrupt Priority	bits						
	111 = Interru	pt is Priority 7(highest priority	interrupt)						
	•									
	• 001 – Intorru	nt in Driarity 1								
	001 – Interru	pt is Phonty 1 pt source is dis	abled							
bit 3	Unimplemen	ted: Read as ')'							
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits							
	111 = Interru	, pt is Priority 7(highest priority	interrupt)						
	•		-							
	•	ntio Driamity 4								
	001 = Interru	puis Priority 1 of source is dis	abled							

NOTES:

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the "PIC24F Family Reference Manual", Section 12. "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). Note that the PIC24FV32KA304 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LAT), read the latch. Writes to the latch, write the latch. Reads from the port (PORT), read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

Note: The I/O pins retain their state during Deep Sleep. They will retain this state at wake-up until the software restore bit (RELEASE) is cleared.

REGISTER 11-2: ANSB: ANALOG SELECTION (PORTB)

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
ANSB15	ANSB14	ANSB13	ANSB12	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

Legend:

bit 7

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 ANSB<15:12>: Analog Select Control bits

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active
- bit 11-5 Unimplemented: Read as '0'
- bit 4-0 ANSB<4:0>: Analog Select Control bits⁽¹⁾
 - 1 = Digital input buffer is not active (use for analog input)
 - 0 = Digital input buffer is active
- Note 1: The ANSB3 bit is not available on 20-pin devices.

REGISTER 11-3: ANSC ANALOG SELECTION (PORTC)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
_	—	—	—	—	ANSC2 ⁽¹⁾	ANSC1 ⁽¹⁾	ANSC0 ⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits⁽¹⁾

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

Note 1: These bits are not available on 20-pin or 28-pin devices.

bit 0

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾
UARTEN		USIDL	IREN ⁽¹⁾	RTSMD	—	UEN1	UEN0
bit 15							bit 8
R/C-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit /							bit 0
Legend:		C = Clearable I	bit	HC = Hardwa	re Clearable bi	it	
R = Readable	bit	W = Writable b	it	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	UARTEN: UA	RTx Enable bit					
	1 = UARTx is	enabled: All UA	ARTx pins are	controlled by L	JARTx, as defi	ned by UEN<1:	0>
	0 = UARTx is minimal	disabled: All U	ARTx pins ar	e controlled by	port latches; l	JARTx power c	onsumption is
bit 14	Unimplement	ted: Read as '0'					
bit 13	USIDL: UART	x Stop in Idle M	ode bit				
	1 = Discontin	ues module ope	eration when t	he device enter	s Idle mode		
	0 = Continues	s module operat	ion in Idle mo	ode			
DIT 12		Encoder and De	coder Enable				
	1 = IIDA enco	oder and decode	er are disable	d			
bit 11	RTSMD: Mod	e Selection for \overline{l}	JxRTS Pin bit	t			
	1 = UxRTS pi	in is in Simplex	mode				
hit 10		In IS IN FIOW COR	itrol mode				
bit 9_8		ARTy Enable bit	tc(2)				
bit 9-0	11 = UxTX. U	JxRX and UxBC	LK pins are e	enabled and use	ed: UxCTS pin	is controlled by	port latches
	10 = UxTX, l	JxRX, UxCTS a	nd UxRTS pir	ns are enabled	and used		F
	01 = UxTX, l	JxRX and UxRT	S pins are en	habled and used	d; UxCTS pin is	s controlled by p	port latches
	port late	hes	ie enableu an			INDULK PILIS alt	
bit 7	WAKE: Wake	-up on Start Bit	Detect During	g Sleep Mode E	nable bit		
	1 = UARTx w	vill continue to s	sample the U	xRX pin; interr	upt is generat	ed on the fallin	g edge, bit is
	0 = No wake-	n hardware on th up is enabled	ie following ris	sing edge			
bit 6	LPBACK: UA	RTx Loopback I	Mode Select b	oit			
	1 = Enables L	₋oopback mode					
	0 = Loopback	mode is disable	ed				
bit 5	ABAUD: Auto	-Baud Enable b	it , , ,				<i>с</i>
	 1 = Enables t cleared in 0 = Baud rate 	hardware upor measurement	arement on the completion is disabled or	completed	er – requires re	ception of a Sy	nc field (55n);
bit 4	RXINV: Recei	ve Polarity Inve	rsion bit	I			
	1 = UxRX Idle	e state is '0'					
		e state is '1'					

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- 3. a) If the oscillator is faster than ideal (negative result from Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

EQUATION 19-1:

(Ideal Frequency + – Measured Frequency) *	
60 = Clocks per Minute	
† Ideal Frequency = 32,768 Hz	

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

Note: It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

19.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

20.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729).

The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 20-1. A simple version of the CRC shift engine is shown in Figure 20-2.

FIGURE 20-2: CRC SHIFT ENGINE DETAIL

	-		-				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	2 CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
P/M/-0	P/M/-0		P/M/-0				P///_0
CHONA:	CH0NA1	CHONA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7			01100/11	01100/10	01100/12	01100/11	bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-13	CH0NB<2:0> 111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0 000 = AVss	: Sample B Ch	annel 0 Negati	ve Input Select	bits	0-11-2	
DIL 12-0	11111 = Unir 11111 = AVD 11101 = AVS 11100 = Upp 11011 = Low 1100 = Inter 10001 = No of 10000 = No of 01111 = AN1 01101 = AN1 01101 = AN1 01011 = AN1 01010 = AN1 01010 = AN2 01000 = AN8 00111 = AN5 00100 = AN4 00111 = AN3 00010 = AN2 00001 = AN1 00001 = AN2 00001 = AN1 00001 = AN2 00001 = AN2 00001 = AN1	nplemented, do D S er guardband ra er guardband ra rnal Band Gap I D = Unimplement channels are co channels are co channels are co channels are co f 4 3 2 1 0 (1) (1) (2)	ail (0.785 * Voi ail (0.215 * Voi Reference (VB nted, do not us nnected, all in nnected, all in	D) D) G)(3) Be puts are floating puts are floating	g (used for CTN g (used for CTN	MU) MU temperature	e sensor input)
bit 7-5	CH0NA<2:0> The same def	: Sample A Cha finitions as for C	annel 0 Negati CHONB<2:0>.	ve Input Select	bits		
bit 4-0	CH0SA<4:0> The same def	: Sample A Cha finitions as for C	annel 0 Positiv CHONA<4:0>.	e Input Select b	oits		
Note 1: 2:	This is implement This is implement	ed on 44-pin de ed on 28-pin ar	evices only. 1d 44-pin devid	ces only.			

REGISTER 22-5: AD1CHS: A/D SAMPLE SELECT REGISTER

TABLE 22-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format Equivalent Decimal Value	16-Bit Signed Fractional Fo Equivalent Decimal Val	ormat/ ue						
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999					
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998					
	•••									
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001					
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000					
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001					
	•••									
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999					
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000					

FIGURE 22-5: A/D OUTPUT DATA FORMATS (10-BIT)

						d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
	I			I							I	I			
s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0
	0 \$0 d09 \$0	0 0 s0 s0 d09 d08 s0 d09	0 0 0 s0 s0 s0 d09 d08 d07 s0 d09 d08	0 0 0 0 s0 s0 s0 s0 d09 d08 d07 d06 s0 d09 d08 d07	0 0 0 0 0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 s0 d09 d08 d07 d06	0 0 0 0 0 0 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 d04 s0 d09 d08 d07 d06 d05	0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 s0 s0 s0 s0 s0 s0 s0 d09 d09 d08 d07 d06 d05 d04 d03 s0 d09 d08 d07 d06 d05 d04	d09 d08 0 0 0 0 d09 d08 s0 s0 s0 s0 s0 s0 d09 d08 d09 d08 d07 d06 d05 d04 d03 d02 s0 d09 d08 d07 d06 d05 d04 d03	d09 d08 d07 0 0 0 0 0 d09 d08 d07 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d09 d08 d07 d06 d05 d04 d03 d02 d01 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01	d09 d08 d07 d06 0 0 0 0 0 d09 d08 d07 d06 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d09 d08 d07 d06 d05 d09 d08 d07 d06 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01	d09 d08 d07 d06 d05 0 0 0 0 0 d09 d08 d07 d06 d05 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 d09 d08 d07 d06 d05 s0 d09 d08 d07 d06 d05 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 22-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/16-Bit Signed Integer For Equivalent Decimal ValueEquivalent Decimal ValueEquivalent Decimal Value			
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022
		• • •			
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1
		•••			
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024

26.0 SPECIAL FEATURES

Note:	This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watch- dog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the "PIC24F Family Reference Manual" provided below:
	 Section 9. "Watchdog Timer (WDT)" (DS39697) Section 36. "High-Level Integration

 Section 36. "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)

• Section 33. "Programming and Diagnostics" (DS39716)

PIC24FV32KA304 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 26-1. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-8.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

TABLE 26-1: CONFIGURATION REGISTERS LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	—	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

DIT 3-1	BSS<2:0>: Boot Segment Program Flash Code Protection bits								
	111 = No boot program Flash segment								
	011 = Reserved								

110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh

010 = High-security boot program Flash segment starts at 200h, ends at 000AFEh

101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾

001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh⁽¹⁾

100 = Standard security; boot program Flash segment starts at 200h, ends at $002BFEh^{(1)}$

000 = High-security; boot program Flash segment starts at 200h, ends at 002BFEh⁽¹⁾

bit 0 BWRP: Boot Segment Program Flash Write Protection bit

- 1 = Boot segment may be written
- 0 = Boot segment is write-protected

Note 1: This selection should not be used in PIC24FV16KA3XX devices.

REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		—		—		—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		—		—		—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
_		—		REV3	REV2	REV1	REV0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Minor Revision Identifier bits

27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit™ 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta A/D, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
DVR10	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V	
DVR11	Tbg	Band Gap Reference Start-up Time		1		ms	
DVR20	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V	-40°C < TA < +85°C
			3.0	3.19	3.6	V	-40°C < TA < +125°C
DVR21	CEFC	External Filter Capacitor Value	4.7	10		μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.
DVR30	Vlvr	Retention Regulator Output Voltage		2.6	_	V	

TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions:} & 1.8V \ to \ 3.6V \ \mbox{PIC24F32KA3XX} \\ & 2.0V \ to \ 5.5V \ \mbox{PIC24FV32KA3XX} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \ \mbox{for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \ \mbox{for Extended} \\ \end{array} $						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions	
DCT10	Ιουτ1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<9:8> = 01		
DCT11	IOUT2	CTMU Current Source, 10x Range	_	5.5	—	μA	CTMUICON<9:8> = 10		
DCT12	Ιουτ3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<9:8> = 11	2.5V < VDD < VDDIMAX	
DCT13	IOUT4	CTMU Current Source, 1000x Range	_	550	_	μA	CTMUICON<9:8> = 00 (Note 2)		
DCT20	VF	Temperature Diode Forward Voltage	—	.76	_	V			
DCT21	VΔ	Voltage Change per Degree Celsius	—	1.6	—	mV/°C			

Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000). On PIC24F32KA parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

FIGURE 30-14: TYPICAL AND MAXIMUM IPD vs. VDD

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trade Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fl Temperature Ran Package — Pattern —	PIC 24 FV 32 KA3 04 T - 1 / PT - XXX mark	 Examples: a) PIC24FV32KA304-I/ML: Wide voltage range, General Purpose, 32-Kbyte program memory, 44-pin, Industrial temp., QFN package b) PIC24F16KA302-I/SS: Standard voltage range, General Purpose, 16-Kbyte program memory, 28-pin, Industrial temp., SSOP package
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	F = Standard voltage range Flash program memoryFV = Wide voltage range Flash program memory	
Product Group	KA3 = General purpose microcontrollers	
Pin Count	01 = 20-pin 02 = 28-pin 04 = 44-pin	
Temperature Range	$I = -40^{\circ}C \text{ to } +85^{\circ}C \text{ (Industrial)}$ E = -40^{\circ}C to +125^{\circ}C (Industrial)	
Package	SP = SPDIP SO = SOIC SS = SSOP ML = QFN P = PDIP PT = TQFP MV = UQFN	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	