

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka302-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

		+1 V J Z I ()4	F					FV	-				
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
RA0	2	2	27	19	21	2	2	27	19	21	I/O	ST	PORTA Pins
RA1	3	3	28	20	22	3	3	28	20	22	I/O	ST	
RA2	7	9	6	30	33	7	9	6	30	33	I/O	ST	
RA3	8	10	7	31	34	8	10	7	31	34	I/O	ST	
RA4	10	12	9	34	37	10	12	9	34	37	I/O	ST	
RA5	1	1	26	18	19	1	1	26	18	19	I/O	ST	
RA6	14	20	17	7	7	_	_	—	_	_	I/O	ST	
RA7	_	19	16	6	6	_	19	16	6	6	I/O	ST	
RA8	_	_		32	35	_	_	—	32	35	I/O	ST	
RA9	_	_		35	38	_	_	—	35	38	I/O	ST	
RA10	_	_		12	13	_	_	—	12	13	I/O	ST	
RA11	_	_		13	14	_	_	—	13	14	I/O	ST	
RB0	4	4	1	21	23	4	4	1	21	23	I/O	ST	PORTB Pins
RB1	5	5	2	22	24	5	5	2	22	24	I/O	ST	
RB2	6	6	3	23	25	6	6	3	23	25	I/O	ST	
RB3	_	7	4	24	26	_	7	4	24	26	I/O	ST	
RB4	9	11	8	33	36	9	11	8	33	36	I/O	ST	
RB5	_	14	11	41	45	_	14	11	41	45	I/O	ST	
RB6	_	15	12	42	46	_	15	12	42	46	I/O	ST	
RB7	11	16	13	43	47	11	16	13	43	47	I/O	ST	
RB8	12	17	14	44	48	12	17	14	44	48	I/O	ST	
RB9	13	18	15	1	1	13	18	15	1	1	I/O	ST	
RB10	_	21	18	8	9	_	21	18	8	9	I/O	ST	
RB11	_	22	19	9	10	_	22	19	9	10	I/O	ST	
RB12	15	23	20	10	11	15	23	20	10	11	I/O	ST	
RB13	16	24	21	11	12	16	24	21	11	12	I/O	ST	
RB14	17	25	22	14	15	17	25	22	14	15	I/O	ST	
RB15	18	26	23	15	16	18	26	23	15	16	I/O	ST	

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
   #define NUM INSTRUCTION PER ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = 0x1234; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
  unsigned int progData[2*NUM INSTRUCTION PER ROW]; // Buffer of data to write
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4001;
                                                               // Initialize NVMCON
  //Set up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr); // Initialize PM Page Boundary SFR
offset = __builtin_tbloffset(&progAddr); // Initialize lower word of address
  offset = __builtin_tbloffset(&progAddr);
                                                             // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM INSTRUCTION PER ROW; i++)</pre>
   {
      __builtin_tblwtl(offset, progData[i++]);
                                                              // Write to address low word
       __builtin_tblwth(offset, progData[i]);
                                                               // Write to upper byte
       offset = offset + 2;
                                                               // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	; 1	Block all interrupts
		:	for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	; 1	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	; 1	Write the AA key
BSET	NVMCON, #WR	; ;	Start the erase sequence
NOP		; :	2 NOPs required after setting WR
NOP		;	
BTSC	NVMCON, #15	; 1	Wait for the sequence to be completed
BRA	\$-2	;	

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

<pre>// C example using MPLAB C30</pre>	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing a bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin the erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in the previous section) if the PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- 3. Program the data word into the EEPROM:
 - Configure the NVMCON register to program one EEPROM word (NVMCON<5:0> = 0001xx).
 - Clear the NVMIF status bit and enable the NVM interrupt (optional).
 - Write the key sequence to NVMKEY.
 - Set the WR bit to begin the erase cycle.
 - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
 - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON = $0 \times 4050;$

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

```
// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();
```

EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

```
int attribute ((space(eedata))) eeData = 0x1234;
                                                // New data to write to EEPROM
 int newData;
/*_____
                  _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the write
-------
*/
  unsigned int offset;
  // Set up NVMCON to erase one word of data EEPROM
  NVMCON = 0 \times 4004;
  \ensuremath{//} Set up a pointer to the EEPROM location to be erased
  TBLPAG = __builtin_tblpage(&eeData);
                                               // Initialize EE Data page pointer
                                                // Initizlize lower word of address
  offset = __builtin_tbloffset(&eeData);
  builtin tblwtl(offset, newData);
                                                // Write EEPROM data to write latch
  asm volatile ("disi #5");
                                                 // Disable Interrupts For 5 Instructions
   builtin write NVM();
                                                 // Issue Unlock Sequence & Start Write Cycle
  while (NVMCONbits.WR=1);
                                                 // Optional: Poll WR bit to wait for
                                                 // write sequence to complete
```

REGISTER	8-4: INTC	ON2: INTERR	UPT CONTE	ROL REGIST	ER2		
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—		—		—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:		HSC = Hardwa	are Settable/C				
R = Readabl	le bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ALTIVT: Enat	ole Alternate Inte	errupt Vector ⁻	lable bit			
		rnate Interrupt \ ndard (default) Ir	· ·	,			
bit 14	DISI: DISI In	struction Status	bit				
		ruction is active					
	0 = DISI inst	ruction is not ac	tive				
bit 13-3	Unimplemen	ted: Read as '0	3				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select	bit		
		s on the negatives on the positive	0				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select	bit		
	1 = Interrupt i	s on the negativ	e edge				
	0 = Interrupt i	s on the positive	e edge				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select	bit		
		s on the negativ					
	0 = Interrupt i	s on the positive	e edge				

REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This output compare module⁽¹⁾
 - 11110 = **Reserved** 11101 = Reserved 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1
 - 01010 = Input Capture 5⁽²⁾
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Do not use an output compare module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as Sync sources.
 - 3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCMx bits (OCxCON1<2:0>) = 001.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_		
bit 15				·		-	bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	—	—	—	—	—	SPIFE	SPIBEN		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimplem	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15 bit 14 bit 13 bit 12-2	1 = Framed S 0 = Framed S SPIFSD: SPI2 1 = Frame Sy 0 = Frame Sy 0 = Frame Sy 0 = Frame Sy 0 = Frame Sy	nc pulse input (nc pulse output Plx Frame Sync nc pulse is acti nc pulse is acti	enabled disabled Pulse Direction (slave) t (master) Pulse Polarity ve-high ve-low	n Control on SS: / bit (Frame mo					
bit 1	 Unimplemented: Read as '0' SPIFE: SPIx Frame Sync Pulse Edge Select bit 1 = Frame Sync pulse coincides with the first bit clock 0 = Frame Sync pulse precedes the first bit clock 								
bit 0	1 = Enhanced	x Enhanced Bu I buffer is enabl I buffer is disab	ed						

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

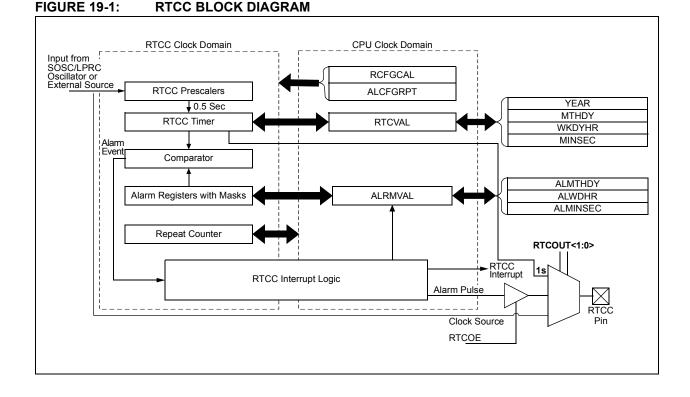
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master; applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master; applicable during master receive)
	 1 = Initiates the Acknowledge sequence on the SDAx and SCLx pins, and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I^2C master)
~	1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at end of master Stop sequence 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence
	$\circ = 0$ text condition is not in pressure.

0 = Start condition is not in progress

19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- Operates in Deep Sleep mode
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- · Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long-term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long-term battery operation
- · Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake-up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
 - External Real-Time Clock of 32.768 kHz
 - Internal 31.25 kHz LPRC Clock
 - 50 Hz or 60 Hz External Input

19.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.

© 2011-2013 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTRO
bit 15		•				•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	ALRMEN: AI	arm Enable bit					
	CHIME =	= 0)	ed automatica	lly after an ala	arm event whe	enever ARPT<7	:0> = 00h and
	0 = Alarm is	disabled					
bit 14	CHIME: Chin						
		enabled; ARP ⁻ disabled; ARP				to FFh	
bit 13-10		>: Alarm Mask					
		ry half second	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				
	0001 = Eve	•					
		ry 10 seconds					
	0011 = Eve						
		ry 10 minutes					
	0101 = Eve 0110 = Onc	•					
	0111 = Onc	•					
	1000 = Onc	e a month					
	1001 = Onc	e a year (excep	ot when configu	ired for Februa	ıry 29 th , once e	every 4 years)	
		erved – do not					
		erved – do not					
bit 9-8		1:0>: Alarm Val	-				
						ALH and ALRM	
			ecrements on e	very read or wr	ITE OF ALRIVIA	LH until it reache	es '00'.
	ALRMVAL<1						
	00 - ALRIVIV 01 - ALRMW						
	10 = ALRMM						
	11 = Unimple	emented					
	ALRMVAL<7	:0>:					
	00 = ALRMS	EC					
	01 = ALRMH						
	10 = ALRMD						
	11 = Unimple						
bit 7-0		Alarm Repeat					
	11111111 =	Alarm will rep	eat 255 more ti	imes			
	• •						
	000000000	Alarm will not	repeat				

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

19.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 19-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 15 | | | • | • | | | bit 8 |
| | | | | | | | |
| R/W-x |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplem	nented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplement	ted: Read as '0	,				
bit 14-12	MINTEN<2:0	>: Binary Code	d Decimal Valu	ue of Minute's T	ens Digit bits		
	Contains a va	lue from 0 to 5					
bit 11-8	MINONE<3:0	>: Binary Code	d Decimal Val	ue of Minute's 0	Ones Digit bits		
	Contains a va	lue from 0 to 9					
bit 7	Unimplemen	ted: Read as '	o'				
bit 6-4	SECTEN<2:0	>: Binary Code	ed Decimal Val	ue of Second's	Tens Digit bits		
	Contains a va	lue from 0 to 5					
bit 3-0	SECONE<3:0	>: Binary Code	ed Decimal Va	lue of Second's	Ones Digit bits	6	
	Contains a va	lue from 0 to 9					

REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

REGISTER 19-11: RTCCSWT: CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

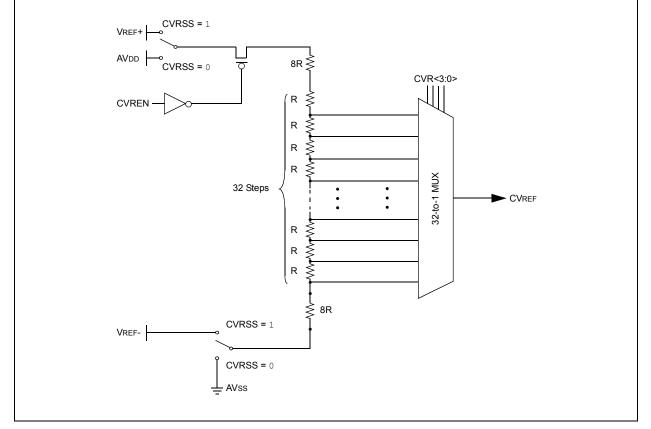
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PWCSTAB<7:0>: PWM Stability Window Timer bits 11111111 = Stability window is 255 TPWCCLK clock periods
	00000000 = Stability window is 0 TPWCCLK clock periods The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.
bit 7-0	<pre>PWCSAMP<7:0>: PWM Sample Window Timer bits 1111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 00000000 = Sample window is 0 TPWCCLK clock periods</pre>
	The sample window timer starts counting at the end of the stability window when PWCEN = 1. If PWCSTAB<7:0> = 00000000 , the sample window timer starts counting from every alarm event when PWCEN = 1.

Note 1: A write to this register is only allowed when RTCWREN = 1.

24.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", Section 20. "Comparator Module Voltage Reference Module" (DS39709).


24.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

CTMUCONO, CTMU CONTROL DECISTER 2

REGISTER 2		JCON2: CTM								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MOD	EDG2POL	EDG2SEL3	1			0-0	0-0			
	EDG2POL	EDG25EL3	EL3 EDG2SEL2 EDG2SEL1 EDG2SEL0 —							
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15		Edge 1 Edge-So	ansitiva Salact	bit						
bit 15	1 = Input is ed			bit						
	0 = Input is le	vel-sensitive								
bit 14		EDG1POL: Edge 1 Polarity Select bit								
	 1 = Edge 1 is programmed for a positive edge response 0 = Edge 1 is programmed for a negative edge response 									
	•		•	•						
bit 13-10	EDG1SEL<3:0>: Edge 1 Source Select bits									
	1111 = Edge 1 source is Comparator 3 output									
	1110 = Edge 1 source is Comparator 2 output									
	1101 = Edge 1 source is Comparator 1 output									
	1100 = Edge 1 source is IC3									
	1011 = Edge 1 source is IC2									
	1010 = Edge 1 source is IC1									
	1001 = Edge 1 source is CTED8 1000 = Edge 1 source is CTED7									
	0111 = Edge 1 source is CTED6 0110 = Edge 1 source is CTED5									
	0110 = Edge 1 source is CTED5									
	0100 = Edge 1 source is CTED3 ⁽²⁾									
	0011 = Edge 1 source is CTED1									
	0010 = Edge 1 source is CTED2									
	0001 = Edge 1 source is OC1									
	0000 = Edge	1 source is Tin	ner1							
bit 9	EDG2STAT: Edge 2 Status bit									
	Indicates the	status of Edge	2 and can be w	ritten to contro	of the current so	ource.				
	1 = Edge 2 has occurred									
	0 = Edge 2 has not occurred									
bit 8	EDG1STAT: Edge 1 Status bit									
	Indicates the	status of Edge	1 and can be w	ritten to contro	ol the current so	ource.				
	1 = Edge 1 ha	as occurred								
	0 = Edge 1 ha	as not occurred								
bit 7	EDG2MOD: E	Edge 2 Edge-Se	ensitive Select	bit						
bit 7	EDG2MOD: E		ensitive Select	bit						

- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

R/W-0							
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
	000000 = Nc	minal current o	utput specified	nominal current by IRNG<1:0> nominal current			
	100010 100001 = Ma	aximum negativ	e change from	nominal curren	ıt		
bit 9-8	100001 = Ma IRNG<1:0>: 0 11 = 100 × Ba 10 = 10 × Ba	Current Source ase Current se Current urrent Level (0.5	Range Select	bits	ıt		

REGISTER 25-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Char	acteristic	Min	Тур	Max	Units	Conditions
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾	_	_	1.90	V	
		VDD Transition	HLVDL<3:0> = 0001	1.86	—	2.13	V	
			HLVDL<3:0> = 0010	2.08	—	2.35	V	
			HLVDL<3:0> = 0011	2.22	—	2.53	V	
			HLVDL<3:0> = 0100	2.30	—	2.62	V	
			HLVDL<3:0> = 0101	2.49	—	2.84	V	
			HLVDL<3:0> = 0110	2.73	—	3.10	V	
			HLVDL<3:0> = 0111	2.86	—	3.25	V	
			HLVDL<3:0> = 1000	3.00	—	3.41	V	
			HLVDL<3:0> = 1001	3.16	—	3.59	V	
			HLVDL<3:0> = 1010 ⁽¹⁾	3.33	_	3.79	V	
			HLVDL<3:0> = 1011 ⁽¹⁾	3.53		4.01	V	
			HLVDL<3:0> = 1100 ⁽¹⁾	3.74	—	4.26	V	
			HLVDL<3:0> = 1101 ⁽¹⁾	4.00		4.55	V	
			HLVDL<3:0> = 1110 ⁽¹⁾	4.28	—	4.87	V	

Note 1: These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

TABLE 29-5: BOR TRIP POINTS

	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No. Sym Characteristic Min Typ I						Max	Units	Conditions
DC15		BOR Hysteresis			5		mV	
DC19		BOR Voltage on VDD Transition	BORV<1:0> = 00		_			Valid for LPBOR and DSBOR (Note 1)
			BORV<1:0> = 01	2.90	3	3.38	V	
			BORV<1:0> = 10	2.53	2.7	3.07	V	
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)

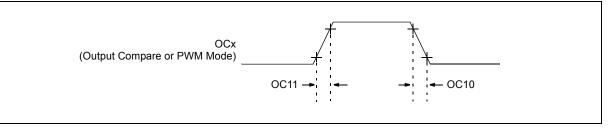
Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

			Standard O	perating C	conditions		0 3.6V PIC24F32KA3XX 0 5.5V PIC24FV32KA3XX
DC CHA	ARACT	ERISTICS	Operating te	mperature		≤ TA ≤ +8	5°C for Industrial 25°C for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins	Vss	_	0.2 Vdd	V	
DI15		MCLR	Vss	—	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	—	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	_	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	_	0.3 Vdd	V	SMBus is disabled
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus is enabled
	Vih	Input High Voltage ⁽⁴⁾					
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd Vdd	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	_	Vdd	V	$2.5V \leq V\text{PIN} \leq V\text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	_	0.05	0.1	μA	$\label{eq:VSS} \begin{split} &VSS \leq V PIN \leq V DD, \\ &Pin \text{ at high-impedance} \end{split}$
DI55		MCLR	_	—	0.1	μA	$VSS \leq VPIN \leq VDD$
DI56		OSCI	_	_	5	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and }H{\sf S} \text{ modes} \end{split}$

TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS


Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-3 for I/O pin buffer types.

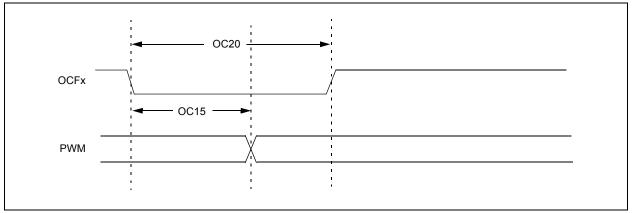

FIGURE 29-10: OUTPUT COMPARE x TIMINGS

TABLE 29-29: OUTPUT CAPTURE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
OC11	TCCR	OC1 Output Rise Time	—	10	ns	
			—	—	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
			_	_	ns	

FIGURE 29-11: PWM MODULE TIMING REQUIREMENTS

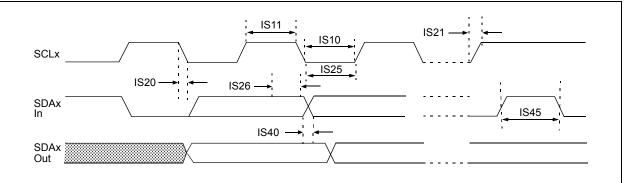


TABLE 29-30: PWM TIMING REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
OC15	Tfd	Fault Input to PWM I/O Change			25	ns	VDD = 3.0V, -40°C to +125°C
OC20	Tfh	Fault Input Pulse Width	50	_	_	ns	VDD = 3.0V, -40°C to +125°C

† Data in "Typ" column is at 5V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

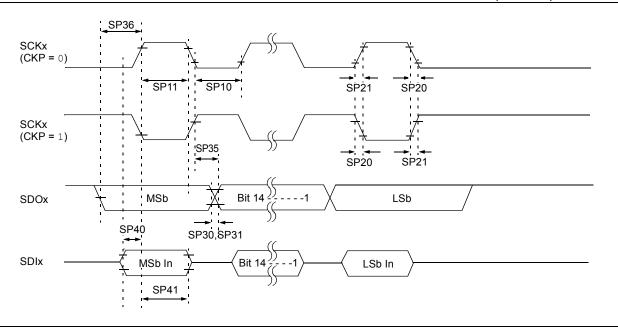

FIGURE 29-14: I²C[™] BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

TABLE 29-33: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHARACTERISTICS				$\label{eq:standard} \begin{array}{ l l l l l l l l l l l l l l l l l l l$				
Param No.	Symbol TLO:SCL	Characteristic		Min	Max	Units	Conditions	
IS10		Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from 10 to 400 pF	
			400 kHz mode	20 + 0.1 Св	300	ns		
			1 MHz mode ⁽¹⁾		300	ns		
IS25	Tsu:dat	Data Input Setup Time	100 kHz mode	250	—	ns		
			400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	Thd:dat	Data Input Hold Time	100 kHz mode	0	—	ns	_	
			400 kHz mode	0	0.9	μS	_	
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns	-	
			400 kHz mode	0	1000	ns	-	
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	Tbf:sda	Bus Free Time	100 kHz mode	4.7		μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
			1 MHz mode ⁽¹⁾	0.5	—	μS		
IS50	Св	Bus Capacitive Loa		400	pF			

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

FIGURE 29-19: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 29-37: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2		_	ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns		
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30		—	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.