

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka304-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE I-I. DEVICE FEATO						
Features	PIC24FV16KA301	PIC24FV32KA301	PIC24FV16KA302	PIC24FV32KA302	PIC24FV16KA304	PIC24FV32KA304
Operating Frequency			DC – 32 I	MHz		
Program Memory (bytes)	16K	32K	16K	32K	16K	32K
Program Memory (instructions)	5632	11264	5632	11264	5632	11264
Data Memory (bytes)			2048			
Data EEPROM Memory (bytes)			512			
Interrupt Sources (soft vectors/ NMI traps)	30 (26/4)					
I/O Ports	PORTA<5:0> PORTB<15:12,9:7,4,2:0>		PORTA<7,5:0> PORTB<15:0>		PORTA<11:7,5:0> PORTB<15:0> PORTC<9:0>	
Total I/O Pins	17	7	23		3	8
Timers: Total Number (16-bit)			5			
32-Bit (from paired 16-bit timers)			2			
Input Capture Channels			3			
Output Compare/PWM Channels			3			
Input Change Notification Interrupt	16	6	2	2	37	
Serial Communications: UART SPI (3-wire/4-wire)			2			
I ² C™			2			
12-Bit Analog-to-Digital Module (input channels)	12	2	1:	3	1	6
Analog Comparators			3			
Resets (and delays)		BOR, RESET Instruction, Ha		, Configurati		
Instruction Set	76 B	ase Instructio	ns, Multiple A	ddressing M	ode Variation	s
Packages	-)-Pin		Pin P/SOIC/QFN	44-Pin QI 48-Pin	

EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
   int attribute ((space(auto psv))) progAddr = 0x1234; // Global variable located in Pgm Memory
   unsigned int offset;
//Set up pointer to the first memory location to be written
   TBLPAG = __builtin_tblpage(&progAddr);
                                                         // Initialize PM Page Boundary SFR
   offset = __builtin_tbloffset(&progAddr);
                                                         // Initialize lower word of address
   builtin tblwtl(offset, 0x0000);
                                                          // Set base address of erase block
                                                          // with dummy latch write
   NVMCON = 0 \times 4058;
                                                          // Initialize NVMCON
   asm("DISI #5");
                                                           // Block all interrupts for next 5
                                                           // instructions
    builtin write NVM();
                                                          // C30 function to perform unlock
                                                           // sequence and set WR
```

EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

;	Set up NVMCO	N for row programming operatio	ns
	MOV	#0x4004, W0	;
	MOV	W0, NVMCON	; Initialize NVMCON
;	Set up a poi	nter to the first program memo	ry location to be written
;	program memo	ry selected, and writes enable	d
	MOV	#0x0000, W0	;
	MOV	W0, TBLPAG	; Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	; An example program memory address
;	Perform the	TBLWT instructions to write th	e latches
;	Oth_program_		
	MOV	#LOW_WORD_0, W2	;
	MOV	#HIGH_BYTE_0, W3	;
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
;	lst_program_		
	MOV	#LOW_WORD_1, W2	;
		#HIGH_BYTE_1, W3	;
		W2, [W0]	; Write PM low word into program latch
		W3, [W0++]	; Write PM high byte into program latch
;	2nd_program	—	
	MOV	#LOW_WORD_2, W2	;
	MOV	<pre>#HIGH_BYTE_2, W3</pre>	
		W2, [W0]	; Write PM low word into program latch
	TBLWTH	W3, [W0++]	; Write PM high byte into program latch
	•		
	•		
Ι.	-	trand	
'	32nd_program MOV		
	MOV	#LOW_WORD_31, W2 #HIGH BYTE 31, W3	;
		W2, [W0]	; ; Write PM low word into program latch
		W2, [W0] W3, [W0]	; Write PM high byte into program latch
	חואתמו	M2, [M0]	, write in high byte into program fatch

				AT CONTRO			
R/S-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY		_	—	_
bit 15							bit 8
	Dates	D # 44 0	D 444 0	D 444 0	DAMA	D 444 0	D 444 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	ERASE NVMOP5 NVMOP4 NVMOP3 NVMOP2 NVMOP1 N						NVMOP0
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	U = Unimple	mented bit, re	ead as '0'	
R = Readable	e bit	W = Writable bit		S = Settable			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	 bit 15 WR: Write Control bit (program or erase) 1 = Initiates a data EEPROM erase or write cycle (can be set, but not cleared in software) 0 = Write cycle is complete (cleared automatically by hardware) 						
bit 14	1 = Enables a	Enable bit (erase n erase or progra ion allowed (device	m operation	on completion	of the write/e	erase operatio	n)
bit 13	1 = A write on operation	e Flash Error Flag operation is prem) operation comple	aturely terminat		R or WDT F	Reset during	programming
bit 12	1 = Write ope 0 = Automatie	rogram Only Ena eration is executed c erase-before-wr ns are preceded	l without erasing ite		. ,	ess(es).	
bit 11-7	Unimplement	ted: Read as '0'					
bit 6	1 = Performs	e Operation Select an erase operation	on when WR is s				
		a write operation					
bit 5-0	Erase Operati 011010 = Era 011001 = Era 011000 = Era 0100xx = Era	ases 4 words ases 1 word ases entire data E <u>Operations (when</u>	E bit is '1'): EPROM				

REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

REGISTER	8-9: IFS4	INTERRUPT	FLAG STAT	US REGISTE	:R 4		
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
_	—	CTMUIF	_	—	—	—	HLVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	CRCIF	U2ERIF	U1ERIF	—
bit 7							bit (
Legend:		HS = Hardwar					
R = Readab		W = Writable t	Dit		nented bit, read		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			,				
bit 15-14	-	nted: Read as '0					
bit 13		MU Interrupt Fla	-				
		request has occ request has not					
bit 12-9	•	nted: Read as '0					
bit 8	•	h/Low-Voltage D		t Elag Status bit	t		
	•	request has occ	•				
		request has not					
bit 7-4	Unimplemer	nted: Read as '0	,				
bit 3	CRCIF: CRC	Generator Inter	rupt Flag Stat	us bit			
		request has occ					
	-	request has not					
bit 2		RT2 Error Interru		s bit			
		request has occ					
L:1	•	request has not		- I-:4			
bit 1		RT1 Error Interru request has occ		SDIL			
		request has not					
bit 0	•	nted: Read as '0					

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 8-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0					
oit 15			•		•	•	bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
0-0	U1ERIP2	U1ERIP1	U1ERIP0	0-0	0-0	0-0	0-0					
bit 7	UTERIFZ	UTERIFT	UTERIFU				bit					
_egend:	le hit	\\/ - \\/:itable	L :4		antad bit waar							
R = Readab		W = Writable		•	nented bit, read							
n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN					
oit 15	Unimplemen	ted: Read as '	ר י									
oit 14-12	•			ot Priority bite								
<i>n</i> (1 4 -12	CRCIP<2:0>: CRC Generator Error Interrupt Priority bits											
	 111 = Interrupt is Priority 7 (highest priority interrupt) 											
	•	•										
	• 001 = Interrupt is Priority 1											
		pt source is dis	abled									
oit 11	Unimplemen	ted: Read as '	с'									
oit 10-8	U2ERIP<2:0>: UART2 Error Interrupt Priority bits											
	111 = Interrupt is Priority 7 (highest priority interrupt)											
	•											
	001 = Interrupt is Priority 1											
					000 = Interrupt source is disabled							
			abled									
pit 7	000 = Interru											
	000 = Interru Unimplemen	ot source is dis ted: Read as '		ity bits								
	000 = Interru Unimplemen U1ERIP<2:0>	pt source is dis ted: Read as ' : UART1 Error	כ'	-								
	000 = Interru Unimplemen U1ERIP<2:0>	pt source is dis ted: Read as ' : UART1 Error	o' · Interrupt Priori	-								
bit 7 bit 6-4	000 = Interru Unimplemen U1ERIP<2:0> 111 = Interru	ot source is dis ted: Read as ' UART1 Error ot is Priority 7 (o' · Interrupt Priori	-								
	000 = Interru Unimplemen U1ERIP<2:0> 111 = Interru	ot source is dis ted: Read as ' •: UART1 Error ot is Priority 7 (ot is Priority 1	o' Interrupt Priori highest priority	-								
	000 = Interru Unimplemen U1ERIP<2:0> 111 = Interru	ot source is dis ted: Read as ' UART1 Error ot is Priority 7 (_D , Interrupt Priori highest priority abled	-								

REGISTER 8-32: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7						•	bit 0

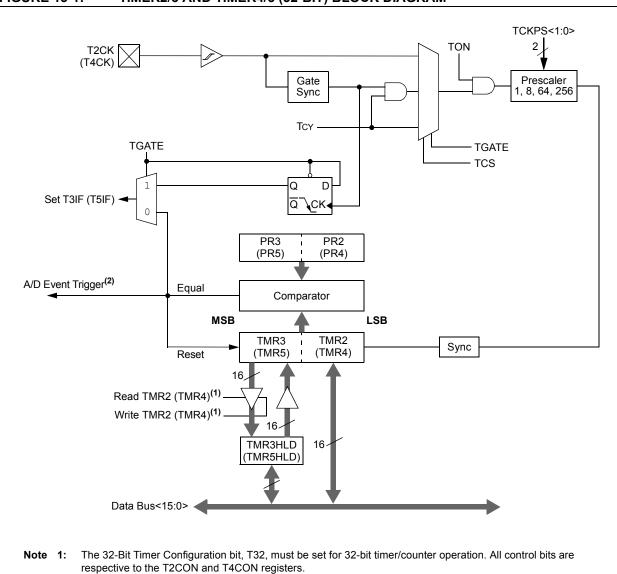
Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 6-4 ULPWUIP<2:0>: Ultra Low-Power Wake-up Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- :


• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—		—			
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			s unknown		
bit 15-6 bit 5-0	TUN<5:0>: F 011111 = Ma 011110	nted: Read as ' RC Oscillator T aximum frequer enter frequency,	iuning bits ⁽¹⁾ ncy deviation oscillator is ru	unning at factory	y calibrated free	quency			

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

FIGURE 13-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

2: The A/D event trigger is available only on Timer2/3 and Timer4/5 in 32-bit mode, and Timer3 and Timer5 in 16-bit mode.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0

Legend:	HS = Hardwa	re Settable bit					
R = Readable b	it W = Writable	bit L	J = Unimplemented	bit, read as '0'			
-n = Value at PO	OR '1' = Bit is se	'(0' = Bit is cleared	x = Bit is unknown			
bit 15-9 L	Inimplemented: Read as)'					
1	C32: Cascade Two IC Mod = ICx and ICy operate in = ICx functions independ	ascade as a 32-	bit module (this bit n	nust be set in both modules)			
1	CTRIG: Input Capture x Sy = Triggers ICx from source = Synchronizes ICx with	e designated by t	the SYNCSELx bits	bits			
1	TRIGSTAT: Timer Trigger Status bit 1 = Timer source has been triggered and is running (set in hardware, can be set in software) 0 = Timer source has not been triggered and is being held clear						
bit 5 L	Inimplemented: Read as)'					
	SYNCSEL<4:0>: Trigger/S 1111 = Reserved 1110 = Reserved 1101 = Reserved 1101 = Reserved 1100 = CTMU ⁽¹⁾ 1011 = A/D ⁽¹⁾ 1001 = Comparator 3 ⁽¹⁾ 1001 = Comparator 2 ⁽¹⁾ 1000 = Comparator 3 ⁽¹⁾ 1001 = Comparator 3 ⁽¹⁾ 1001 = Comparator 3 ⁽¹⁾ 1001 = Comparator 3 ⁽¹⁾ 1011 = Input Capture 4 0110 = Input Capture 2 0100 = Input Capture 1 0011 = Reserved 0000x = Reserved 0111 = Timer3 1100 = Timer4 1101 = Timer1 1000 = Reserved 1011 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Reserved 1011 = Reserved 1010 = Reserved 1011 = Output Compare 5 1000 = Output Compare 7 1010 = Output Compare 7 1010 = Output Compare 7 1011 = Output Compare 7						

Note 1: Use these inputs as trigger sources only and never as Sync sources.

bit 7

bit 0

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx
 - 110 = Edge-Aligned PWM mode on OCx
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

19.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

19.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value Register Window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 19-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window					
RICPIRSI.02	RTCVAL<15:8>	RTCVAL<7:0>				
00	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	—	YEAR				

The Alarm Value Register Window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 19-2).

By writing the ALRMVALH byte, the Alarm Pointer value (ALRMPTR<1:0> bits) decrements by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL, until the pointer value is manually changed.

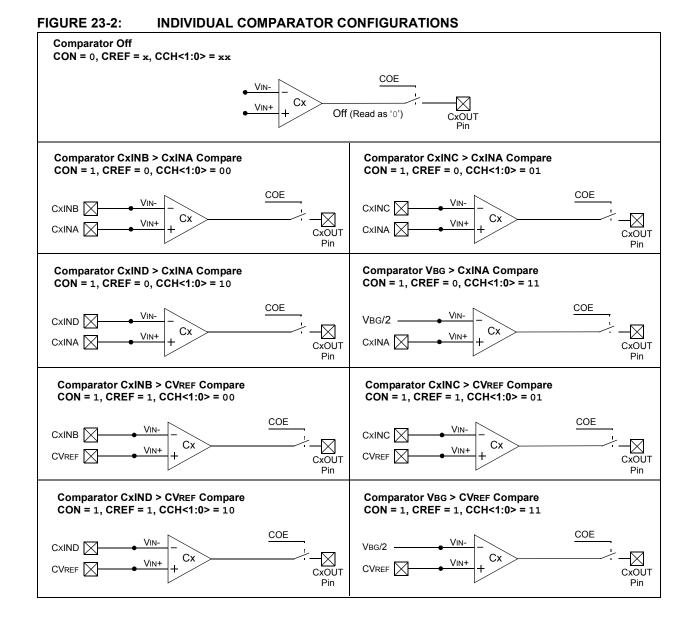
TABLE 19-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window					
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>				
00	ALRMMIN	ALRMSEC				
01	ALRMWD	ALRMHR				
10	ALRMMNTH	ALRMDAY				
11	PWCSTAB	PWCSAMP				

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

19.2.2 WRITE LOCK


In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RTCPWC<13>) must be set (see Example 19-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN. Therefore, it is recommended that code follow the procedure in Example 19-1.

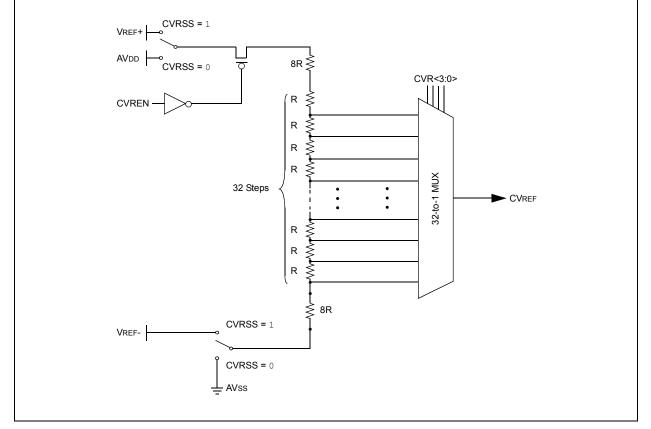
19.2.3 SELECTING RTCC CLOCK SOURCE

There are four reference source clock options that can be selected for the RTCC using the RTCCSEL<1:0> bits: 00 = Secondary Oscillator, 01 = LPRC, 10 = 50 Hz External Clock and 11 = 60 Hz External Clock.

asm	volatile	("push w7");
asm	volatile	("push w8");
asm	volatile	("disi #5");
asm	volatile	("mov #0x55, w7");
asm	volatile	("mov w7, NVMKEY");
asm	volatile	("mov #0xAA, w8");
asm	volatile	("mov w8, NVMKEY");
asm	volatile	("bset RCFGCAL, #13"); //set the RTCWREN bit
asm	volatile	("pop w8");
asm	volatile	("pop w7");

24.0 COMPARATOR VOLTAGE REFERENCE

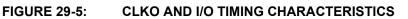
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", Section 20. "Comparator Module Voltage Reference Module" (DS39709).

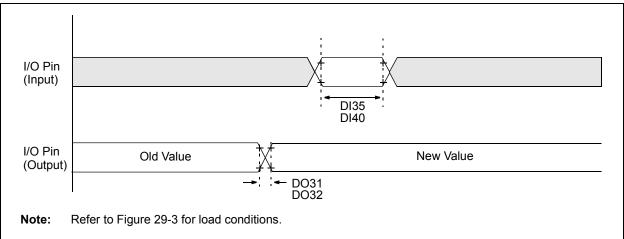

24.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.





R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
MCLRE ⁽²⁾	BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	RETCFG ⁽¹⁾	BOREN1	BOREN0
bit 7							bit (
Legend:							
R = Reada	able bit	P = Programr	nable bit	U = Unimplen	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
			··(2)				
bit 7		R Pin Enable b		iaablad			
		is enabled; RA pin is enabled;					
bit 6-5		Brown-out Rese					
		ut Reset is set t					
	10 = Brown-o			0			
		ut Reset is set t	•	•	»••••••••••		
		e protection on		a – "zero powe	r" is selected		
bit 4		ernate I2C1 Pin					
		cation for SCL1, ocation for SCL					
bit 3		wer-up Timer E	•				
	1 = PWRT is e	enabled					
	0 = PWRT is c	disabled					
bit 2		ention Regulate		ו bit ⁽¹⁾			
		Regulator is no					0
		•		-	RETEN bit (RCO	N<12>) during	Sleep
oit 1-0		: Brown-out Re			tio dia abla d		
		ut Reset is enab it Reset is enab			and disabled in S	Sleep [,] SBOREN	l bit is disabled
		ut Reset is cont					
	00 = Brown-o	ut Reset is disa	bled in hardwa	re; SBOREN bi	t is disabled		
Note 1:	This setting only devices.	/ applies to the	"FV" devices. 1	This bit is reser	ved and should	be maintained a	as '1' on "F"
2:	The MCLRE fus user from accide	entally locking o	out the device f	rom the low-vo	ltage test entry.	ode entry. This	prevents a
3:	Refer to Sectio						

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
HOL .	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US		{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
		Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Onsigned(Wb) * Unsigned(Ws) {Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	1
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5) {Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)		1	None
	MUL.UU	Wb,#lit5,Wnd	W3:W2 = f * WREG	1	1	None None
	MUL	f	$f = \overline{f} + 1$	1		
NEG	NEG	f		1	1	C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW	

TABLE 29-23: CLKO AND I/O TIMING REQUIREMENTS

			Standard C		-40°C ≤ T	2.0V to 5 .9 A ≤ +85°C f	6V PIC24F32KA3XX 5V PIC24FV32KA3XX or Industrial for Extended
Param No.	Sym	Characteristic	Min Typ ⁽¹⁾ Max Units Conditions				Conditions
DO31	TIOR	Port Output Rise Time	—	10	25	ns	
DO32	TIOF	Port Output Fall Time	_	10	25	ns	
DI35	TINP	INTx Pin High or Low Time (output)	20	_	_	ns	
DI40	Trbp	CNx High or Low Time (input)	2	—	—	Тсү	

Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

FIGURE 29-12: I²CTM BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

TABLE 29-31: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial)} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions	
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	condition	
IM31	THD:STA	Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period, the	
	Hold		400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	TCY/2 (BRG + 1)	—	μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	ns		

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to Section 17.3 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

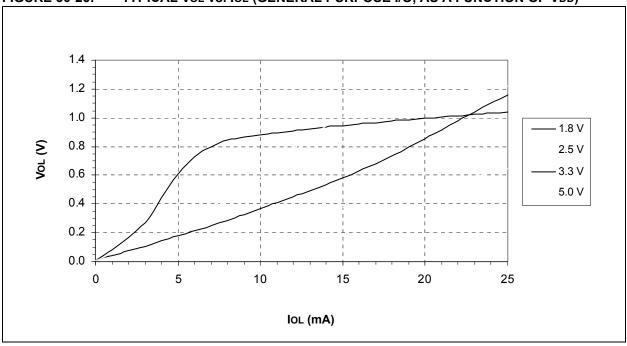
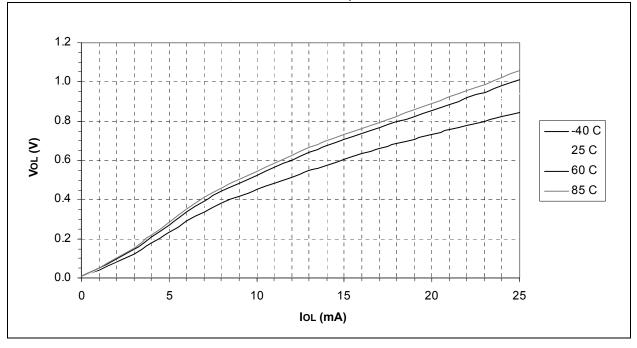



FIGURE 30-26: TYPICAL Vol vs. IoL (GENERAL PURPOSE I/O, AS A FUNCTION OF VDD)

FIGURE 30-27: TYPICAL Vol vs. Iol (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le Vdd \le 5.5V$)

30.2 Characteristics for Extended Temperature Devices (-40°C to +125°C)

Note: Data for VDD levels greater than 3.3V are applicable to PIC24FV32KA304 family devices only.

FIGURE 30-40: TYPICAL AND MAXIMUM lidle vs. Vdd (FRC MODE)

libLE (mA)				
		VDD		

FIGURE 30-41: TYPICAL AND MAXIMUM lidle vs. TEMPERATURE (FRC MODE)

liple (mA)	
	Temperature (°C)

FIGURE 30-48: TYPICAL AIHLVD VS. VDD