

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24f32ka304t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		N	lemory				٨N				ch)	rs	<u> </u>	
PIC24F Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Timers 16-Bit	Capture Input	Compare/PV Output	UART w/ IrDA [®]	IdS	I²C™	12-Bit A/D (Comparato	CTMU (ch	RTCC
PIC24FV16KA301/ PIC24F16KA301	20	16K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV32KA301/ PIC24F32KA301	20	32K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV16KA302/ PIC24F16KA302	28	16K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV32KA302/ PIC24F32KA302	28	32K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV16KA304/ PIC24F16KA304	44	16K	2K	512	5	3	3	2	2	2	16	3	16	Y
PIC24FV32KA304/ PIC24F32KA304	44	32K	2K	512	5	3	3	2	2	2	16	3	16	Y

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24FV32KA304 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are different from each other in four ways:

- Flash program memory (16 Kbytes for PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
- Available I/O pins and ports (18 pins on two ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
- 4. Members of the PIC24FV32KA301 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV32KA304), accommodate an operating VDD range of 2.0V to 5.5V, and have an on-board Voltage Regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by "F" (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

							-		•				
			F			FV							
			Pin Number	r				Pin Numbe	r				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
CN23	11	16	13	43	47	11	16	13	43	47	Ι	ST	Interrupt-on-Change Inputs
CN24		15	12	42	46		15	12	42	46	Ι	ST	
CN25		_	_	37	40				37	40	I	ST	
CN26		_	_	38	41				38	41	Ι	ST	
CN27		14	11	41	45		14	11	41	45	I	ST	
CN28		_	_	36	39				36	39	I	ST	
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	
CN31		_	_	26	28	_	_	_	26	28	I	ST	
CN32		_	_	25	27	_	_	_	25	27	I	ST	
CN33		_	_	32	35	_	_	_	32	35	Ι	ST	
CN34		_	_	35	38	_	_	_	35	38	Ι	ST	
CN35		_	_	12	13	_	_	_	12	13	Ι	ST	
CN36		_	_	13	14	_	_	_	13	14	Ι	ST	
CVREF	17	25	22	14	15	17	25	22	14	15	Ι	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	Ι	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	Comparator Reference Negative Input Voltage
CTCMP	4	4	1	21	23	4	4	1	21	23	Ι	ANA	CTMU Comparator Input
CTED1	14	20	17	7	7	11	2	27	19	21	Ι	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	Ι	ST	
CTED3	—	19	16	6	6	_	19	16	6	6	Ι	ST	
CTED4	13	18	15	1	1	13	18	15	1	1	Ι	ST	
CTED5	17	25	22	14	15	17	25	22	14	15	Ι	ST	
CTED6	18	26	23	15	16	18	26	23	15	16	Ι	ST	
CTED7	—	—	—	5	5	—	—	—	5	5	Ι	ST	
CTED8	—	—	_	13	14	_	—	—	13	14	Ι	ST	
CTED9	—	22	19	9	10	_	22	19	9	10	Ι	ST	
CTED10	12	17	14	44	48	12	17	14	44	48	Ι	ST	
CTED11	_	21	18	8	9	-	21	18	8	9	Ι	ST	
CTED12	5	5	2	22	24	5	5	2	22	24	Ι	ST	
CTED13	6	6	3	23	25	6	6	3	23	25	Ι	ST	

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS		—	—	_	_	_	_	—			MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	_	—	_	_	_	_		_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	NVMIF	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	—	OC3IF	_	_	_		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	—	_	—	—	_	_	_	_	IC3IF	_	_	_	SPI2IF	SPF2IF	0000
IFS3	008A	—	RTCIF	—	—	—	_	_	_	_	_	_	—	_	MI2C2IF	SI2C2IF	—	0000
IFS4	008C	—	_	CTMUIF	—	—	_	_	HLVDIF	_	_	_	—	CRCIF	U2ERIF	U1ERIF	—	0000
IFS5	008E	_	_	_	—	_	_	_	_		_	_	_	_	_	_	ULPWUIF	0000
IEC0	0094	NVMIE	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	—	OC3IE	—	_	_		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—		—	—	_	—	_	—	_	_	IC3IE	_		_	SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE	—	—	_	—	_	—	_	_		_		MI2C2IE	SI2C2IE		0000
IEC4	009C	—		CTMUIE	—	_	—	_	HLVDIE	_	_		_	CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	—		—	—	_	—	_	—	_	_		_		_	—	ULPWUIE	0000
IPC0	00A4	—	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		_	—		4444
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	NVMIP2	NVMIP1	NVMIP0	_	_	_	—	_	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	—	CMIP2	CMIP1	CMIP0	—	MI2C1P2	MI2C1P1	MI2C1P0	—	SI2C1P2	SI2C1P1	SI2C1P0	4444
IPC5	00AE	_		_	—	_	_	_	—	_	_		—		INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	—	_	—	_	OC3IP2	OC3IP1	OC3IP0		_	—		4040
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0		T5IP2	T5IP1	T5IP0	4440
IPC8	00B4	—		—	—	_	—	_	—	_	SPI2IP2	SPI2IP1	SPI2IP0		SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	—		—	—	_	—	_	—	_	IC3IP2	IC3IP1	IC3IP0		_	—		0040
IPC12	00BC	—		—	—	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0		_	—		0440
IPC15	00C2	—	_	—	—	—	RTCIP2	RTCIP1	RTCIP0	—	—		—	—	—	—	—	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	_	U2ERIP2	U2ERIP1	U2ERIP0	_	U1ERIP2	U1ERIP1	U1ERIP0		_	—		4440
IPC18	00C8	—		—	—	_	—	_	—	_	_		_		HLVDIP2	HLVDIP1	HLVDIP0	0004
IPC19	00CA	—	—	—	_	—	—	—	—	—	CTMUIP2	CTMUIP1	CTMUIP0	_	—	—	_	0040
IPC20	00CC	—	—	—	_	—	—	—	—	—	—	—	—	_	ULPWUIP2	ULPWUIP1	ULPWUIP0	0000
INTTREG	00E0	CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								TN	/IR1								0000
PR1	0102								Р	R1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	T1ECS1	T1ECS0	—	TGATE	TCKPS1	TCKPS0	—	TSYNC	TCS	_	0000
TMR2	0106								TN	IR2								0000
TMR3HLD	0108								TMR	3HLD								0000
TMR3	010A								ΤN	/IR3								0000
PR2	010C								Р	R2								0000
PR3	010E								Р	R3								FFFF
T2CON	0110	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS		FFFF
T3CON	0112	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	—	TCS	_	0000
TMR4	0114								TN	/IR4								0000
TMR5HLD	0116								TMR	5HLD								0000
TMR5	0118								ΤN	1R5								0000
PR4	011A								Р	R4								FFFF
PR5	011C								Р	R5								FFFF
T4CON	011E	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	T45	_	TCS	_	0000
T5CON	0120	TON	—	TSIDL	—	—	—	_	_	—	TGATE	TCKPS1	TCKPS0	—	_	TCS	_	0000
Lananda				Desetual		the last and a	la sim al											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

	1					1	1			1	1		1		1	1	1	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	—	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	—	—	—	_	—	—		IC32	ICTRIG	TRIGSTAT	I	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144									IC1BU	F							0000
IC1TMR	0146									IC1TM	R							XXXX
IC2CON1	0148	—	_	ICSIDL	IC2TSEL2	IC2TSEL1	IC2TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC2BUF	014C									IC2BU	F							0000
IC2TMR	014E									IC2TM	R							XXXX
IC3CON1	0150	—	_	ICSIDL	IC3TSEL2	IC3TSEL1	IC3TSEL0		_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	_	_	_	_	_	-	IC32	ICTRIG	TRIGSTAT	—	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154									IC3BU	F							0000
IC3TMR	0156	IC3TMR xxxx																

PIC24FV32KA304 FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only Table Read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	—	—	—	
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit		mented bit, read		
-n = Value a	t POR	'1' = Bit is set		"O" = Bit is cle	eared	x = Bit is unkr	nown
hit 1E	Unimplanan	ted: Dood oo (o '				
			U Driarity bita				
DIT 14-12	111 = Interru	pt is Priority 7 (highest priority	v interrupt)			
	•	pr.o	g. eet p. e.	,			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11-7	Unimplemen	ted: Read as	0,				
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete Ir	terrupt Priority	bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interru	pt Priority bits			
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	• 001 - Internu	nt in Driarity 1					
	001 = Interru	puis Phonity 1 pt source is dis	abled				

REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter

Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	_				_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾		TCS	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TON: Timerx <u>When TxCON</u> 1 = Starts 32 0 = Stops 32: <u>When TxCON</u> 1 = Starts 16 0 = Stops 16:	On bit -bit Timerx/y -bit Timerx/y -bit Timerx -bit Timerx -bit Timerx					
bit 14	Unimplemen	ted: Read as '	o '				
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit				
	1 = Discontine 0 = Continues	ues module op s module opera	eration when d tion in Idle mo	evice enters Id de	le mode		
bit 12-7	Unimplemen	ted: Read as '	כ'				
bit 6	TGATE: Time When TCS = This bit is igno When TCS = 1 = Gated tin 0 = Gated tin	erx Gated Time <u>1:</u> ored. <u>0:</u> ne accumulatio ne accumulatio	Accumulation n is enabled n is disabled	Enable bit			
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescale	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit Ti	imer Mode Sele	ect bit ⁽¹⁾				
	1 = Timer2 a 0 = Timer2 a	nd Timer3 or Ti nd Timer3 or Ti	mer4 and Time mer4 and Time	er5 form a sing er5 act as two ⁻	le 32-bit timer 16-bit timers		
bit 2	Unimplemen	ted: Read as '	כ'				
bit 1	TCS: Timerx	Clock Source S	Select bit				
	1 = External 0 = Internal	clock from pin, clock (Fosc/2)	TxCK (on the	rising edge)			
bit 0	Unimplemen	ted: Read as '	כ'				
Note 1: In	32-bit mode, th	ne T3CON or T	5CON control b	oits do not affeo	ct 32-bit timer o	peration.	

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

DIT 14	UTXINV: IrDA [®] Encoder Transmit Polarity Inversion bit
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>If IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: UARTx Transmit Break bit
	 1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: UARTx Transmit Enable bit
	 1 = Transmit is enabled; UxTX pin is controlled by UARTx 0 = Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.
bit 9	UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on a RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on a RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit 0
R = Readable	a hit	W = Writable	hit	II = I Inimplen	nented hit rea	n, se p	
-n = Value at	POR	$(1)^{2} = \text{Rit is set}$	bit	$0^{\circ} = \text{Bit is clear}$	ared	x = Bit is unkr	lown
ii valae at							
bit 15	ALRMEN: Ala	arm Enable bit					
	1 = Alarm is	enabled (clear	ed automatica	illy after an ala	irm event whe	never ARPT<7	:0> = 00h and
	CHIME =	= 0) disabled					
hit 14		ne Enable bit					
511 14	1 = Chime is	enabled: ARP	T<7:0> bits are	allowed to roll	over from 00h	to FFh	
	0 = Chime is	disabled; ARP	T<7:0> bits sto	op once they real	ach 00h		
bit 13-10	AMASK<3:0>	>: Alarm Mask	Configuration b	oits			
	0000 = Ever	ry half second					
	0001 = Ever	ry second					
	0010 - Ever	ry minute					
	0100 = Ever	ry 10 minutes					
	0101 = Ever	ry hour					
	0110 = Onco	e a day e a week					
	1000 = Onc	e a month					
	1001 = Once	e a year (excep	ot when configu	ured for Februa	ry 29 th , once e	every 4 years)	
	101x = Rese	erved – do not	use				
hit 9-8		•0>• Alarm Val	use Je Register Wi	ndow Pointer b	oits		
bit 0 0	Points to the c	orresponding Al	arm Value regis	sters when readi	ing the ALRMV	ALH and ALRM	VALL registers.
	The ALRMPT	R<1:0> value d	ecrements on e	every read or wr	ite of ALRMVA	_H until it reache	es '00'.
	ALRMVAL<1	<u>5:8>:</u>					
	00 = ALRMM	IN /D					
	10 = ALRMM	NTH					
	11 = Unimple	mented					
	<u>ALRMVAL<7:</u>	0>:					
		EC					
	10 = ALRMD	AY					
	11 = Unimple	mented					
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits			
	11111111 =	Alarm will rep	eat 255 more t	imes			
	•						
	00000000 =	Alarm will not	repeat	nt: it is provent	od from rolling	over from OOL	to EEb upload
	CHIME = 1 .		any alahin eve	n, it is prevent	.eu nom rolling		

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

L							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
Legend:							
bit 7		•		•		•	bit 0
	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15	•	•	•	•		•	bit 8
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5. bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9. bit 7 Unimplemented: Read as '0' bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5. bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

bit 8

bit 0

20.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

20.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions. If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

20.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
 - a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.
 - b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.
 - c) Select the desired interrupt mode using the CRCISEL bit.
- 3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

20.2 Registers

There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 20-1 and Register 20-2) control the operation of the module, and configure the various settings. The CRCXOR registers (Register 20-3 and Register 20-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0
bit 15							bit 8
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—
bit 7							bit 0
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	learable bit	
R = Readabl	e bit	W = Writable bit		U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	CRCEN: CR	C Enable bit					
	1 = Module	is enabled					
	All state mac	chines, pointers ar	nd CRCWDAT/	CRCDAT regist	ers are reset:	other SFRs ar	e NOT reset.
bit 14	Unimplemer	nted: Read as '0'			,		
bit 13	CSIDL: CRC	Stop in Idle Mod	e bit				
	1 = Disconti	nues module ope	ration when dev	vice enters Idle	mode		
	0 = Continue	es module operat	ion in Idle mode	;			
bit 12-8	VWORD<4:0	0>: Pointer Value	bits				
	Indicates the or 16 when F	number of valid v PLEN<4:0> \leq 7.	vords in the FIF	O, which has a	maximum val	ue of 8 when F	PLEN<4:0> > 7
bit 7	CRCFUL: C	RC FIFO Full bit					
	1 = FIFO is	full					
	0 = FIFO is	not full					
bit 6	CRCMPT: C	RC FIFO Empty E	Bit				
	1 = FIFO IS 0 = FIFO IS	empty not empty					
bit 5		RC interrunt Sele	ection bit				
Site	1 = Interrupt	t on FIFO is empt	v: CRC calculat	ion is not com	olete		
	0 = Interrup	t on shift is compl	ete and CRCW	DAT result is re	ady		
bit 4	CRCGO: Sta	art CRC bit					
	1 = Starts C	RC serial shifter					
	0 = CRC se	rial shifter is turne	ed off				
bit 3	LENDIAN: D	Data Shift Direction	n Select bit				
	1 = Data wo	ord is shifted into t	he CRC, startin	g with the LSb g with the MSb	(little endian)		
hit 2-0							
	Sumplemen	neu. Nedu as U					

REGISTER 20-1: CRCCON1: CRC CONTROL REGISTER 1

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

ALTS: Alternate Input Sample Mode Select bit

bit 0

- 1 = Uses channel input selects for Sample A on the first sample and Sample B on the next sample
- 0 = Always uses channel input selects for Sample A
- **Note 1:** This is only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.
 - 2: The voltage reference setting will not be within the specification with VDD below 4.5V.
 - 3: The voltage reference setting will not be within the specification with VDD below 2.3V.

REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock 0 = Clock is derived from the system clock
bit 14	EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling
bit 13	Reserved: Maintain as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD 00001 = 1 TAD 00000 = 0 TAD
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits 1111111-0100000 = Reserved 00111111 = 64 · TCY = TAD 00000001 = 2 · TCY = TAD 0000000 = TCY = TAD

NOTES:

TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{ }	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0000h1FFFh}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal $\in \{015\}$
lit5	5-bit unsigned literal $\in \{031\}$
lit8	8-bit unsigned literal $\in \{0255\}$
lit10	10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal $\in \{016384\}$
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'
None	Field does not require an entry, may be blank
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in File register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD #lit10,Wn		Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD Wb,Ws,Wd		Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = Iit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE,Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 28-2: INSTRUCTION SET OVERVIEW

29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV32KA304 family AC characteristics and timing parameters.

TABLE 29-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions:	1.8V to 3.6V PIC24F32KA3XX
		2.0V to 5.5V PIC24FV32KA3XX
AC CHARACTERISTICS	Operating temperature:	-40°C ≤ TA ≤ +85°C for Industrial
	_	-40°C \leq TA \leq +125°C for Extended
	Operating voltage VDD range as des	scribed in Section 29.1 "DC Characteristics".

FIGURE 29-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_	_	15	pF	In XT and HS modes when the external clock is used to drive OSCI
DO56	Сю	All I/O Pins and OSCO	_	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In I ² C™ mode

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 29-8: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

TABLE 29-27: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
	TtH	TxCK High Pulse Time	Sync w/Prescaler	Tcy + 20		ns	Must also meet	
			Async w/Prescaler	10	_	ns	Parameter Ttp	
			Async Counter	20	_	ns		
Tt	TtL	TxCK Low Pulse Time	Sync w/Prescaler	Tcy + 20	_	ns	Must also meet	
			Async w/Prescaler	10	_	ns	Parameter Ttp	
			Async Counter	20	_	ns		
	TtP	TxCK External Input	Sync w/Prescaler	2 * Tcy + 40	_	ns	N = Prescale Value	
	Period		Async w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	—	ns	(1, 4, 8, 16)	
			Async Counter	40	_	ns		
		Delay for Input Edge to Timer Increment	Synchronous	1	2	TCY		
			Asynchronous	_	20	ns		

FIGURE 29-9: INPUT CAPTURE x TIMINGS

TABLE 29-28: INPUT CAPTURE x REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15
IC11	ТссН	ICx Input Low Time – Synchronous Timer	No Prescaler	Tcy + 20	—	ns	Must also meet
			With Prescaler	20	—	ns	Parameter IC15
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)