

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka301-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24FV32KA304 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are different from each other in four ways:

- Flash program memory (16 Kbytes for PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
- Available I/O pins and ports (18 pins on two ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
- 4. Members of the PIC24FV32KA301 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV32KA304), accommodate an operating VDD range of 2.0V to 5.5V, and have an on-board Voltage Regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by "F" (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0. HSC
	_	_	_	_	—	_	DC
bit 15							bit 8
R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7	•		I		L		bit 0
Legend:		HSC = Hardwa	re Settable/0	Clearable bit			
R = Readable b	bit	W = Writable bi	t	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-9	Unimplemente	d: Read as '0'					
bit 8	DC: ALU Half C	arry/Borrow bit					
	1 = A carry-out	from the 4 th low-	order bit (for	byte-sized da	ta) or 8 th low-o	rder bit (for wo	rd-sized data)
	of the result	t occurred	8 th low-orde	or hit of the rea	sult has occurre	be	
hit 7-5		Interrupt Priority	/ Lovel Statu	e hite(1,2)		20	
bit 7-5	111 = CPU Inte	rrunt Priority Lev	/el is 7 (15) [.]	user interrunte	s are disabled		
	110 = CPU Inte	rrupt Priority Lev	vel is 6 (14)				
	101 = CPU Inte	rrupt Priority Lev	/el is 5 (13)				
	100 = CPU Inte	rrupt Priority Lev	/el is 4 (12)				
	010 = CPU Inte	rrupt Priority Lev	vel is 2 (10)				
	001 = CPU Inte	rrupt Priority Lev	/el is 1 (9)				
	000 = CPU Inte	rrupt Priority Lev	/el is 0 (8)				
bit 4	RA: REPEAT LO	op Active bit					
	$1 = \text{REPEAT} \mid 00$ $0 = \text{REPEAT} \mid 00$	p in progress	s				
bit 3	N: AI U Negativ	e bit					
2.1.0	1 = Result was	negative					
	0 = Result was	non-negative (ze	ero or positiv	e)			
bit 2	OV: ALU Overfle	ow bit					
	1 = Overflow oc	curred for signe	d (2's compl	ement) arithme	etic in this arith	imetic operatio	on
	0 = No overflow	has occurred					
Dit 1	Z: ALU Zero bit		4h - 7 h:4 h -	1 :1 -1		- 4	
	1 = An operation0 = The most re	n, which effects	the Z bit, has which effects	s set it at some s the Z bit, has	e time in the pa s cleared it (i.e.	ist . a non-zero re	esult)
bit 0	C: ALU Carry/B	orrow bit		,		,	,
	1 = A carry-out	from the Most S	ignificant bit	(MSb) of the r	esult occurred		
	0 = No carry-ou	t from the Most	Significant b	it (MSb) of the	result occurre	d	
Note 1: The	IPLx Status bits a	are read-onlv wh	en NSTDIS	(INTCON1<15	5>) = 1.		
2: The	IPL<2:0> Status	bits are concate	nated with th	ne IPL3 bit (CC	ORCON<3>) to	form the CPL	J Interrupt

Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables (IVT) is provided in Section 8.1 "Interrupt Vector Table (IVT)".

4.1.3 DATA EEPROM

In the PIC24FV32KA304 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using table read and write operations similar to the user code memory.

4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV32KA304 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see **Section 26.0 "Special Features"**.

TABLE 4-1:DEVICE CONFIGURATION
WORDS FOR PIC24FV32KA304
FAMILY DEVICES

Configuration Words	Configuration Word Addresses
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

msw Address	most significant wor	rd lea	ast significant word	PC Address (Isw Address)
	23	16	8	0
000001h	0000000			000000h
000003h	0000000			000002h
000005h	0000000			000004h
000007h	0000000			000006h
		~		
	Program Memory 'Phantom' Byte (read as '0')	Instructio	on Width	

TABLE 4-3: CPU CORE REGISTERS MAP

File Name	Start Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000			WREGO											0000			
WREG1	0002				WREG1										0000			
WREG2	0004				WREG2									0000				
WREG3	0006				WREG3									0000				
WREG4	8000				WREG4									0000				
WREG5	000A				WREG5 0									0000				
WREG6	000C								WF	REG6								0000
WREG7	000E								WF	REG7								0000
WREG8	0010								WF	REG8								0000
WREG9	0012								WF	REG9								0000
WREG10	0014								WR	EG10								0000
WREG11	0016								WR	EG11								0000
WREG12	0018								WR	EG12								0000
WREG13	001A								WR	EG13								0000
WREG14	001C								WR	EG14								0000
WREG15	001E								WR	EG15								0000
SPLIM	0020								SI	PLIM								XXXX
PCL	002E								F	PCL								0000
PCH	0030	_	—	_	—	—	—	_	—	_				PCH				0000
TBLPAG	0032	_	—	—	—	_	—	_	_				TBI	LPAG				0000
PSVPAG	0034	_	—	PSVPAG								0000						
RCOUNT	0036				RCOUNT							XXXXX						
SR	0042	_	—		—		—	—	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	—	—	—	_	—	—	—	—	—	—	—	—	IPL3	PSV	—	—	0000
DISICNT	0052	_	—							DISIC	NT							XXXX

DS39995D-page 39

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE ⁽¹⁾	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE ^(1,2)	CN9PDE ⁽¹⁾	CN8PDE ⁽³⁾	CN7PDE ⁽¹⁾	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	CN31PDE ^(1,2)	CN30PDE	CN29PDE	CN28PDE ^(1,2)	CN27PDE ⁽¹⁾	CN26PDE ^(1,2)	CN25PDE ^(1,2)	CN24PDE ⁽¹⁾	CN23PDE	CN22PDE	CN21PDE	CN20PDE ^(1,2)	CN19PDE ^(1,2)	CN18PDE ^(1,2)	CN17PDE ^(1,2)	CN16PDE ⁽¹⁾	0000
CNPD3	005A	_	-	_	_	_	_	_	_	_	-	_	CN36PDE ^(1,2)	CN35PDE ^(1,2)	CN34PDE ^(1,2)	CN33PDE ^(1,2)	CN32PDE ^(1,2)	0000
CNEN1	0062	CN15IE ⁽¹⁾	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE ^(1,2)	CN9IE ⁽¹⁾	CN8IE ⁽³⁾	CN7IE ⁽¹⁾	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	CN31IE ^(1,2)	CN30IE	CN29IE	CN28IE ^(1,2)	CN27IE ⁽¹⁾	CN26IE ^(1,2)	CN25IE ^(1,2)	CN24IE ⁽¹⁾	CN23IE	CN22IE	CN21IE	CN20IE ^(1,2)	CN19IE ^(1,2)	CN18IE ^(1,2)	CN17IE ^(1,2)	CN16IE ⁽¹⁾	0000
CNEN3	0066	—	_		—		_	-	-	_	_	_	CN36IE ^(1,2)	CN35IE ^(1,2)	CN34IE ^(1,2)	CN33IE ^(1,2)	CN32IE ^(1,2)	0000
CNPU1	006E	CN15PUE ⁽¹⁾	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE ^(1,2)	CN9PUE ⁽¹⁾	CN8PUE ⁽³⁾	CN7PUE ⁽¹⁾	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2	0070	CN31PUE ^(1,2)	CN30PUE	CN29PUE	CN28PUE ^(1,2)	CN27PUE ⁽¹⁾	CN26PUE ^(1,2)	CN25PUE ^(1,2)	CN24PUE ⁽¹⁾	CN23PUE	CN22PUE	CN21PUE	CN20PUE ^(1,2)	CN19PUE ^(1,2)	CN18PUE ^(1,2)	CN17PUE ^(1,2)	CN16PUE ⁽¹⁾	0000
CNPU3	0072	—	_		—		_	-	-	_	_	_	CN36PUE ^(1,2)	CN35PUE ^(1,2)	CN34PUE ^(1,2)	CN33PUE ^(1,2)	CN32PUE ^(1,2)	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not implemented in 20-pin devices.

2: These bits are not implemented in 28-pin devices.

3: These bits are not implemented in FV devices.

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER	8-17: IPC0	: INTERRUPT		ONTROL R	EGISTER 0		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0
bit 15		·	·		·	·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
							-
bit 15	Unimpleme	nted: Read as '	0'				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Interro	upt is Priority 7 (highest priority	interrupt)			
	•			• •			
	•						
		upt is Priority 1	ablad				
bit 11		ntod: Read as '	ableu				
		Cutout Compo	u vro Channol 1 li	otorrunt Driori	ity bite		
DIL 10-0	111 = Intern	unt is Priority 7 (highest priority	interrunt)	ity Dits		
	•		nightest phoney	interrupt)			
	• 001 = Interru	upt is Priority 1					
	000 = Interre	upt source is dis	abled				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-4	IC1IP<2:0>:	Input Capture C	Channel 1 Interr	upt Priority bi	its		
	111 = Interru	upt is Priority 7 (highest priority	interrupt)			
	•						
	• 001 - Intorn	unt is Priority 1					
	000 = Interr	upt is i nonty i upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	INT0IP<2:0>	External Interr	upt 0 Priority bi	its			
	111 = Interro	upt is Priority 7 (highest priority	interrupt)			
	•						
	•						
		upt is Priority 1	abled				
		upt 300100 13 013	adicu				

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	_	_	_	RTCIP2	RTCIP1	RTCIP0
bit 15	·			·		•	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 7	·			·			bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10-8	RTCIP<2:0>:	Real-Time Clo	ock and Calend	lar Interrupt Pri	ority bits		
	111 = Interru	pt is Priority 7 (highest priority	(interrupt)			
	•	. , ,		1 /			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	, pt source is dis	abled				
bit 7-0	Unimplemen	ted: Read as '	0'				

REGISTER 8-28: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

r							
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	ROEN: Refer	ence Oscillator	Output Enable	e bit			
	1 = Reference	e oscillator is er	nabled on REF	O pin			
	0 = Reference	e oscillator is di	sabled				
bit 14	Unimplemen	ted: Read as ')'				
bit 13	ROSSLP: Re	ference Oscilla	tor Output Sto	p in Sleep bit			
	1 = Reference	e oscillator cont e oscillator is di	inues to run ir sabled in Slee	n Sleep			
hit 12		e oscillator is di	r Source Sele	۰۲ ct bit			
	1 = Primary (oscillator is use	d as the base	clock(1)			
	0 = System c	clock is used as	the base cloc	k; base clock re	eflects any cloc	k switching of t	he device
bit 11-8	RODIV<3:0>	Reference Os	cillator Divisor	Select bits			
	1111 = Base	clock value div	ided by 32,76	3			
	1110 = Base	clock value div	ided by 16,384	4			
	1101 = Base	clock value div	ided by 8,192				
	1011 = Base	clock value div	ided by 4,096 ided by 2 048				
	1010 = Base	clock value div	ided by 1,024				
	1001 = Base	clock value div	ided by 512				
	1000 = Base	clock value div	ided by 256				
	0111 = Base	clock value div	ided by 128				
	0110 = Base	clock value div	ided by 32				
	0100 = Base	clock value div	ided by 16				
	0011 = Base	clock value div	ided by 8				
	0010 = Base	clock value div	ided by 4				
	0001 - base	clock value div	iueu by z				

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source. See Example 10-3 for initializing the ULPWU module.

A series resistor, between RB0 and the external capacitor, provides overcurrent protection for the RB0/AN0/ULPWU pin and enables software calibration of the time-out (see Figure 10-1).

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

EXAMPLE 10-3: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
//*******************************
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
   LATBbits.LATB0 = 1:
  for(i = 0; i < 10000; i++) Nop();</pre>
//*******
//2. Stop Charging the capacitor
// on RBO
//*******************************
  TRISBbits.TRISB0 = 1;
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
TEC5bits.ULPWUTE = 1:
IPC21bits.ULPWUIP = 0x7;
//*******
//4. Enable the Ultra Low Power
11
   Wakeup module and allow
11
   capacitor discharge
ULPWCONbits.ULPEN = 1;
   ULPWCONbit.ULPSINK = 1;
//********
//5. Enter Sleep Mode
//*******************************
  Sleep();
//for sleep, execution will
//resume here
```

To set up the SPI1 module for the Enhanced Buffer Master (EBM) mode of operation:

- 1. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 1.
- 3. Clear the SPIROV bit (SPI1STAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).
- 6. Write the data to be transmitted to the SPI1BUF register. Transmission (and reception) will start as soon as data is written to the SPI1BUF register.

To set up the SPI1 module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPI1BUF register.
- 2. If using interrupts:
 - a) Clear the SPI1IF bit in the IFS0 register.
 - b) Set the SPI1IE bit in the IEC0 register.
 - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SS1 pin.
- 6. Clear the SPIROV bit (SPI1STAT<6>).
- Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).

FIGURE 16-2: SPI1 MODULE BLOCK DIAGRAM (ENHANCED BUFFER MODE)

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

- bit 1 SPITBF: SPIx Transmit Buffer Full Status bit
 - 1 = Transmit has not yet started, SPIxTXB is full
 - 0 = Transmit has started, SPIxTXB is empty

In Standard Buffer mode:

Automatically set in hardware when the CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

In Enhanced Buffer mode:

Automatically set in hardware when the CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

- 1 = Receive is complete, SPIxRXB is full
- 0 = Receive is not complete, SPIxRXB is empty

In Standard Buffer mode:

Automatically set in hardware when the SPIx transfers data from the SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

In Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

19.2.5 RTCVAL REGISTER MAPPINGS

REGISTER 19-4: YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| — | — | — | — | — | — | — | — |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-x |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—			WDAY2	WDAY1	WDAY0
bit 15							bit
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit

REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

L							
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable	e bit	W = Writable	W = Writable bit		nented bit, read	l as '0'	
Legend:							
bit 7		•		•		•	bit 0
	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
bit 15	•	•	•	•		•	bit 8
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5. bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9. bit 7 Unimplemented: Read as '0' bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5. bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

bit 8

bit 0

CTMUCONO, CTMU CONTROL DECISTER 2

REGISTER 2	REGISTER 25-2: CTMUCON2: CTMU CONTROL REGISTER 2						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15						bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive							
bit 14	EDG1POL: E	dge 1 Polarity	Select bit				
	1 = Edge 1 is 0 = Edge 1 is	programmed for programmed for	or a positive ed or a negative ed	ge response dge response			
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	6			
	1111 = Edge 1 source is Comparator 3 output 1110 = Edge 1 source is Comparator 2 output 1101 = Edge 1 source is Comparator 1 output 1100 = Edge 1 source is IC3 1011 = Edge 1 source is IC2 1010 = Edge 1 source is CTED8 1000 = Edge 1 source is CTED7 0111 = Edge 1 source is CTED6 0110 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED4 0100 = Edge 1 source is CTED4 0100 = Edge 1 source is CTED1 0011 = Edge 1 source is CTED1 0010 = Edge 1 source is CTED2 0011 = Edge 1 source is CTED2 0001 = Edge 1 source is CTED2						
bit 9	EDG2STAT: E	Edge 2 Status b	oit				
	Indicates the	status of Edge	2 and can be w	ritten to contro	ol the current so	ource.	
	1 = Edge 2 ha	as occurred					
hit Q			.;4				
υπ ο	Indicatos the	Euge I Status D	III. 1 and can be w	ritten to contro	the current or		
	1 = Fdge 1 ha						
	0 = Edge 1 ha	as not occurred					
bit 7	EDG2MOD: E	Edge 2 Edge-Se	ensitive Select	bit			
bit 7 EDG2MOD: Edge 2 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive							

- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

FIGURE 29-8: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

TABLE 29-27: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS

Param. No.	Symbol	Chara	cteristic	Min	Max	Units	Conditions
-	TtH	TxCK High Pulse	Sync w/Prescaler	Tcy + 20		ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtL	TxCK Low Pulse	Sync w/Prescaler	Tcy + 20	_	ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtP	TxCK External Input	Sync w/Prescaler	2 * Tcy + 40	_	ns	N = Prescale Value
	Period		Async w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	_	ns	(1, 4, 8, 16)
			Async Counter	40	_	ns	
		Delay for Input Edge	Synchronous	1	2	TCY	
		to Timer Increment	Asynchronous	_	20	ns	

FIGURE 29-9: INPUT CAPTURE x TIMINGS

TABLE 29-28: INPUT CAPTURE x REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
Synchron	Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
	Synchronous Timer With Prescaler 20 -	—	ns	Parameter IC15			
IC15	TccP	ICx Input Period – Synch	ICx Input Period – Synchronous Timer		—	ns	N = prescale value (1, 4, 16)

FIGURE 30-14: TYPICAL AND MAXIMUM IPD vs. VDD

FIGURE 30-34: TYPICAL VOLTAGE REGULATOR OUTPUT vs. VDD

FIGURE 30-35: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
Fror	n' Namo	
1101		
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply? Y N	
Dev	ice: PIC24FV32KA304 Family	Literature Number: DS39995D
Que	stions:	
1.	What are the best features of this document?	
		<u> </u>
2.	How does this document meet your hardware and s	oftware development needs?
3.	Do you find the organization of this document easy	to follow? If not, why?
4.	What additions to the document do you think would	enhance the structure and subject?
5.	What deletions from the document could be made w	vithout affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what	at and where)?
7.	How would you improve this document?	