

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	17
Program Memory Size	16КВ (5.5К х 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka301-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number	•				Pin Number	•				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
C3INA	18	26	23	15	16	18	26	23	15	16	I	ANA	Comparator 3 Input A (+)
C3INB	17	25	22	14	15	17	25	22	14	15	Ι	ANA	Comparator 3 Input B (-)
C3INC	2	2	27	19	21	2	2	27	19	21	Ι	ANA	Comparator 3 Input C (+)
C3IND	4	4	1	21	23	4	4	1	21	23	Ι	ANA	Comparator 3 Input D (-)
C3OUT	12	17	14	44	48	12	17	14	44	48	0	—	Comparator 3 Output
CLK I	7	9	6	30	33	7	9	6	30	33	Ι	ANA	Main Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0	—	System Clock Output
CN0	10	12	9	34	37	10	12	9	34	37	Т	ST	Interrupt-on-Change Inputs
CN1	9	11	8	33	36	9	11	8	33	36	Ι	ST	
CN2	2	2	27	19	21	2	2	27	19	21	Ι	ST	
CN3	3	3	28	20	22	3	3	28	20	22	Ι	ST	
CN4	4	4	1	21	23	4	4	1	21	23	Ι	ST	
CN5	5	5	2	22	24	5	5	2	22	24	Ι	ST	
CN6	6	6	3	23	25	6	6	3	23	25	Ι	ST	
CN7	_	7	4	24	26		7	4	24	26	Ι	ST	
CN8	14	20	17	7	7				_		Ι	ST	
CN9		19	16	6	6	-	19	16	6	6	Ι	ST	
CN10		_	_	27	29				27	29	Ι	ST	
CN11	18	26	23	15	16	18	26	23	15	16	Ι	ST	
CN12	17	25	22	14	15	17	25	22	14	15	Ι	ST	
CN13	16	24	21	11	12	16	24	21	11	12	Ι	ST	
CN14	15	23	20	10	11	15	23	20	10	11	Ι	ST	
CN15		22	19	9	10		22	19	9	10	Ι	ST	
CN16		21	18	8	9		21	18	8	9	I	ST	
CN17		_	_	3	3		_	_	3	3	Ι	ST	
CN18	_	_	_	2	2	_	_	_	2	2	Ι	ST	
CN19		_	_	5	5	_	_		5	5	Ι	ST	1
CN20		—	—	4	4	—			4	4	I	ST	1
CN21	13	18	15	1	1	13	18	15	1	1	I	ST	1
CN22	12	17	14	44	48	12	17	14	44	48	Ι	ST]

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC24FV32KA304 family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pins (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins"**)
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

Note: The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

FIGURE 2-1: RECOMMENDED

MINIMUM CONNECTIONS

Key (all values are recommendations):

C1 through C6: 0.1 $\mu\text{F},$ 20V ceramic

C7: 10 µF, 16V tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for explanation of VCAP pin connections.
 - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.

^{3:} Some PIC24F K parts do not have a regulator.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the "PIC24F Family Reference Manual", Section 2. "CPU" (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

3.1 Programmer's Model

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.

TABLE 4-14: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02D0	_	_	_	_		—	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC	02D2	-	_				—	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
LATC	02D4	_	_		_	_	_	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX
ODCC	02D6	_	_	_	_	_	_	ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: PORTC is not implemented in 20-pin devices or 28-pin devices.

TABLE 4-15: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_	_	_	_	_	_		_	_	_	SMBUSDEL2	SMBUSDEL1	_	_		_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	—	OC3IE	_				
bit 15	-						bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE				
Dit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Ena	ble bit							
	1 = Interrupt I	request is enab	led								
bit 11		request is not e	nabled	- hit							
DIC 14	1 = Interrunt	RIZ Receiver Ir									
	0 = Interrupt i	request is enab	nabled								
bit 13	INT2IE: External Interrupt 2 Enable bit										
	1 = Interrupt i	1 = Interrupt request is enabled									
	0 = Interrupt I	request is not e	nabled								
bit 12	T5IE: Timer5	Interrupt Enabl	e bit								
	\perp = Interrupt i	request is enab	ied nabled								
bit 11	T4IE : Timer4 Interrupt Enable bit										
	1 = Interrupt i	request is enab	led								
	0 = Interrupt i	request is not e	nabled								
bit 10	Unimplemen	ted: Read as ')'								
bit 9	OC3IE: Outpu	ut Compare 3 Ii	nterrupt Enable	e bit							
	1 = Interrupt i 0 = Interrupt i	request is enab request is not e	ied nabled								
bit 8-5	Unimplemen	ited: Read as ')'								
bit 4	INT1IE: Exter	rnal Interrupt 1	Enable bit								
	1 = Interrupt i	request is enab	led								
	0 = Interrupt i	request is not e	nabled								
bit 3	CNIE: Input C	Change Notifica	tion Interrupt E	Enable bit							
	\perp = Interrupt i	request is enab	ied nabled								
bit 2	CMIE: Compa	arator Interrupt	Enable bit								
	1 = Interrupt i	, request is enab	led								
	0 = Interrupt i	request is not e	nabled								
bit 1	MI2C1IE: Ma	ster I2C1 Even	t Interrupt Ena	ble bit							
	1 = Interrupt I	request is enab	led nabled								
bit 0	SI2C1IF: Slav	ve I2C1 Event I	nterrupt Enabl	le bit							
5100	1 = Interrupt I	request is enab	led								
	0 = Interrupt i	request is not e	nabled								

REGISTER 8-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 DEEP SLEEP MODE

In PIC24FV32KA304 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- · POR Event
- MCLR Event
- RTCC Alarm (if the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) Time-out
- Ultra Low-Power Wake-up (ULPWU) Event

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE). An unlock sequence is required to set the DSEN bit. Once the DSEN bit has been set, there is no time limit before the SLEEP command can be executed. The DSEN bit is automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep					
	wake-up, allow a delay of at least 3 Tcr					
	after clearing the RELEASE bit.					

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.2.4.5 "Deep Sleep WDT".
- 2. If the application requires Deep Sleep BOR, enable it by programming the DSLPBOR Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module For more information on RTCC, see Section 19.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).

Note: An unlock sequence is required to set the DSEN bit.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

To set the DSEN bit, the unlock sequence in Example 10-2 is required:

EXAMPLE 10-2: THE UNLOCK SEQUENCE

//Disa	able Interrupts For 5 instructions							
asm	<pre>volatile("disi #5");</pre>							
//Issue Unlock Sequence								
asm	volatile							
mov	#0x55, W0;							
mov	W0, NVMKEY;							
mov	#0xAA, W1;							
mov	W1, NVMKEY;							
bset	DSCON, #DSEN							
1								

Enter Deep Sleep mode by issuing a PWRSAV #0 instruction.

NOTES:

REGISTER 16-1:

R/W-0 U-0 R/W-0 U-0 U-0 R-0, HSC R-0, HSC R-0, HSC SPIEN SPIBEC0 SPISIDL SPIBEC2 SPIBEC1 bit 15 bit 8 R-0, HSC R/C-0, HS R/W-0, HSC R/W-0 R/W-0 R/W-0 R-0, HSC R-0, HSC SPIROV SPIRBF SRMPT SRXMPT SISEL2 SISEL1 SISEL0 SPITBF bit 7 bit 0 HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPI transfers pending. Slave mode: Number of SPI transfers unread. bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and ready to send or receive 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded (the user software has not read the previous data in the SPI1BUF register) 0 = No overflow has occurred bit 5 **SRXMPT:** SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty 0 = Receive FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data byte is shifted into the SPIxSR: as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set)

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master; applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master; applicable during master receive)
	 1 = Initiates the Acknowledge sequence on the SDAx and SCLx pins, and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I^2C master)
~	1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at end of master Stop sequence 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence
	$\circ = 0$ text condition is not in pressoo

0 = Start condition is not in progress

18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 provides the formula for computation of the baud rate with BRGH = 0.

EQUATION 18-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{16 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 18-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is Fcy/16 (for UxBRG = 0) and the minimum baud rate possible is Fcy/(16 * 65536).

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 18-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$ $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	= FCY/(16 (UxBRG + 1))								
Solving for UxBRG value:									
UxBRG UxBRG UxBRG	= ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1 = 25								
Calculated Baud Rate	= 4000000/(16(25+1)) = 9615								
Error	 = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 – 9600)/9600 = 0.16% 								
Note 1: Based on	FCY = FOSC/2; Doze mode and PLL are disabled.								

20.1 User Interface

20.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing this bit disables the XOR.

For example, consider two CRC polynomials, one is a 16-bit equation and the other is a 32-bit equation:

To program these polynomials into the CRC generator, set the register bits, as shown in Table 20-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length, N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCXOR register.

20.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value, between 1 and 32 bits, using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTHx value is between 15 and 8, the FIFO is 8 words deep. When the DWIDTHx value is less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is one byte. For example, if the DWIDTHx value is 5, then the size of the data is DWIDTHx + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTHx value is 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit is set and the value of the VWORDx bits is greater than zero. Each word is copied out of the FIFO into a buffer register, which decrements VWORDx. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle until the VWORDx value reaches zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx value reaches the maximum value for the configured value of DWIDTHx (4, 8 or 16), the CRCFUL bit becomes set. When the VWORDx value reaches zero, the CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass, after a write to CRCDAT, before a read of the VWORDx bits is done.

CRC Control	Bit Values							
Bits	16-Bit Polynomial	32-Bit Polynomial						
PLEN<4:0>	01111	11111						
X<31:16>	x000 0000 0000 0000x	0000 0100 1100 0001						
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x						

TABLE 20-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

REGISTER 22-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—	—	—	CHH17	CHH16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CHH<17:16>: A/D Compare Hit bits

If CM<1:0> = 11:

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For All Other Values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

REGISTER 22-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7		•	•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

- 1 = A/D Result Buffer x has been written with data or a match has occurred
- 0 = A/D Result Buffer x has not been written with data
- For all other values of CM<1:0>:
- 1 = A match has occurred on A/D Result Channel x
- 0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR x MODULE BLOCK DIAGRAM

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX										
Operatir	$\begin{array}{llllllllllllllllllllllllllllllllllll$									
Param No.	Symbol	Char	Characteristic				Units	Conditions		
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾		—	1.90	V			
		VDD Transition	HLVDL<3:0> = 0001	1.86	-	2.13	V			
			HLVDL<3:0> = 0010	2.08	-	2.35	V			
			HLVDL<3:0> = 0011	2.22	_	2.53	V			
			HLVDL<3:0> = 0100	2.30	-	2.62	V			
			HLVDL<3:0> = 0101	2.49	-	2.84	V			
			HLVDL<3:0> = 0110	2.73	—	3.10	V			
			HLVDL<3:0> = 0111	2.86		3.25	V			
			HLVDL<3:0> = 1000	3.00	-	3.41	V			
			HLVDL<3:0> = 1001	3.16	—	3.59	V			
			HLVDL<3:0> = 1010 ⁽¹⁾	3.33		3.79	V			
			HLVDL<3:0> = 1011 ⁽¹⁾	3.53		4.01	V			
			HLVDL<3:0> = 1100 ⁽¹⁾	3.74	—	4.26	V			
			HLVDL<3:0> = 1101 ⁽¹⁾	4.00		4.55	V			
			HLVDL<3:0> = 1110 ⁽¹⁾	4.28	—	4.87	V			

Note 1: These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

TABLE 29-5: BOR TRIP POINTS

Standar Operatir	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Param No. Sym Characteristic Min Typ Max Units Conditions								
DC15		BOR Hysteresis			5		mV		
DC19		BOR Voltage on VDD Transition	BORV<1:0> = 00	-	_		—	Valid for LPBOR and DSBOR (Note 1)	
			BORV<1:0> = 01	2.90	3	3.38	V		
			BORV<1:0> = 10	2.53	2.7	3.07	V		
			BORV<1:0> = 11	1.75	1.85	2.05	V	(Note 2)	
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)	

Note 1: LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

FIGURE 30-4: TYPICAL AND MAXIMUM lidLe vs. FREQUENCY (EC MODE, 1.95 kHz TO 1 MHz)

FIGURE 30-34: TYPICAL VOLTAGE REGULATOR OUTPUT vs. VDD

FIGURE 30-35: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

FIGURE 30-48: TYPICAL AIHLVD VS. VDD

FIGURE 30-53: VIL/VIH vs. VDD (OSCO, TEMPERATURES AS NOTED)

FIGURE 30-54: VIL/VIH vs. VDD (MCLR, TEMPERATURES AS NOTED)

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A