

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka302-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

TABLE 8-1:TRAP VECTOR DETAILS

TABLE 8-2: IMPLEMENTED INTERRUPT VECTORS

Intervent Courses			AIVT	Interrupt Bit Locations			
Interrupt Source		IVI Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
HLVD (High/Low-Voltage Detect)	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>	
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<2>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>	
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>	
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>	
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>	
Timer5	28	00004Ch	00015Ch	IFS1<12>	IEC1<12>	IPC7<2:0>	
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>	
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>	
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>	
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>	
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>	
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>	
Ultra Low-Power Wake-up	80	0000B4h	0001B4h	IFS5<0>	IEC5<0>	IPC20<2:0>	

REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF		—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 13-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

	00. 104.		I LAO OIAI						
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS		
	_	CTMUIF	_				HLVDIF		
bit 15	·						bit 8		
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0		
	—	—	_	CRCIF	U2ERIF	U1ERIF	—		
bit 7							bit 0		
Legend:		HS = Hardwa	re Settable bit						
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-14	Unimplemen	ted: Read as ')'						
bit 13	CTMUIF: CTI	CTMUIF: CTMU Interrupt Flag Status bit							
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred						
bit 12-9	Unimplemen	ted: Read as ')'						
bit 8	HLVDIF: High	n/Low-Voltage [Detect Interrup	t Flag Status bi	t				
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred						
bit 7-4	Unimplemen	ted: Read as ')'						
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit					
	1 = Interrupt request has occurred 0 = Interrupt request has not occurred								
bit 2	U2ERIF: UART2 Error Interrupt Flag Status bit								
	1 = Interrupt i 0 = Interrupt i	1 = Interrupt request has occurred 0 = Interrupt request has not occurred							
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit					
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred						
bit 0	Unimplemen	ted: Read as ')'						
	•								

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	—	OC3IE	_	
bit 15	-						bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	
Dit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
bit 15	U2TXIE: UAF	RT2 Transmitter	Interrupt Ena	ble bit				
	1 = Interrupt I	request is enab	led					
bit 11		request is not e	nabled	- hit				
DIC 14	1 = Interrunt	RIZ Receiver Ir						
	0 = Interrupt i	request is enab	nabled					
bit 13	INT2IE: Exter	rnal Interrupt 2	Enable bit					
	1 = Interrupt request is enabled							
	0 = Interrupt I	request is not e	nabled					
bit 12	T5IE: Timer5 Interrupt Enable bit							
	\perp = Interrupt i	request is enab	ied nabled					
bit 11	T4IE: Timer4	Interrupt Enabl	e bit					
	1 = Interrupt i	request is enab	led					
	0 = Interrupt i	request is not e	nabled					
bit 10	Unimplemen	ted: Read as ')'					
bit 9	OC3IE: Output Compare 3 Interrupt Enable bit							
	1 = Interrupt i 0 = Interrupt i	request is enab request is not e	ied nabled					
bit 8-5	Unimplemen	ited: Read as ')'					
bit 4	INT1IE: Exter	rnal Interrupt 1	Enable bit					
	1 = Interrupt request is enabled							
	0 = Interrupt i	request is not e	nabled					
bit 3	CNIE: Input Change Notification Interrupt Enable bit							
	1 = Interrupt request is enabled 0 = Interrupt request is not enabled							
bit 2	CMIE: Compa	arator Interrupt	Enable bit					
	1 = Interrupt i	, request is enab	led					
	0 = Interrupt i	request is not e	nabled					
bit 1	MI2C1IE: Ma	ster I2C1 Even	t Interrupt Ena	ble bit				
	1 = Interrupt I	request is enab	led nabled					
bit 0	SI2C1IF: Slav	ve I2C1 Event I	nterrupt Enabl	le bit				
5100	1 = Interrupt I	request is enab	led					
	0 = Interrupt i	request is not e	nabled					

REGISTER 8-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 8-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_	_	_	_	HLVDIP2	HLVDIP1	HLVDIP0

	bit	7
--	-----	---

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-3 Unimplemented: Read as '0'

bit 2-0 HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt) . . 001 = Interrupt is Priority 1 000 = Interrupt source is disabled

REGISTER 8-31: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4 **CTMUIP<2:0>:** CTMU Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)

•

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

bit 3-0 Unimplemented: Read as '0'

•

bit 0

10.2.2 IDLE MODE

Idle mode has these features:

- · The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

10.2.4 DEEP SLEEP MODE

In PIC24FV32KA304 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- · POR Event
- MCLR Event
- RTCC Alarm (if the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) Time-out
- Ultra Low-Power Wake-up (ULPWU) Event

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE). An unlock sequence is required to set the DSEN bit. Once the DSEN bit has been set, there is no time limit before the SLEEP command can be executed. The DSEN bit is automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep
	wake-up, allow a delay of at least 3 Tcr
	after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.2.4.5 "Deep Sleep WDT".
- 2. If the application requires Deep Sleep BOR, enable it by programming the DSLPBOR Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module For more information on RTCC, see Section 19.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).

Note: An unlock sequence is required to set the DSEN bit.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

To set the DSEN bit, the unlock sequence in Example 10-2 is required:

EXAMPLE 10-2: THE UNLOCK SEQUENCE

//Disa	able Interrupts For 5 instructions
asm	<pre>volatile("disi #5");</pre>
//Issi	le Unlock Sequence
asm	volatile
mov	#0x55, W0;
mov	W0, NVMKEY;
mov	#0xAA, W1;
mov	W1, NVMKEY;
bset	DSCON, #DSEN
1	

Enter Deep Sleep mode by issuing a PWRSAV #0 instruction.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	—	TSIDL	_				_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾		TCS	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	TON: Timerx On bit $\frac{When TxCON<3> = 1:}{1 = \text{Starts 32-bit Timerx/y}}$ $0 = \text{Stops 32-bit Timerx/y}$ $\frac{When TxCON<3> = 0:}{1 = \text{Starts 16-bit Timerx}}$						
bit 14	Unimplemented: Read as '0'						
bit 13	TSIDL: Timer	x Stop in Idle M	lode bit				
	1 = Discontine 0 = Continues	ues module op s module opera	eration when d tion in Idle mo	evice enters Id de	le mode		
bit 12-7	Unimplemen	ted: Read as '	כ'				
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit <u>When TCS = 1:</u> This bit is ignored. <u>When TCS = 0:</u> 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled						
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescale	e Select bits			
	11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1						
bit 3	T32: 32-Bit Ti	imer Mode Sele	ect bit ⁽¹⁾				
	1 = Timer2 a 0 = Timer2 a	nd Timer3 or Ti nd Timer3 or Ti	mer4 and Time mer4 and Time	er5 form a sing er5 act as two ⁻	le 32-bit timer 16-bit timers		
bit 2	Unimplemen	ted: Read as '	כ'				
bit 1	TCS: Timerx	Clock Source S	Select bit				
	1 = External 0 = Internal	clock from pin, clock (Fosc/2)	TxCK (on the	rising edge)			
bit 0	Unimplemen	ted: Read as '	כ'				
Note 1: In 32-bit mode, the T3CON or T5CON control bits do not affect 32-bit timer operation.							

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This output compare module⁽¹⁾
 - 11110 = **Reserved** 11101 = Reserved 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1
 - 01010 = Input Capture 5⁽²⁾
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Do not use an output compare module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as Sync sources.
 - 3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCMx bits (OCxCON1<2:0>) = 001.

EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 16-1: SAMPLE SCKx FREQUENCIES^(1,2)

		Secondary Prescaler Settings					
	1:1	2:1	4:1	6:1	8:1		
Primary Prescaler Settings	1:1	Invalid	8000	4000	2667	2000	
	4:1	4000	2000	1000	667	500	
	16:1	1000	500	250	167	125	
	64:1	250	125	63	42	31	
Fcy = 5 MHz							
Primary Prescaler Settings	1:1	5000	2500	1250	833	625	
	4:1	1250	625	313	208	156	
	16:1	313	156	78	52	39	
	64:1	78	39	20	13	10	

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: SCKx frequencies are indicated in kHz.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master; applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master; applicable during master receive)
	 1 = Initiates the Acknowledge sequence on the SDAx and SCLx pins, and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence 0 = Acknowledge sequence is not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C; hardware is clear at the end of the eighth bit of the master receive data byte 0 = Receive sequence is not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I^2C master)
~	1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at end of master Stop sequence 0 = Stop condition is not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence
	$\circ = 0$ text condition is not in pressoo

0 = Start condition is not in progress

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit 0
Legend:		C = Clearab	le bit	HS = Hardware	e Settable bit	HSC = Hardware S	ettable/Clearable bit
R = Readab	ole bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is clear	red	x = Bit is unknown	
bit 15	ACKSTAT:	Acknowledg	e Status bit				
	1 = NACK	was detected	l last				
	Hardware i	s set or clear	asi at the end of	Acknowledge.			
bit 14	TRSTAT: ⊺	ransmit Statu	ıs bit	U			
	(when oper	rating as I ² C	master; appli	cable to master	transmit oper	ation)	
	1 = Master	transmit is in	n progress (8	bits + ACK)			
	0 = Master Hardware is	transmit is n	ot in progress ainning of the r	s master transmis	sion [.] hardware	is clear at the end of	slave Acknowledge
hit 13-11	Unimplem	ented: Read	as '0'		olon, naraware		olave / loki lowiedge.
bit 10	BCL: Mast	er Bus Collis	ion Detect bit				
	1 = A bus c	collision has l	been detected	d during a mast	er operation		
	0 = No colli	ision		U U			
	Hardware i	s set at the d	etection of a	bus collision.			
bit 9	GCSTAT: 0	General Call	Status bit				
	1 = Genera	al call addres	s was receive s was not rec	eived			
	Hardware i	s set when a	n address ma	atches the gene	ral call addres	s; hardware is clea	r at Stop detection.
bit 8	ADD10: 10	-Bit Address	Status bit				
	1 = 10-bit a	address was	matched				
	0 = 10-bit a	address was	not matched	uto of the motor	od 10 bit oddr	aa: hardwara ia ala	ar at Stan datastian
hit 7		Cy Mrite Coll	lision Dotoct k	iyte of the match		ess, naruware is cie	ar at Stop detection.
	1 = An atte	mot to write t	to the I2CxTR	N register faile	d because the	I ² C module is busy	N/
	0 = No colli	ision		and register faile			,
	Hardware i	s set at an o	ccurrence of a	a write to I2CxT	RN while busy	(cleared by softwa	are).
bit 6	12COV: 12C	x Receive O	verflow Flag I	bit			
	1 = A byte	was received	I while the I20	CxRCV register	is still holding	the previous byte	
	Hardware i	s set at an at	tempt to trans	sfer I2CxRSR to	o I2CxRCV (cl	eared by software).	
bit 5	D/A: Data//	Address bit (when operatir	ng as I ² C slave)	,	
	1 = Indicate	es that the la	st byte receiv	ed was data			
	0 = Indicate	es that the la	st byte receiv	ed was the dev	ice address		
	Hardware is clear at a device address match; hardware is set by a write to I2CxTRN or by reception of a slave byte.						

19.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

19.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value Register Window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 19-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

	RTCC Value Register Window				
	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	_	YEAR			

The Alarm Value Register Window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 19-2).

By writing the ALRMVALH byte, the Alarm Pointer value (ALRMPTR<1:0> bits) decrements by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL, until the pointer value is manually changed.

EXAMPLE 19-1:	SETTING THE RTCWREN BIT

TABLE 19-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	PWCSTAB	PWCSAMP			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

19.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RTCPWC<13>) must be set (see Example 19-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN. Therefore, it is recommended that code follow the procedure in Example 19-1.

19.2.3 SELECTING RTCC CLOCK SOURCE

There are four reference source clock options that can be selected for the RTCC using the RTCCSEL<1:0> bits: 00 = Secondary Oscillator, 01 = LPRC, 10 = 50 Hz External Clock and 11 = 60 Hz External Clock.

asm	volatile	("push w7");
asm	volatile	("push w8");
asm	volatile	("disi #5");
asm	volatile	("mov #0x55, w7");
asm	volatile	("mov w7, NVMKEY");
asm	volatile	("mov #0xAA, w8");
asm	volatile	("mov w8, _NVMKEY");
asm	volatile	("bset _RCFGCAL, #13"); //set the RTCWREN bit
asm	volatile	("pop w8");
asm	volatile	("pop w7");

REGISTER 20-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0	
bit 15		•		- -	•		bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	
bit 7		•			•	•	bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15-13	Unimplemen	ted: Read as ')'					
bit 12-8	DWIDTH<4:0	>: Data Width	Select bits					
	Defines the w	idth of the data	word (Data W	ord Width = (D	WIDTH<4:0>) -	+ 1).		

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits Defines the length of the CRC polynomial (Polynomial Length = (PLEN<4:0>) + 1).

CTMUCONO, CTMU CONTROL DECISTER 2

REGISTER 2	5-2. CTWC		UCUNIKUL	REGISTER	4		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 EDG1MOD: Edge 1 Edge-Sensitive Select bit 1 = Input is edge-sensitive 0 = Input is level-sensitive							
bit 14	EDG1POL: E	dge 1 Polarity	Select bit				
	1 = Edge 1 is 0 = Edge 1 is	programmed for programmed for	or a positive ed or a negative ed	ge response dge response			
bit 13-10	EDG1SEL<3:	: 0>: Edge 1 So	urce Select bits	6			
	<pre>1111 = Edge 1 source is Comparator 3 output 1110 = Edge 1 source is Comparator 2 output 1101 = Edge 1 source is Comparator 1 output 1100 = Edge 1 source is IC3 1011 = Edge 1 source is IC2 1010 = Edge 1 source is CTED8 1000 = Edge 1 source is CTED7 0111 = Edge 1 source is CTED6 0110 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED5 0101 = Edge 1 source is CTED4 0100 = Edge 1 source is CTED3⁽²⁾ 0011 = Edge 1 source is CTED1 0010 = Edge 1 source is CTED2 0001 = Edge 1 source is CTED2 0001 = Edge 1 source is CTED2</pre>						
bit 9	EDG2STAT: E	Edge 2 Status b	oit				
	Indicates the	status of Edge	2 and can be w	ritten to contro	ol the current so	ource.	
	1 = Edge 2 ha	as occurred					
hit Q			.;4				
υπ ο	Indicatos the	Euge I Status D	III. 1 and can be w	ritten to contro	the current or		
	1 = Fdge 1 ha						
	0 = Edge 1 ha	as not occurred					
bit 7	EDG2MOD: E	Edge 2 Edge-Se	ensitive Select	bit			
	1 = Input is ed 0 = Input is le	dge-sensitive vel-sensitive					

- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
 - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

REGISTER	26-5: FWD	T: WATCHDO	G TIMER CO	ONFIGURATI	ON REGISTE	ER	
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7				·		·	bit 0
Legend:							
R = Readab	le bit	P = Programn	nable bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7,5	FWDTEN<1:0 11 = WDT is e 10 = WDT is e 01 = WDT is e 00 = WDT is e	I>: Watchdog Til enabled in hardv controlled with the enabled only whe disabled in hardv	mer Enable bi vare ne SWDTEN b ile device is a ware; SWDTE	ts it setting ctive; WDT is di N bit is disabled	isabled in Slee	p, SWDTEN bit	t is disabled
bit 6	WINDIS: Wind 1 = Standard 0 = Windowee hardware device Re	dowed Watchdo WDT is selected d WDT is enable and software (eset	g Timer Disab d; windowed V ed; note that e FWDTEN<1:0	le bit VDT is disabled xecuting a CLR)> = 00 and S	I ₩DT instructior WDTEN (RCC	n while the WD ⁻)N<5>) = 0) wi	Γ is disabled in Il not cause a
bit 4	FWPSA: WDT 1 = WDT pres 0 = WDT pres	F Prescaler bit caler ratio of 1:1 caler ratio of 1:3	128 32				
bit 3-0	WDTPS<3:0> 1111 = 1:32,7 1110 = 1:16,3 1101 = 1:8,19 1100 = 1:4,09 1011 = 1:2,04 1010 = 1:1,02 1001 = 1:512 1000 = 1:256 0111 = 1:128 0100 = 1:4 0010 = 1:4 0001 = 1:2	: Watchdog Tim 768 384 92 96 18 24	er Postscale \$	Select bits			

FIGURE 29-8: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

TABLE 29-27: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
-	TtH	TxCK High Pulse	Sync w/Prescaler	Tcy + 20		ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtL TxCK Low Pulse		Sync w/Prescaler	Tcy + 20	_	ns	Must also meet
		Time	Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtP TxCK External Input Sync w/Prescaler 2		2 * Tcy + 40	_	ns	N = Prescale Value	
		Period	Async w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	_	ns	(1, 4, 8, 16)
			Async Counter	40	_	ns	
		Delay for Input Edge	Synchronous	1	2	TCY	
		to Timer Increment	Asynchronous	_	20	ns	

FIGURE 29-9: INPUT CAPTURE x TIMINGS

TABLE 29-28: INPUT CAPTURE x REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15
IC11	ТссН	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
		Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15
IC15	TccP	ICx Input Period – Synch	nronous Timer	<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

FIGURE 30-10: FRC FREQUENCY ACCURACY vs. VDD

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	MIN	NOM	MAX	
Contact Pitch E			0.65 BSC	
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Leads	Ν		44		
Lead Pitch	е		0.80 BSC		
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

INDEX

I	١
•	•

A/D	
Buffer Data Formats	
Control Registers	
AD1CHITH/L	
AD1CHS	
AD1CON1	
AD1CON2	
AD1CON3	
AD1CON5	
AD1CSSH/L	
AD1CTMUENH/L	
Module Specifications	
Result Buffers	
Sampling Requirements	
Transfer Function	220
AC Characteristics	
Capacitive Loading Requirements on	
Output Pins	
Comparator	
Comparator Voltage Reference Settling Time	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
Load Conditions and Requirements	
Reset, Watchdog Timer. Oscillator Start-up Ti	mer,
Power-up Timer, Brown-out	
Reset Requirements	
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	

В

Baud Rate Generator
Setting as a Bus Master 171
Block Diagrams
12-Bit A/D Converter
12-Bit A/D Converter Analog Input Model
16-Bit Asynchronous Timer3 and Timer5143
16-Bit Synchronous Timer2 and Timer4143
16-Bit Timer1139
Accessing Program Memory with
Table Instructions54
CALL Stack Frame51
Comparator Voltage Reference
Comparator x Module
CPU Programmer's Model31
CRC Module199
CRC Shift Engine 199
CTMU Connections and Internal Configuration
for Capacitance Measurement232
CTMU Typical Connections and Internal Configuration
for Pulse Delay Generation
CTMU Typical Connections and Internal Configuration
for Time Measurement232
Data Access from Program Space
Address Generation52
Data EEPROM Addressing with TBLPAG and
NVM Registers65
High/Low-Voltage Detect (HLVD)
I ² C Module170
Individual Comparator Configurations226

Input Capture x	147
MCLR Pin Connections	24
On-Chip Regulator Connections	248
Output Compare x (16-Bit Mode)	152
Output Compare x (Double-Buffered,	
16-Bit PWM Mode)	154
PIC24F CPU Core	30
PIC24FV32KA304 Family (General)	15
PSV Operation	55
Recommended Minimum Connections	23
Reset System	69
RTCC Module	185
Serial Resistor	131
Shared I/O Port Structure	135
Simplified UARTx	177
SPI1 Module (Enhanced Buffer Mode)	163
SPI1 Module (Standard Buffer Mode)	162
System Clock	115
Table Register Addressing	57
Timer2/3, Timer4/5 (32-Bit)	142
Watchdog Timer (WDT)	249
Brown-out Reset	
Trip Points	266

С

C Compilers	
MPLAB C18	252
Charge Time Measurement Unit. See CTMU.	
Code Examples	
Basic Sequence for Clock Switching	122
Data EEPROM Bulk Erase	67
Data EEPROM Unlock Sequence	63
Erasing a Program Memory Row, 'C' Language	61
Erasing a Program Memory Row,	
Assembly Language	60
I/O Port Write/Read	138
Initiating a Programming Sequence,	
'C' Language	62
Initiating a Programming Sequence,	
Assembly Language	62
Loading the Write Buffers, 'C' Language	62
Loading the Write Buffers, Assembly Language	61
PWRSAV Instruction Syntax	125
Reading the Data EEPROM Using the	
TBLRD Command	68
Setting the RTCWREN Bit	186
Single-Word Erase	66
Single-Word Write to Data EEPROM	67
Ultra Low-Power Wake-up Initialization	131
Unlock Sequence	126
Code Protection	250
Comparator	225
Comparator Voltage Reference	229
Configuring	229
Configuration Bits	239
Core Features	11
CPU	
ALU	33
Control Registers	32
Core Registers	30
Programmer's Model	29