E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka302-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

							-		•				
			F					FV					
			Pin Number	r				Pin Numbe	r				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	1/0	Buffer	Description
CN23	11	16	13	43	47	11	16	13	43	47	Ι	ST	Interrupt-on-Change Inputs
CN24		15	12	42	46		15	12	42	46	Ι	ST	
CN25		_	_	37	40				37	40	I	ST	
CN26		_	_	38	41				38	41	Ι	ST	
CN27		14	11	41	45		14	11	41	45	I	ST	
CN28		_	_	36	39				36	39	I	ST	
CN29	8	10	7	31	34	8	10	7	31	34	I	ST	
CN30	7	9	6	30	33	7	9	6	30	33	I	ST	
CN31		_	_	26	28	_	_	_	26	28	I	ST	
CN32		_	_	25	27	_	_	_	25	27	I	ST	
CN33		_	_	32	35	_	_	_	32	35	Ι	ST	
CN34		_	_	35	38	_	_	_	35	38	Ι	ST	
CN35		_	_	12	13	_	_	_	12	13	Ι	ST	
CN36		_	_	13	14	_	_	_	13	14	Ι	ST	
CVREF	17	25	22	14	15	17	25	22	14	15	Ι	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	Ι	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	3	28	20	22	3	3	28	20	22	Ι	ANA	Comparator Reference Negative Input Voltage
CTCMP	4	4	1	21	23	4	4	1	21	23	Ι	ANA	CTMU Comparator Input
CTED1	14	20	17	7	7	11	2	27	19	21	Ι	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	Ι	ST	
CTED3	—	19	16	6	6	_	19	16	6	6	Ι	ST	
CTED4	13	18	15	1	1	13	18	15	1	1	Ι	ST	
CTED5	17	25	22	14	15	17	25	22	14	15	Ι	ST	
CTED6	18	26	23	15	16	18	26	23	15	16	Ι	ST	
CTED7	—	—	—	5	5	—	—	—	5	5	Ι	ST	
CTED8	—	—	_	13	14	_	—	—	13	14	Ι	ST	
CTED9	—	22	19	9	10	_	22	19	9	10	Ι	ST	
CTED10	12	17	14	44	48	12	17	14	44	48	Ι	ST	
CTED11	_	21	18	8	9	-	21	18	8	9	Ι	ST	
CTED12	5	5	2	22	24	5	5	2	22	24	Ι	ST	
CTED13	6	6	3	23	25	6	6	3	23	25	Ι	ST	

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
OC1CON1	0190	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0194									OC1RS								0000
OC1R	0196									OC1R								0000
OC1TMR	0198									OC1TMR								XXXX
OC2CON1	019A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E									OC2RS								0000
OC2R	01A0									OC2R								0000
OC2TMR	01A2									OC2TMR								XXXX
OC3CON1	01A4	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8									OC3RS								0000
OC3R	01AA		OC3R 00					0000										
OC3TMR	01AC		OC3TMR xxxx															

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into a 16K word page (in PIC24FV16KA3XX devices) and a 32K word page (in PIC24FV32KA3XX devices) of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the System Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Tost	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	TLOCK	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_		None

TABLE 7-3: DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer (PWRT) is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC oscillator start-up times.
- **4:** TLOCK = PLL lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- **6:** If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

bit 0 INTOIE: External Interrupt 0 Enable bit

- 1 = Interrupt request is enabled
- 0 = Interrupt request is not enabled

10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV32KA304 series devices have a Voltage Regulator that has the ability to alter functionality to provide power savings. The on-board regulator is made up of two basic modules: the Voltage Regulator (VREG) and the Retention Regulator (RETREG). With the combination of VREG and RETREG, the following power modes are available:

10.4.1 RUN MODE

In Run mode, the main VREG is providing a regulated voltage with enough current to supply a device running at full speed, and the device is not in Sleep or Deep Sleep Mode. The Retention Regulator may or may not be running, but is unused.

10.4.2 SLEEP (STANDBY) MODE

In Sleep mode, the device is in Sleep and the main VREG is providing a regulated voltage at a reduced (standby) supply current. This mode provides for limited functionality due to the reduced supply current. It requires a longer time to wake-up from Sleep.

10.4.3 RETENTION SLEEP MODE

In Retention Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the Retention Regulator. Consequently, this mode has lower power consumption than regular Sleep mode, but is also limited in terms of how much functionality can be enabled. Retention Sleep wake-up time is longer than Sleep mode due to the extra time required to raise the VCORE supply rail back to normal regulated levels.

Note: PIC24F32KA30X family devices do not use an On-Chip Voltage Regulator, so they do not support Retention Sleep mode.

10.4.4 DEEP SLEEP MODE

In Deep Sleep mode, both the main Voltage Regulator and Retention Regulator are shut down, providing the lowest possible device power consumption. However, this mode provides no retention or functionality of the device and has the longest wake-up time.

		VICES		
RETCGF Bit (FPOR<2>)	RETEN Bit (RCON<12>	PMSLP Bit (RCON<8>)	Power Mode During Sleep	Description
0	0	1	Sleep	VREG mode (normal) is unchanged during Sleep. RETREG is unused.
0	0	0	Sleep (Standby)	VREG goes to Low-Power Standby mode during Sleep. RETREG is unused.
0	1	0	Retention Sleep	VREG is off during Sleep. RETREG is enabled and provides Sleep voltage regulation.
1	х	1	Sleep	VREG mode (normal) is unchanged during Sleep. RETREG is disabled at all times.
1	х	0	Sleep (Standby)	VREG goes to Low-Power Standby mode during Sleep. RETREG is disabled at all times

TABLE 10-1:VOLTAGE REGULATION CONFIGURATION SETTINGS FOR PIC24FV32KA304
FAMILY DEVICES

R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
TON	—	TSIDL	_	—	—	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾
bit 15							bit 8
							
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0		TSYNC	TCS	_
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
							-
bit 15	TON: Timer1	On bit					
	1 = Starts 16	-bit Timer1					
	0 = Stops 16	-bit limer1					
DIT 14		ted: Read as ')' Aada hit				
DIE 13	1 = Discontinu	ues module on	noue bil aration when c	levice enters ld	lle mode		
	0 = Continues	s module opera	tion in Idle mo	ide	ne mode		
bit 12-10	Unimplemen	ted: Read as ')'				
bit 9-8	T1ECS<1:0>	: Timer1 Extend	led Clock Sele	ect bits ⁽¹⁾			
	11 = Reserve	ed; do not use					
	10 = Timer1	uses the LPRC	as the clock s				
	00 = Timer1 u	uses the Secon	dary Oscillato	r (SOSC) as the	e clock source		
bit 7	Unimplemen	ted: Read as 'd)'	、 ,			
bit 6	TGATE: Time	er1 Gated Time	Accumulation	Enable bit			
	When TCS =	<u>1:</u>					
	This bit is ign	ored.					
	$\frac{When ICS =}{1 = Gated tin}$	<u>0:</u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulation	n is disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2	TSYNC: Time	er1 External Clo	ock Input Sync	hronization Sel	lect bit		
	When TCS =	<u>1:</u>					
	1 = Synchro	nizes external o t synchronize e	clock input Internal clock i	nput			
	0 = Does not synchronize external clock inputWhen TCS = 0:						
	This bit is igno	ored.					
bit 1	TCS: Timer1	Clock Source S	Select bit				
	1 = Timer1 cl	lock source is s	elected by T1	ECS<1:0>			
L:1 C	0 = Internal c	clock (Fosc/2)	.,				
U JIQ	Unimplemen	ted: Read as ')				
Note 1: ⊤	he T1ECSx bits	are valid only w	vhen TCS = 1				

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 bit 13	Unimplemented: Read as '0' OCSIDL: Output Compare x Stop in Idle Mode Control bit 1 = Output Compare x halts in CPU Idle mode 0 = Output Compare x continues to operate in CPU Idle mode
bit 12-10	OCTSEL<2:0>: Output Compare x Timer Select bits 111 = System clock 110 = Reserved 101 = Reserved 100 = Timer1 011 = Timer5 010 = Timer4 001 = Timer3 000 = Timer2
bit 9	ENFLT2: Comparator Fault Input Enable bit 1 = Comparator Fault input is enabled 0 = Comparator Fault input is disabled
bit 8	ENFLT1: OCFB Fault Input Enable bit 1 = OCFB Fault input is enabled 0 = OCFB Fault input is disabled
bit 7	ENFLT0: OCFA Fault Input Enable bit 1 = OCFA Fault input is enabled 0 = OCFA Fault input is disabled
bit 6	 OCFLT2: PWM Comparator Fault Condition Status bit 1 = PWM comparator Fault condition has occurred (this is cleared in hardware only) 0 = PWM comparator Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 5	 OCFLT1: PWM OCFB Fault Input Enable bit 1 = PWM OCFB Fault condition has occurred (this is cleared in hardware only) 0 = PWM OCFB Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 4	 OCFLT0: PWM OCFA Fault Condition Status bit 1 = PWM OCFA Fault condition has occurred (this is cleared in hardware only) 0 = PWM OCFA Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
bit 3	TRIGMODE: Trigger Status Mode Select bit 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software 0 = TRIGSTAT is only cleared by software

Note 1: The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT		_	—	BCL	GCSTAT	ADD10		
bit 15							bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF		
bit 7							bit 0		
Legend:		C = Clearab	le bit	HS = Hardware	e Settable bit	HSC = Hardware S	ettable/Clearable bit		
R = Readab	ole bit	W = Writable	e bit	U = Unimplem	ented bit, read	as '0'			
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is clear	red	x = Bit is unknown			
bit 15	ACKSTAT:	Acknowledg	e Status bit						
	1 = NACK	was detected	l last						
	Hardware i	s set or clear	asi at the end of	Acknowledge.					
bit 14	TRSTAT: ⊺	ransmit Statu	ıs bit	U					
	(when oper	rating as I ² C	master; appli	cable to master	transmit oper	ation)			
	1 = Master	transmit is in	n progress (8	bits + ACK)					
	0 = Master Hardware is	transmit is n	ot in progress ainning of the r	s master transmis	sion [.] hardware	is clear at the end of	slave Acknowledge		
hit 13-11	Unimplem	ented: Read	as '0'		olon, naraware		olave / loki lowiedge.		
bit 10	BCL: Mast	er Bus Collis	ion Detect bit						
	1 = A bus c	collision has l	been detected	d during a mast	er operation				
	0 = No colli	ision		U U					
	Hardware i	s set at the d	etection of a	bus collision.					
bit 9	GCSTAT: 0	General Call	Status bit						
	1 = Genera	al call addres	s was receive s was not rec	eived					
	Hardware i	s set when a	n address ma	atches the gene	ral call addres	s; hardware is clea	r at Stop detection.		
bit 8	ADD10: 10	-Bit Address	Status bit						
	1 = 10-bit a	address was	matched						
	0 = 10-bit a	address was	not matched	uto of the motor	od 10 bit oddr	aa: hardwara ia ala	ar at Stan datastian		
hit 7		Cy Mrite Coll	lision Dotoct k	iyte of the match		ess, hardware is cie	ar at Stop detection.		
	1 = An atte	mot to write t	to the I2CxTR	N register faile	d because the	I ² C module is busy	N/		
	0 = No colli	ision		and register faile			,		
	Hardware i	s set at an o	ccurrence of a	a write to I2CxT	RN while busy	(cleared by softwa	are).		
bit 6	I2COV: I2Cx Receive Overflow Flag bit								
	1 = A byte was received while the I2CxRCV register is still holding the previous byte								
	Hardware i	s set at an at	tempt to trans	sfer I2CxRSR to	o I2CxRCV (cl	eared by software).			
bit 5	D/A: Data//	Address bit (when operatir	ng as I ² C slave)	,			
	1 = Indicate	es that the la	st byte receiv	ed was data					
	0 = Indicate	es that the la	st byte receiv	ed was the dev	ice address				
	Hardware is slave byte.	s clear at a d	levice addres	s match; hardw	are is set by a	write to I2CxTRN	or by reception of a		

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	 1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last
	Hardware is set or cleared when a Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	 Read – indicates data transfer is output from the slave
	0 = Write – indicates data transfer is input to the slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive is complete, I2CxRCV is full 0 = Receive is not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with a received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty

Hardware is set when the software writes to I2CxTRN; hardware is clear at the completion of data transmission.

19.2.6 ALRMVAL REGISTER MAPPINGS

REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0				
bit 15		•			•	•	bit 8				
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0				
bit 7			•	•			bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 15-13	Unimplement	ed: Read as '0'	,								
bit 12	MTHTEN0: B	inary Coded De	ecimal Value of	Month's Tens	Digit bit						
	Contains a value of '0' or '1'.										
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits										
	Contains a va	lue from 0 to 9			0						
bit 7-6	Unimplemen	ted: Read as '	o '								

bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 bit 10-8	Unimplemented: Read as '0' WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL		—	MODE12	FORM1	FORM0
bit 15							bit 8
				11.0			
R/W-U	R/W-U		R/W-U	0-0	R/VV-U	R/W-U, HSC	R/C-0, HSC
bit 7	33RU2	SSRUT	33RC0		ASAM	SAIVIP	DOINE bit 0
							Dit 0
Legend:		C = Clearable	bit	U = Unimplem	nented bit, read	l as 'O'	
R = Readable	bit	W = Writable b	it	HSC = Hardw	are Settable/C	learable bit	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	ADON: A/D C 1 = A/D Conv 0 = A/D Conv	perating Mode verter module is verter is off	bit operating				
bit 14	Unimplement	ted: Read as '0	,				
bit 13	ADSIDL: A/D	Stop in Idle Mo	de bit				
	1 = Discontin 0 = Continue	ues module opera	eration when c	levice enters Id	lle mode		
bit 12-11		ted: Read as '0	,				
bit 10	MODE12: 12-	Bit Operation N	lode bit				
	1 = 12-bit A/E 0 = 10-bit A/E) operation) operation					
bit 9-8	FORM<1:0>:	Data Output Fo	rmat bits (see	the following for	ormats)		
	11 = Fractiona 10 = Absolute 01 = Decimal 00 = Absolute	al result, signed fractional resu result, signed, r decimal result,	, left-justified It, unsigned, le ight-justified unsigned, rig	eft-justified ht-justified			
bit 7-4	SSRC<3:0>: 3	Sample Clock S	ource Select	bits			
	1111 = Not av	/ailable; do not	use				
	•						
	• 1000 = Not av 0111 = Intern 0110 = Not av	/ailable; do not al counter ends /ailable; do not	use sampling and use	starts convers	ion (auto-conv	ert)	
	0101 = Timer 0100 = CTML 0011 = Timer	1 event ends sa J event ends sa 5 event ends sa 3 event ends sa	Impling and st mpling and st Impling and st Impling and st	arts conversion arts conversion arts conversion arts conversion			
	0001 = INT0 0 0000 = Cleari	event ends sam ng the SAMP b	pling and star it in software e	ts conversion ends sampling a	and begins cor	iversion	
bit 3	Unimplement	ted: Read as '0	,				
bit 2	ASAM: A/D S	ample Auto-Sta	rt bit				
	1 = Sampling 0 = Sampling	begins immedi begins when th	ately after the ie SAMP bit is	last conversior manually set	n; SAMP bit is a	auto-set	
bit 1	SAMP: A/D S	ample Enable b	it				
	1 = A/D Sam 0 = A/D Sam	ple-and-Hold ar ple-and-Hold ar	nplifiers are sa nplifiers are he	ampling olding			
bit 0	DONE: A/D C	onversion Statu	s bit				
	1 = A/D conve0 = A/D conve	ersion cycle has ersion cycle has	s completed s not started o	r is in progress			

REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1

REGISTER 24-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	_		_		—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0
bit 7							bit 0
							
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplemen	ted: Read as ')'				
bit 7	CVREN: Com	parator Voltage	e Reference E	nable bit			
	1 = CVREF ci	rcuit is powere	don				
	0 = CVREF CI	rcuit is powere	d down				
bit 6	CVROE: Com	parator VREF (Dutput Enable	bit			
	1 = CVREF VC	oltage level is o	utput on the C	VREF pin	oin		
hit 5			Source Selectic	on hit	JIII		
DIL D		tor reference s					
	0 = Compara	tor reference s	ource, CVRSRC	c = AVDD - AV	KEF- /SS		
bit 4-0	CVR<4:0>: C	omparator VRE	F Value Select	ion $0 \le CVR < 4$:0> ≤ 31 bits		
	When CVRSS	<u>S = 1:</u>					
	CVREF = (VRE	:F-) + (CVR<4:0)>/32) • (VREF+	+ – Vref-)			
	When CVRSS	S = 0:					
	CVREF = (AVS	ss) + (CVR<4:0	>/32) • (AVDD ·	– AVSS)			

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1
—		—	—	—	—	GSS0	GWRP
bit 7			•				bit 0
Legend:							
R = Readable	bit	C = Clearable	e bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit		x = Bit is unkr	nown				

bit 7-2	Unimplemented: Read as '0'
bit 1	GSS0: General Segment Code Flash Code Protection bit
	1 = No protection0 = Standard security is enabled
bit 0	GWRP: General Segment Code Flash Write Protection bit
	 1 = General segment may be written 0 = General segment is write-protected

REGISTER 26-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER

REGISTER 26-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
IESO	LPRCSEL	SOSCSRC	—	—	FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:							
R = Readable bit		P = Programmable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 7	IESO: Interna	I External Switchover bit					
	 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) 						
bit 6	 LPRCSEL: Internal LPRC Oscillator Power Select bit 1 = High-Power/High-Accuracy mode 0 = Low-Power/Low-Accuracy mode 						
bit 5	SOSCSRC: Secondary Oscillator Clock Source Configuration bit						
	 1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins 0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin 						
bit 4-3	Unimplement	ted: Read as '0'					
bit 2-0	FNOSC<2:0>	: Oscillator Selection bits					
	000 = Fast R 001 = Fast R	C Oscillator (FRC) C Oscillator with Divide-by-N	with PLL module (FRCDIV+PI	LL)			

- 010 = Primary Oscillator (XT, HS, EC)
- 011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
- 100 = Secondary Oscillator (SOSC)
- 101 = Low-Power RC Oscillator (LPRC)
- 110 = 500 kHz Low-Power FRC Oscillator with Divide-by-N (LPFRCDIV)
- 111 = 8 MHz FRC Oscillator with Divide-by-N (FRCDIV)

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C[®] for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

FIGURE 29-8: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT TIMING

TABLE 29-27: TIMER1/2/3/4/5 EXTERNAL CLOCK INPUT REQUIREMENTS

Param. No.	Symbol	Chara	Min	Max	Units	Conditions	
	TtH	TxCK High Pulse Time	Sync w/Prescaler	Tcy + 20		ns	Must also meet
			Async w/Prescaler	10	_	ns	Parameter Ttp
			Async Counter	20	_	ns	
	TtL	TxCK Low Pulse Time	Sync w/Prescaler	Tcy + 20	_	ns	Must also meet Parameter Ttp
			Async w/Prescaler	10	_	ns	
			Async Counter	20	_	ns	
	TtP	TxCK External Input Period	Sync w/Prescaler	2 * Tcy + 40	_	ns	N = Prescale Value (1, 4, 8, 16)
			Async w/Prescaler	Greater of: 20 or <u>2 * Tcy + 40</u> N	—	ns	
			Async Counter	40	_	ns	
		Delay for Input Edge	Synchronous	1	2	TCY	
		to Timer Increment	Asynchronous	_	20	ns	

FIGURE 29-9: INPUT CAPTURE x TIMINGS

TABLE 29-28: INPUT CAPTURE x REQUIREMENTS

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
	Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC11	ТссН	ICx Input Low Time –	No Prescaler	Tcy + 20	—	ns	Must also meet
	Synchronous Timer	With Prescaler	20	—	ns	Parameter IC15	
IC15	TccP	ICx Input Period – Synchronous Timer		<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

FIGURE 30-19: TYPICAL AlwDT vs. VDD

FIGURE 30-25: TYPICAL VOH vs. IOH (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE, $2.0V \le VDD \le 5.5V$)

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX	
Number of Pins	Ν	20			
Pitch	е	0.65 BSC			
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	с	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	_	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12