

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka302t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24FV32KA304 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are different from each other in four ways:

- Flash program memory (16 Kbytes for PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
- Available I/O pins and ports (18 pins on two ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
- 4. Members of the PIC24FV32KA301 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV32KA304), accommodate an operating VDD range of 2.0V to 5.5V, and have an on-board Voltage Regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by "F" (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.

Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing						
	will concatenate the SRL register to the						
	MSB of the PC prior to the push.						

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6 in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

Table 4-27 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, the P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a data space word.

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the System Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Tost	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	TLOCK	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_		None

TABLE 7-3: DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer (PWRT) is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC oscillator start-up times.
- **4:** TLOCK = PLL lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- **6:** If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".

	00. 104.		I LAO OIAI				
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
	_	CTMUIF	_				HLVDIF
bit 15	·						bit 8
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
	—	—	_	CRCIF	U2ERIF	U1ERIF	—
bit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	CTMUIF: CTI	MU Interrupt Fla	ag Status bit				
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 12-9	Unimplemen	ted: Read as ')'				
bit 8	HLVDIF: High	n/Low-Voltage [Detect Interrup	t Flag Status bi	t		
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 7-4	Unimplemen	ted: Read as ')'				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred occurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit			
	1 = Interrupt i 0 = Interrupt i	request has occ request has not	curred				
bit 0	Unimplemen	ted: Read as ')'				
	•						

REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

REGISTER 8-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4											
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0				
_	—	CTMUIE	_	—	_	—	HLVDIE				
bit 15							bit 8				
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0				
_	<u> </u>	—	_	CRCIE	U2ERIE	U1ERIE					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15-14	Unimplemen	ted: Read as '0	3								
bit 13	CTMUIE: CT	MU Interrupt En	able bit								
	1 = Interrupt	request is enable request is not er	ed nabled								
bit 12-9	Unimplemen	ted: Read as '0	,								
bit 8	HLVDIE: High	h/Low-Voltage D	etect Interrup	t Enable bit							
	1 = Interrupt	request is enable request is not er	ed nabled								
bit 7-4	Unimplemen	ted: Read as '0	3								
bit 3	CRCIE: CRC	Generator Inter	rupt Enable b	it							
	1 = Interrupt	request is enable	ed								
	0 = Interrupt i	request is not er	abled								
bit 2	U2ERIE: UAR	RT2 Error Interru	ipt Enable bit								
	1 = Interrupt	1 = Interrupt request is enabled									
hit 1		2T1 Error Interri	iauieu int Enable bit								
Dit 1		request is enable	≏d								
	0 = Interrupt	request is not er	abled								
bit 0	Unimplemen	ted: Read as '0	,								

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—	—	_	_	_	_	
bit 15		•	•				bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-6 bit 5-0	5-6 Unimplemented: Read as '0' 0 TUN<5:0>: FRC Oscillator Tuning bits ⁽¹⁾ 011111 = Maximum frequency deviation 011110							

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV32KA304 series devices have a Voltage Regulator that has the ability to alter functionality to provide power savings. The on-board regulator is made up of two basic modules: the Voltage Regulator (VREG) and the Retention Regulator (RETREG). With the combination of VREG and RETREG, the following power modes are available:

10.4.1 RUN MODE

In Run mode, the main VREG is providing a regulated voltage with enough current to supply a device running at full speed, and the device is not in Sleep or Deep Sleep Mode. The Retention Regulator may or may not be running, but is unused.

10.4.2 SLEEP (STANDBY) MODE

In Sleep mode, the device is in Sleep and the main VREG is providing a regulated voltage at a reduced (standby) supply current. This mode provides for limited functionality due to the reduced supply current. It requires a longer time to wake-up from Sleep.

10.4.3 RETENTION SLEEP MODE

In Retention Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the Retention Regulator. Consequently, this mode has lower power consumption than regular Sleep mode, but is also limited in terms of how much functionality can be enabled. Retention Sleep wake-up time is longer than Sleep mode due to the extra time required to raise the VCORE supply rail back to normal regulated levels.

Note: PIC24F32KA30X family devices do not use an On-Chip Voltage Regulator, so they do not support Retention Sleep mode.

10.4.4 DEEP SLEEP MODE

In Deep Sleep mode, both the main Voltage Regulator and Retention Regulator are shut down, providing the lowest possible device power consumption. However, this mode provides no retention or functionality of the device and has the longest wake-up time.

		VICES		
RETCGF Bit (FPOR<2>)	RETEN Bit (RCON<12>	PMSLP Bit (RCON<8>)	Power Mode During Sleep	Description
0	0	1	Sleep	VREG mode (normal) is unchanged during Sleep. RETREG is unused.
0	0	0	Sleep (Standby)	VREG goes to Low-Power Standby mode during Sleep. RETREG is unused.
0	1	0	Retention Sleep	VREG is off during Sleep. RETREG is enabled and provides Sleep voltage regulation.
1	х	1	Sleep	VREG mode (normal) is unchanged during Sleep. RETREG is disabled at all times.
1	х	0	Sleep (Standby)	VREG goes to Low-Power Standby mode during Sleep. RETREG is disabled at all times

TABLE 10-1:VOLTAGE REGULATION CONFIGURATION SETTINGS FOR PIC24FV32KA304
FAMILY DEVICES

11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the "PIC24F Family Reference Manual", Section 12. "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). Note that the PIC24FV32KA304 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and VSS) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LAT), read the latch. Writes to the latch, write the latch. Reads from the port (PORT), read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

Note: The I/O pins retain their state during Deep Sleep. They will retain this state at wake-up until the software restore bit (RELEASE) is cleared.

14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 34. "Input Capture with Dedicated Timer" (DS39722).

All devices in the PIC24FV32KA304 family feature three independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events, and generating interrupts.

Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 20 user-selectable Sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the input capture module operates in a Free-Running mode. The internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSELx bits to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).

	-		-				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	2 CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
P/M/-0	P/M/-0		P/M/-0				P///_0
CHONA:	CH0NA1	CHONA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7			01100/11	01100/10	01100/12	01100/11	bit 0
Legend:							
R = Reada	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-13	CH0NB<2:0> 111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0 000 = AVss	: Sample B Ch	annel 0 Negati	ve Input Select	bits	0-11-2	
bit 12-8 CH0SB<4:0>: S/H Amplifier Positive Input Select for MUX B Multiplexer Setting bits 11111 = Unimplemented, do not use 11110 = AVDD 11101 = AVSS 11100 = Upper guardband rail (0.785 * VDD) 11011 = Lower guardband rail (0.215 * VDD) 11010 = Internal Band Gap Reference (VBG) ⁽³⁾ 11001-10010 = Unimplemented, do not use 10001 = No channels are connected, all inputs are floating (used for CTMU) 10000 = No channels are connected, all inputs are floating (used for CTMU temperature sensor input) 01111 = AN15 01100 = AN14 01101 = AN13 01100 = AN14 01010 = AN11 01010 = AN11 01010 = AN11 01010 = AN11 01010 = AN3 00100 = AN8 ⁽¹⁾ 00111 = AN5 ⁽²⁾ 00100 = AN4 00011 = AN3 00010 = AN3 00010 = AN2 00001 = AN12 00001 = AN12 00001 = AN13 00000 = AN4 00011 = AN3 00000 = AN4 000000 = AN4 000000000000000000000000000000000000							
bit 7-5	CH0NA<2:0> The same def	: Sample A Cha finitions as for C	annel 0 Negati CHONB<2:0>.	ve Input Select	bits		
bit 4-0	CH0SA<4:0> The same def	: Sample A Cha finitions as for C	annel 0 Positiv CHONA<4:0>.	e Input Select b	oits		
Note 1: 2:	This is implement This is implement	ed on 44-pin de ed on 28-pin ar	evices only. 1d 44-pin devid	ces only.			

REGISTER 22-5: AD1CHS: A/D SAMPLE SELECT REGISTER

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	or this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).

The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR x MODULE BLOCK DIAGRAM

REGISTER 26-6: FPOR: RESET CONFIGURATION REGISTER								
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
MCLRE ⁽²⁾	BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	RETCFG ⁽¹⁾	BOREN1	BOREN0	
bit 7							bit 0	
Legend:								
R = Reada	able bit	P = Programr	nable bit	U = Unimplen	nented bit, read	as '0'		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
hit 7		 R Pin Enable b	_{it} (2)					
bit i	$1 = \overline{\text{MCLR}}$ pin	is enabled: RA	5 input pin is d	isabled				
	0 = RA5 input	pin is enabled;	MCLR is disab	led				
bit 6-5	BORV<1:0>:	Brown-out Rese	et Enable bits ⁽³)				
	11 = Brown-o u	ut Reset is set t	o the lowest vo	ltage				
	10 = Brown-ou	ut Reset	a tha high act					
	01 = Brown-or	e protection on	POR is enable	d – "zero powe	r" is selected			
bit 4	I2C1SEL: Alte	ernate I2C1 Pin	Mapping bit ⁽¹⁾	p				
	1 = Default loc	cation for SCL1	SDA1 pins					
	0 = Alternate I	ocation for SCL	1/SDA1 pins					
bit 3	PWRTEN: Po	wer-up Timer E	nable bit					
	1 = PWRT is e	enabled						
		lisabled		(1)				
bit 2	REICFG: Ret	ention Regulate	or Configuration	h bit ⁽¹⁾				
	1 = Retention	Regulator is no	ailable and cor	trolled by the F	RETEN bit (RCC	N<12>) durina	Sleen	
bit 1-0	BOREN<1:0>	: Brown-out Re	set Enable bits			, aag	ciccp	
	11 = Brown-ou	ut Reset is enal	oled in hardwar	e; SBOREN bi	t is disabled			
	10 = Brown-ou	it Reset is enab	led only while d	levice is active a	and disabled in S	Sleep; SBOREN	I bit is disabled	
	01 = Brown-ou	ut Reset is cont	rolled with the	SBOREN bit se	etting			
	00 = Brown-o l	ut Reset is disa	bled in nardwa	re; SBOREN DI	t is disabled			
Note 1:	This setting only devices.	applies to the	"FV" devices. ∃	This bit is reser	ved and should	be maintained a	as '1' on "F"	
2:	The MCLRE fus	e can only be c	hanged when	using the VPP-b	ased ICSP™ m	node entry. This	prevents a	
-	user from accide	entally locking o	out the device f	rom the low-vo	tage test entry.			
3:	Refer to Section	n 29.0 "Electri	cal Characteri	stics" for BOR	voltages.			

REGISTER	26-8: FDS:	DEEP SLEE	P CONFIGUR	RATION REG	ISTER		
R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
DSWDTEN	DSBOREN	—	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0
bit 7							bit 0
Legend:							
R = Readabl	e bit	P = Programn	nable bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	DSWDTEN: De	eep Sleep Wat	chdog Timer Er	nable bit			
	1 = DSWDT is	enabled					
	0 = DSWDT is	disabled					
bit 6	DSBOREN: De	ep Sleep/Low-	Power BOR En	able bit			
	(does not affect	operation in n	on Deep Sleep	modes)			
	1 = Deep Sleep	b BOR is enabl	led in Deep Sle	ep			
	0 = Deep Sleep		ied in Deep Sie	eep			
DIT 5	Unimplemente	ed: Read as 10					
bit 4	DSWDTOSC:	DSWDT Refere	ence Clock Sel	ect bit			
	1 = DSWDT us	es LPRC as th	le reference clo	ock			
hit 2 0				UCK Dootooolo	Coloct bito		
DIL 3-0		v>: Deep Sleep	this creates an		Select Dits	f 1 mo	
	1111 - 1.2 117			approximate L		1 1 1115.	
	1111 = 1.2, 147 1110 = 1.536.8	,483,648 (25.7 70 912 (6 4 da	r days) nominal avs) nominal	1			
	1101 = 1:134,2	217,728 (38.5 h	nours) nominal				
	1100 = 1:33,55	54,432 (9.6 hou	urs) nominal				
	1011 = 1:8,388	3,608 (2.4 hour	s) nominal				
	1010 = 1:2,097	7,152 (36 minu	tes) nominal				
	1001 = 1:524,2	288 (9 minutes)) nominal				
	1000 = 1.131,0 0111 = 1.3276	372 (135 seconds)	a) nominal				
	0110 = 1:8.192	2 (8.5 seconds)) nominal				
	0101 = 1:2,048	3 (2.1 seconds)) nominal				
	0100 = 1:512 (528 ms) nomir	nal				
	0011 = 1:128 (132 ms) nomir	nal				
	0010 = 1:32(3)	3 ms) nominal					
	0001 = 1.8 (8.3)	nominal					
	0000 - 1.2 (2.	i ins) nominal					

26.2 On-Chip Voltage Regulator

All of the PIC24FV32KA304 family devices power their core digital logic at a nominal 3.0V. This may create an issue for designs that are required to operate at a higher typical voltage, as high as 5.0V. To simplify system design, all devices in the "FV" family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is always enabled and provides power to the core from the other VDD pins. A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is discussed in Section 2.4 "Voltage Regulator Pin (VCAP)", and in Section 29.1 "DC Characteristics".

For "F" devices, the regulator is disabled. Instead, core logic is powered directly from VDD. This allows the devices to operate at an overall lower allowable voltage range (1.8V-3.6V).

26.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

For all PIC24FV32KA304 devices, the on-chip regulator provides a constant voltage of 3.2V nominal to the digital core logic. The regulator can provide this level from a VDD of about 3.2V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 3.2V. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 150 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, High/Low-Voltage Detect (HLVD) circuit. When VDD drops below full-speed operating voltage, the circuit sets the High/Low-Voltage Detect Interrupt Flag, HLVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown. Maximum device speeds as a function of VDD are shown in **Section 29.1 "DC Characteristics"**, in Figure 29-1 and Figure 29-1.

26.2.2 ON-CHIP REGULATOR AND POR

For PIC24FV32KA304 devices, it takes a brief time, designated as TPM, for the Voltage Regulator to generate a stable output. During this time, code execution is disabled. TPM (DC Specification SY71) is applied every time the device resumes operation after any power-down, including Sleep mode.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.3 Watchdog Timer (WDT)

For the PIC24FV32KA304 family of devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranging from 1 ms to 131 seconds, can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

NOTES:

TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)												
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments					
DVR10	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V						
DVR11	Tbg	Band Gap Reference Start-up Time		1		ms						
DVR20	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V	-40°C < TA < +85°C					
			3.0	3.19	3.6	V	-40°C < TA < +125°C					
DVR21	CEFC	External Filter Capacitor Value	4.7	10		μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.					
DVR30	Vlvr	Retention Regulator Output Voltage	_	2.6	_	V						

TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions		
DCT10	Ιουτ1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<9:8> = 01			
DCT11	IOUT2	CTMU Current Source, 10x Range	_	5.5	—	μA	CTMUICON<9:8> = 10			
DCT12	Ιουτ3	CTMU Current Source, 100x Range	_	55	_	μA	CTMUICON<9:8> = 11			
DCT13	IOUT4	CTMU Current Source, 1000x Range	_	550	_	μA	CTMUICON<9:8> = 00 (Note 2)			
DCT20	VF	Temperature Diode Forward Voltage	—	.76	_	V				
DCT21	VΔ	Voltage Change per Degree Celsius	—	1.6	—	mV/°C				

Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000). On PIC24F32KA parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

FIGURE 30-13: LPRC FREQUENCY ACCURACY vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

FIGURE 30-34: TYPICAL VOLTAGE REGULATOR OUTPUT vs. VDD

FIGURE 30-35: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE

NOTES: