

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	23
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka302t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

1.2 Other Special Features

- Communications: The PIC24FV32KA304 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.

1.3 Details on Individual Family Members

Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are different from each other in four ways:

- Flash program memory (16 Kbytes for PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
- Available I/O pins and ports (18 pins on two ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
- 4. Members of the PIC24FV32KA301 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV32KA304), accommodate an operating VDD range of 2.0V to 5.5V, and have an on-board Voltage Regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by "F" (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.

Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

			F					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
RC0	—	_	_	25	27	_	—	_	25	27	I/O	ST	PORTC Pins
RC1	_	_	_	26	28	_	_	_	26	28	I/O	ST	
RC2	_	_	_	27	29	_	_	_	27	29	I/O	ST	
RC3	_	_		36	39		_		36	39	I/O	ST	
RC4	_	_	_	37	40	_	_	_	37	40	I/O	ST	
RC5	_	_	_	38	41	_	_	_	38	41	I/O	ST	
RC6	_	_	_	2	2	_	_	_	2	2	I/O	ST	
RC7	_	_	_	3	3	_	_	_	3	3	I/O	ST	
RC8	_	_	_	4	4	_	_	_	4	4	I/O	ST	
RC9	_	_	_	5	5	_	_	_	5	5	I/O	ST	
REFO	18	26	23	15	16	18	26	23	15	16	0	_	Reference Clock Output
RTCC	17	25	22	14	15	17	25	22	14	15	0	_	Real-Time Clock/Calendar Output
SCK1	15	22	19	9	10	15	22	19	9	10	I/O	ST	SPI1 Serial Input/Output Clock
SCK2	2	14	11	38	41	2	14	11	38	41	I/O	ST	SPI2 Serial Input/Output Clock
SCL1	12	17	14	44	48	12	17	14	44	48	I/O	l ² C	I2C1 Clock Input/Output
SCL2	18	7	4	24	26	18	7	4	24	26	I/O	l ² C	I2C2 Clock Input/Output
SCLKI	10	12	9	34	37	10	12	9	34	37	Ι	ST	Digital Secondary Clock Input
SDA1	13	18	15	1	1	13	18	15	1	1	I/O	l ² C	I2C1 Data Input/Output
SDA2	6	6	3	23	25	6	6	3	23	25	I/O	l ² C	I2C2 Data Input/Output
SDI1	17	21	18	8	9	17	21	18	8	9	Ι	ST	SPI1 Serial Data Input
SDI2	4	19	16	36	39	4	19	16	36	39	I	ST	SPI2 Serial Data Input
SDO1	16	24	21	11	12	16	24	21	11	12	0	_	SPI1 Serial Data Output
SDO2	3	15	12	37	40	3	15	12	37	40	0	—	SPI2 Serial Data Output
SOSCI	9	11	8	33	36	9	11	8	33	36	I	ANA	Secondary Oscillator Input
SOSCO	10	12	9	34	37	10	12	9	34	37	0	ANA	Secondary Oscillator Output
SS1	18	26	23	15	16	18	26	23	15	16	0	_	SPI1 Slave Select
SS2	15	23	20	35	38	15	23	20	35	38	0	_	SPI2 Slave Select

3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

TABLE 4-24: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽¹⁾
NVMCON	0760	WR	WREN	WRERR	PGMONLY	_	_	—	_	_	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0000
NVMKEY	0766	—	—	_		_	_	—	_				NVMK	KEY				0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-25: ULTRA LOW-POWER WAKE-UP REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN	-	ULPSIDL	_	_	—	_	ULPSINK	_	_	_	—	_	_	—	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	_	ADC1MD	0000
PMD2	0772			_	_		IC3MD	IC2MD	IC1MD	_	_	_	_	_	OC3MD	OC2MD	OC1MD	0000
PMD3	0774			_	_		CMPMD	RTCCMD	_	CRCPMD	_	_	_	_	_	I2C2MD	_	0000
PMD4	0776	_	—	_	_	_			-	ULPWUMD	—	-	EEMD	REFOMD	CTMUMD	HLVDMD		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

7.0 RESETS

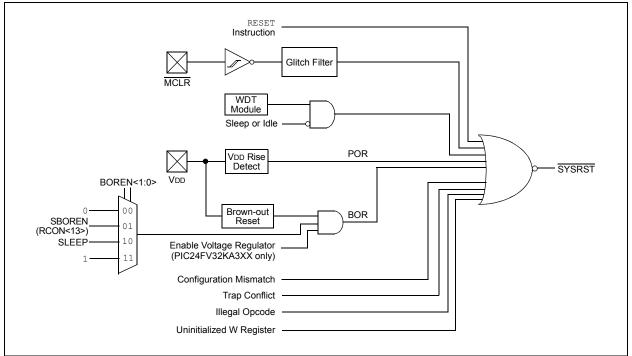
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "PIC24F Family Reference Manual", Section 40. "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- Low-Power BOR/Deep Sleep BOR
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM

REGISTER 8	B-11: IEC0:	INTERRUP	FENABLE C	ONTROL REC	GISTER 0		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NVMIE	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set	t	'0' = Bit is clea		x = Bit is unkn	own
bit 15	NVMIE: NVM	Interrupt Enal	ole bit				
		request is enat request is not e					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	AD1IE: A/D C	Conversion Co	mplete Interrup	ot Enable bit			
		request is enab request is not e					
bit 12	•	•	r Interrupt Ena	ble bit			
	1 = Interrupt r	request is enat request is not e	bled				
bit 11	•	•	nterrupt Enable	e bit			
	1 = Interrupt r	request is enal	bled				
bit 10	-	-	plete Interrupt	Enable bit			
	1 = Interrupt r	request is enal	bled				
bit 9	-	Fault Interrup					
	1 = Interrupt r	request is enal	bled				
bit 8	-	Interrupt Enab					
bit o	1 = Interrupt r	request is enal	bled				
bit 7		Interrupt Enab					
bit /	1 = Interrupt r	request is enal	bled				
bit 6	•	•	nannel 2 Interru	int Enable hit			
bit 0		request is enat					
		request is not e					
bit 5	•	•	el 2 Interrupt E	Enable bit			
	1 = Interrupt r	equest is enab	bled				
	•	request is not e					
bit 4	-	ted: Read as '					
bit 3		Interrupt Enab					
		request is enat request is not e					
bit 2	OC1IE: Output	ut Compare Ch	nannel 1 Interru	upt Enable bit			
	1 = Interrupt r	equest is enat	bled	-			

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

R-0 U-0 R/W-0 U-0 R-0 R-0 R-0 R-0 **CPUIRQ** VHOLD ILR3 ILR2 ILR1 ILR0 bit 15 bit 8 U-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 VECNUM6 VECNUM5 VECNUM4 **VECNUM3** VECNUM2 **VECNUM0** VECNUM1 bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 CPUIRQ: Interrupt Request from Interrupt Controller CPU bit 1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU (this will happen when the CPU priority is higher than the interrupt priority) 0 = No interrupt request is left unacknowledged bit 14 Unimplemented: Read as '0' bit 13 VHOLD: Vector Hold bit Allows Vector Number Capture and Changes which Interrupt is Stored in the VECNUM bit: 1 = VECNUM will contain the value of the highest priority pending interrupt, instead of the current interrupt 0 = VECNUM will contain the value of the last Acknowledged interrupt (last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending) bit 12 Unimplemented: Read as '0' bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits 1111 = CPU Interrupt Priority Level is 15 0001 = CPU Interrupt Priority Level is 1 0000 = CPU Interrupt Priority Level is 0 bit 7 Unimplemented: Read as '0' bit 6-0 VECNUM<6:0>: Vector Number of Pending Interrupt bits 0111111 = Interrupt vector pending is Number 135 0000001 = Interrupt vector pending is Number 9 0000000 = Interrupt vector pending is Number 8

REGISTER 8-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL				_	_
bit 15		1					bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	_	TCS	—
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	TON: Timerx	On hit					
	When TxCON						
	1 = Starts 32	-bit Timerx/y					
	0 = Stops 32	-					
	<u>When TxCON</u> 1 = Starts 16						
	0 = Stops 16						
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	TSIDL: Timer	x Stop in Idle N	/lode bit				
		ues module op s module opera		evice enters Id de	le mode		
bit 12-7	Unimplemen	ted: Read as '	0'				
bit 6	TGATE: Time	erx Gated Time	Accumulation	Enable bit			
	When TCS =						
	This bit is igno When TCS =						
		<u>o.</u> ne accumulatio	n is enabled				
	0 = Gated tin	ne accumulatio	n is disabled				
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescale	e Select bits			
	11 = 1:256						
	10 = 1:64 01 = 1:8						
	00 = 1:1						
bit 3		mer Mode Sele					
				er5 form a singl er5 act as two 1			
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	TCS: Timerx	Clock Source S	Select bit				
		clock from pin clock (Fosc/2)	, TxCK (on the	rising edge)			
			0'				
bit 0	Unimplemen	ted: Read as '	0				

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

HS = Hardware Settable bit

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legenu.			
R = Read	able bit W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	e at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	FLTMD: Fault Mode Select bit		
	1 = Fault mode is maintained until the	Fault source is removed and	I the corresponding OCFLTx bit is
	cleared in software 0 = Fault mode is maintained until the	Fault source is removed and	a new PWM period starts
bit 14	FLTOUT: Fault Out bit		
	1 = PWM output is driven high on a Fa	ault	
	0 = PWM output is driven low on a Fai	ult	
bit 13	FLTTRIEN: Fault Output State Select b		
	 1 = Pin is forced to an output on a Fau 0 = Pin I/O condition is unaffected by a 		
bit 12	OCINV: Output Compare x Invert bit	a Fault	
	1 = OCx output is inverted		
	0 = OCx output is not inverted		
bit 11	Unimplemented: Read as '0'		
bit 10-9	DCB<1:0>: Output Compare x Pulse-V	Vidth Least Significant bits ⁽³⁾	
	11 = Delays OCx falling edge by $3/4$ of	•	
	10 = Delays OCx falling edge by 1/2 of 01 = Delays OCx falling edge by 1/4 of	-	
	00 = OCx falling edge occurs at the sta	2	
bit 8	OC32: Cascade Two Output Compare	Modules Enable bit (32-bit op	peration)
	1 = Cascade module operation is enal		
h:+ 7	0 = Cascade module operation is disa		
bit 7	OCTRIG: Output Compare x Sync/Trig 1 = Triggers OCx from source designa	-	
	0 = Synchronizes OCx with source designation		its
bit 6	TRIGSTAT: Timer Trigger Status bit		
	1 = Timer source has been triggered a		
	0 = Timer source has not been trigger	-	
bit 5	OCTRIS: Output Compare x Output Pi	n Direction Select bit	
	 1 = OCx pin is tri-stated 0 = Output Compare x peripheral is con 	anected to the OCx nin	
Note 1:	Do not use an output compare module as i equivalent SYNCSELx setting.	ts own trigger source, either t	by selecting this mode or another
2:	Use these inputs as trigger sources only ar	nd never as Sync sources.	
3:	These bits affect the rising edge when OCI	NV = 1. The bits have no effe	ct when the OCMx bits
	(OCxCON1<2:0>) = 001.		

Legend:

REGISTER 16-1:

R/W-0 U-0 R/W-0 U-0 U-0 R-0, HSC R-0, HSC R-0, HSC SPIEN SPIBEC0 SPISIDL SPIBEC2 SPIBEC1 bit 15 bit 8 R-0, HSC R/C-0, HS R/W-0, HSC R/W-0 R/W-0 R/W-0 R-0, HSC R-0, HSC SPIROV SPIRBF SRMPT SRXMPT SISEL2 SISEL1 SISEL0 SPITBF bit 7 bit 0 HS = Hardware Settable bit HSC = Hardware Settable/Clearable bit Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins 0 = Disables module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: SPIx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-11 Unimplemented: Read as '0' bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode) Master mode: Number of SPI transfers pending. Slave mode: Number of SPI transfers unread. bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode) 1 = SPIx Shift register is empty and ready to send or receive 0 = SPIx Shift register is not empty bit 6 SPIROV: SPIx Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded (the user software has not read the previous data in the SPI1BUF register) 0 = No overflow has occurred bit 5 **SRXMPT:** SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty 0 = Receive FIFO is not empty bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode) 111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set) 110 = Interrupt when last bit is shifted into SPIxSR; as a result, the TX FIFO is empty 101 = Interrupt when the last bit is shifted out of SPIxSR; now the transmit is complete 100 = Interrupt when one data byte is shifted into the SPIxSR: as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set) 010 = Interrupt when SPIx receive buffer is 3/4 or more full 001 = Interrupt when data is available in receive buffer (SRMPT bit is set) 000 = Interrupt when the last data in the receive buffer is read; as a result, the buffer is empty (SRXMPT bit is set)

SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

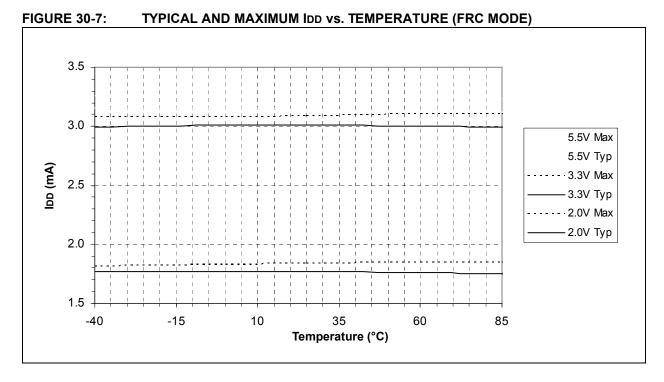
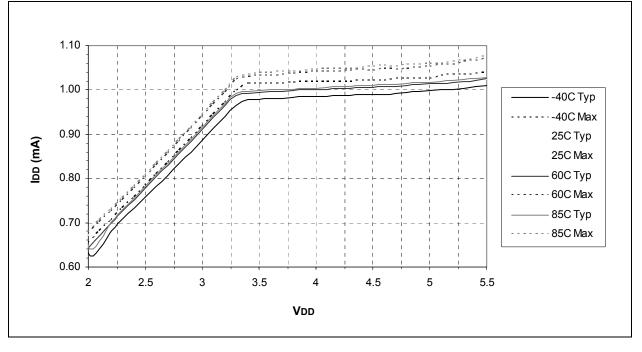
R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	—		—	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF
bit 7							bit C
Legend:		C = Clearabl	e hit	HS = Hardwar	e Settable bit	HSC = Hardware S	Settable/Clearable bit
R = Readat	ole hit	W = Writable		U = Unimplem			
-n = Value a		'1' = Bit is se		'0' = Bit is clear		x = Bit is unknown	
		1 - Dit 13 30					
bit 15	ACKSTAT:	Acknowledge	e Status bit				
		was detected					
		as detected la					
				Acknowledge.			
bit 14		ransmit Statu rating as I ² C I		cable to master	transmit oner	ration)	
		transmit is in			transmit oper		
		transmit is no	· • ·	,			
	Hardware is	s set at the beg	jinning of the r	master transmis	sion; hardware	is clear at the end of	slave Acknowledge
bit 13-11	Unimplem	ented: Read	as '0'				
bit 10	BCL: Mast	er Bus Collisi	on Detect bit				
			een detected	d during a mast	er operation		
	0 = No coll	ision s set at the d	otoption of a	hua colligion			
bit 9		Seneral Call S					
DIL 9		al call address		d			
		al call address					
	Hardware i	s set when a	n address ma	atches the gene	eral call addres	s; hardware is clea	ar at Stop detection.
bit 8	ADD10: 10	-Bit Address	Status bit				
		address was r					
		address was r		uto of the motok	ad 10 bit addr	ana hardwara ia ala	ar at Stop detection
bit 7		Cx Write Coll		•		ess, naioware is cle	ar at Stop detection
DIL 7					d because the	e I ² C module is bus	M
	0 = No coll			in register falle			y
			currence of a	a write to I2CxT	RN while bus	y (cleared by softwa	are).
bit 6	12COV: 12C	Cx Receive O	verflow Flag	bit			
	-		while the I20	CxRCV register	is still holding	the previous byte	
	0 = No ove		lomat to tran			laarad by aaffwara)	
bit 5				ng as I ² C slave		leared by software)	
bit 5		es that the las)		
				ed was data ed was the dev	vice address		
						a write to I2CxTRN	or by reception of a
	slave byte.						

REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0	
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r		ASINT1	ASINT0	
bit 15							bit	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—		WM1	WM0	CM1	CM0	
bit 7							bit	
Legend:		r = Reserved	bit					
R = Readabl	e bit	W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	ASEN: Auto- 1 = Auto-sca 0 = Auto-sca		₍ (1)					
bit 14	LPEN: Low-Power Enable bit 1 = Returns to Low-Power mode after scan 0 = Remains in Full-Power mode after scan							
bit 13	1 = CTMU is	TMU Request b s enabled when s not enabled by	the A/D is ena	abled and active				
bit 12	BGREQ: Band Gap Request bit 1 = Band gap is enabled when the A/D is enabled and active 0 = Band gap is not enabled by the A/D							
bit 11	Reserved: Maintain as '0'							
bit 10	Unimplemented: Read as '0'							
bit 9-8	ASINT<1:0>: Auto-Scan (Threshold Detect) Interrupt Mode bits							
	10 = Interru	pt after a Thresh pt after a valid c pt after a Thresh errupt	ompare has o	ccurred		compare has c	occurred	
bit 7-4	Unimplemer	nted: Read as ')'					
bit 3-2	11 = Reserv 10 = Auto-co match, 01 = Conver when a	Vrite Mode bits ved ompare only (co as defined by th rt and save (cor a match, as defin v operation (con	ne CMx and A oversion result ned by the CM	SINTx bits, occu s are saved to lx bits, occurs)	urs) locations as de	etermined by th	ne register bi	
bit 1-0	CM<1:0>: Compare Mode bits							
	by the of 10 = Inside V corresp 01 = Greate	Window mode corresponding bu Window mode (v ponding buffer pa r Than mode (va egister)	uffer pair) alid match occ ir)	urs if the convers	sion result is ins	side the window	defined by th	
	00 = Less Than mode (valid match occurs if the result is less than the value in the corresponding buffer register)							

Note 1: When using auto-scan with Threshold Detect (ASEN = 1), do not configure the sample clock source to Auto-Convert mode (SSRCx = 7). Any other available SSRCx selection is valid. To use auto-convert as the sample clock source (SSRCx = 7), make sure ASEN is cleared.

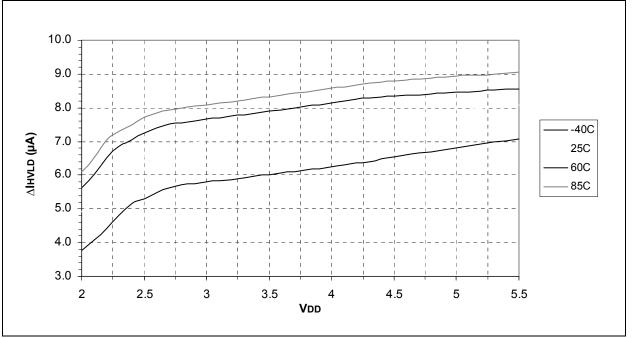


FIGURE 30-8: TYPICAL AND MAXIMUM lidle vs. Vdd (FRC MODE)

NOTES:

31.0 PACKAGING INFORMATION


31.1 Package Marking Information

20-Lead PDIP (300 mil)

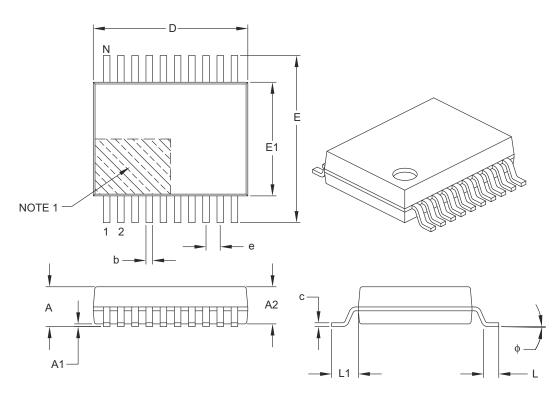
28-Lead SPDIP (.300")

Example

20-Lead SSOP (5.30 mm)

28-Lead SSOP (5.30 mm)

Example


Example

Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator () can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on will be carried over to the next line, thus limiting the number of characters for customer-specific information.	

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

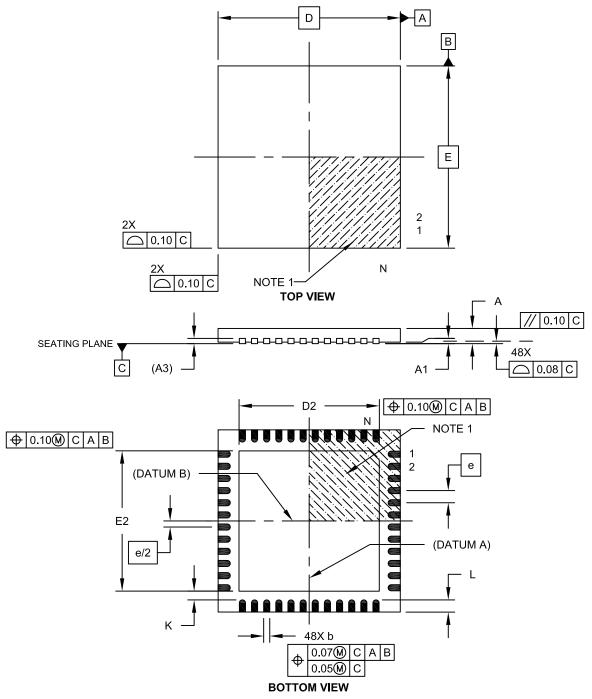
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dimer	Dimension Limits		NOM	MAX
Number of Pins	Ν		20	
Pitch	е	0.65 BSC		
Overall Height	А	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

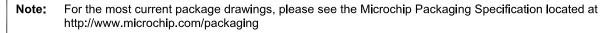
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

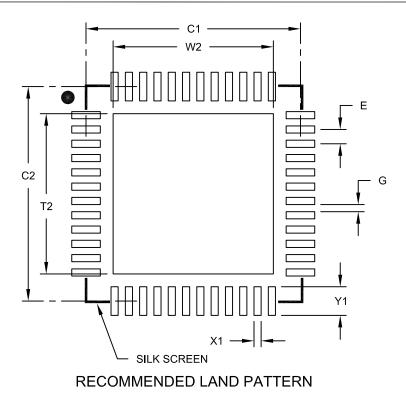
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B


48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-153A Sheet 1 of 2

48-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) - 6x6 mm Body [UQFN] With 0.40 mm Contact Length

	Units		MILLIMETER	S
Dimensio	MIN	NOM	MAX	
Contact Pitch	E 0.40 BSC			
Optional Center Pad Width	W2			4.45
Optional Center Pad Length	T2			4.45
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.20
Contact Pad Length (X28)	Y1			0.80
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2153A