

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka304-i-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see **Section 9.0** "Oscillator Configuration".

TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK
SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the System Reset Signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	TLOCK	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Tost	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	TLOCK	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Tost	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	_		None

TABLE 7-3: DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer (PWRT) is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC oscillator start-up times.
- **4:** TLOCK = PLL lock time.
- **5:** TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- **6:** If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".

REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0, HS	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
—	—	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 4-2	Unimplemented: Read as '0'
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	SPF2IF: SPI2 Fault Interrupt Flag Status bit
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_		_		—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 INT1IP<2:0>: External Interrupt 1 Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
 - :

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 8-32: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—				—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7							bit 0

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 6-4 ULPWUIP<2:0>: Ultra Low-Power Wake-up Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- :

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

9.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the "PIC24F Family Reference Manual", Section 38. "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24FV32KA304 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: PIC24FV32KA304 FAMILY CLOCK DIAGRAM

15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723).

All devices in the PIC24FV32KA304 family feature 3 independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events. Also, the modules can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

Key features of the output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 21 user-selectable Sync/trigger sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

15.1 General Operating Modes

15.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the output compare module operates in a Free-Running mode. The internal 16-bit counter, OCxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSELx bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode. Setting this bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/trigger source.

15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase the range, adjacent even and odd numbered modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even numbered module (OCy) provides the Most Significant 16 bits. Wraparounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules.

15.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Calculate the desired ON time and load it into the OCxR register.
- 2. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 4. Select a clock source by writing the OCTSEL2<2:0> (OCxCON<12:10>) bits.
- 5. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 6. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- 7. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.

15.4 Subcycle Resolution

The DCBx bits (OCxCON2<10:9>) provide for resolution better than one instruction cycle. When used, they delay the falling edge generated from a match event by a portion of an instruction cycle.

For example, setting DCB<1:0> = 10 causes the falling edge to occur halfway through the instruction cycle in which the match event occurs, instead of at the beginning. These bits cannot be used when OCM<2:0> = 001. When operating the module in PWM mode (OCM<2:0> = 110 or 111), the DCBx bits will be double-buffered. The DCBx bits are intended for use with a clock source identical to the system clock. When an OCx module with enabled prescaler is used, the falling edge delay caused by the DCBx bits will be referenced to the system clock period, rather than the OCx module's period.

TABLE 15-1:	EXAMPLE PWM FREQUENCIES	AND RESOLUTIONS AT 4 M	IPS (Fcy = 4 MHz) ⁽¹⁾
-------------	-------------------------	------------------------	----------------------------------

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Prescaler Ratio	8	1	1	1	1	1	1
Period Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 13-2. EXAMPLE FWW FREQUENCIES AND RESULUTIONS AT 10 WIFS (FUT - 10 WIFZ).	TABLE 15-2:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz) ⁽¹⁾	
---	-------------	--	--

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Prescaler Ratio	8	1	1	1	1	1	1
Period Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0
bit 7							bit 0
R = Readable	a hit	W = Writable	hit	II = I Inimplen	nented hit rea	n, se p	
-n = Value at	POR	$(1)^{2} = \text{Rit is set}$	bit	$0^{\circ} = \text{Bit is clear}$	ared	x = Bit is unkr	lown
ii valae at							
bit 15	ALRMEN: Ala	arm Enable bit					
	1 = Alarm is	enabled (clear	ed automatica	illy after an ala	irm event whe	never ARPT<7	:0> = 00h and
	CHIME =	= 0) disabled					
hit 14		ne Enable bit					
511 14	1 = Chime is	enabled: ARP	T<7:0> bits are	allowed to roll	over from 00h	to FFh	
	0 = Chime is	disabled; ARP	T<7:0> bits sto	op once they rea	ach 00h		
bit 13-10	AMASK<3:0>	>: Alarm Mask	Configuration b	oits			
	0000 = Ever	ry half second					
	0001 = Ever	ry second					
	0010 - Ever	ry minute					
	0100 = Ever	ry 10 minutes					
	0101 = Ever	ry hour					
	0110 = Onco	e a day e a week					
	1000 = Onc	e a month					
	1001 = Once	e a year (excep	ot when configu	ured for Februa	ry 29 th , once e	every 4 years)	
	101x = Rese	erved – do not	use				
hit 9-8		•0>• Alarm Val	use je Register Wi	ndow Pointer b	oits		
bit 0 0	Points to the c	orresponding Al	arm Value regis	sters when readi	ing the ALRMV	ALH and ALRM	VALL registers.
	The ALRMPT	R<1:0> value d	ecrements on e	every read or wr	ite of ALRMVA	_H until it reache	es '00'.
	ALRMVAL<1	<u>5:8>:</u>					
	00 = ALRMM	IN /D					
	10 = ALRMM	NTH					
	11 = Unimple	mented					
	<u>ALRMVAL<7:</u>	0>:					
		EC					
	10 = ALRMD	AY					
	11 = Unimple	mented					
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	bits			
	11111111 =	Alarm will rep	eat 255 more t	imes			
	•						
	00000000 =	Alarm will not	repeat	nt: it is provent	od from rolling	over from OOL	to EEb upload
	CHIME = 1 .		any alahin eve	n, it is prevent	.eu nom rolling		

REGISTER 19-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 19-11: RTCCSWT: CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSTAB7 | PWCSTAB6 | PWCSTAB5 | PWCSTAB4 | PWCSTAB3 | PWCSTAB2 | PWCSTAB1 | PWCSTAB0 |
| bit 15 | | | | | | | bit 8 |

| R/W-x |
|----------|----------|----------|----------|----------|----------|----------|----------|
| PWCSAMP7 | PWCSAMP6 | PWCSAMP5 | PWCSAMP4 | PWCSAMP3 | PWCSAMP2 | PWCSAMP1 | PWCSAMP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	PWCSTAB<7:0>: PWM Stability Window Timer bits					
	11111111 = Stability window is 255 TPWCCLK clock periods					
	•					
	0000000 = Stability window is 0 TPWCCLK clock periods The sample window starts when the alarm event triggers. The stability window timer starts counting from every alarm event when PWCEN = 1.					
bit 7-0	PWCSAMP<7:0>: PWM Sample Window Timer bits					
	 11111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 					
	•					
	0000000 = Sample window is 0 TPWCCLK clock periods The sample window timer starts counting at the end of the stability window when PWCEN = 1. If PWCSTAB<7:0> = 00000000, the sample window timer starts counting from every alarm event when PWCEN = 1.					

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER	22-4: AD10	CON5: A/D CO	ONTROL RE	GISTER 5			
R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r	_	ASINT1	ASINT0
bit 15	•	•	•		•		bit 8
110	11.0	11.0	11.0	D/M/ 0		D/M/ 0	
0-0	0-0	0-0	0-0	R/VV-U	R/VV-U	R/W-U	R/W-U
 hit 7	_	_	_		VVIVIO	CIVIT	Liviu bit 0
							bit 0
Legend:		r = Reserved	bit				
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14	ASEN: Auto- 1 = Auto-sca 0 = Auto-sca LPEN: Low-F 1 = Returns 0 = Remains	Scan Enable bi in is enabled in is disabled Power Enable bi to Low-Power n s in Full-Power r	_t (1) it node after sca node after sca	n n			
bit 13	CTMREQ: C ⁻ 1 = CTMU is 0 = CTMU is	TMU Request b enabled when not enabled by	it the A/D is ena [,] the A/D	bled and active	9		
bit 12	BGREQ: Bar	nd Gap Request	t bit				
	1 = Band ga 0 = Band ga	p is enabled wh p is not enablec	en the A/D is e I by the A/D	enabled and ac	tive		
bit 11	Reserved: M	laintain as '0'					
bit 10	Unimplemen	ited: Read as ')'				
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detec	t) Interrupt Mod	le bits		
	11 = Interrup 10 = Interrup 01 = Interrup 00 = No inte	ot after a Thresh ot after a valid c ot after a Thresh rrupt	nold Detect see ompare has or nold Detect see	quence comple ccurred quence comple	ted and a valid ted	l compare has o	occurred
bit 7-4	Unimplemen	ited: Read as ')'				
bit 3-2	WM<1:0>: W	rite Mode bits					
	11 = Reserv 10 = Auto-co match, 01 = Conver when a 00 = Legacy	ed ompare only (co as defined by th t and save (cor match, as defin operation (con	nversion resul ne CMx and A nversion result ned by the CM version data is	Its are not save SINTx bits, occ s are saved to x bits, occurs) saved to a loc	d, but interrup urs) locations as d ation determin	ts are generate etermined by th	d when a valid ne register bits
bit 1-0	CM<1:0>: Co	ompare Mode bi	its				regiotor bite)
Sit I-O	11 = Outside by the c 10 = Inside V corresp 01 = Greater buffer re 00 = Less Th register	Window mode corresponding bu Vindow mode (v onding buffer pa Than mode (va egister) nan mode (valid)	(valid match or uffer pair) alid match occu ir) alid match occu match occurs	ccurs if the conv urs if the conver urs if the result i if the result is le	version result is sion result is in s greater than ess than the va	outside of the v side the window the value in the lue in the corres	vindow defined defined by the corresponding sponding buffer
	/hen using auto	′ -scan with Thre	shold Detect (ASEN = 1) do	not configure t	he sample cloc	k source to

Note 1: When using auto-scan with Threshold Detect (ASEN = 1), do not configure the sample clock source to Auto-Convert mode (SSRCx = 7). Any other available SSRCx selection is valid. To use auto-convert as the sample clock source (SSRCx = 7), make sure ASEN is cleared.

22.3 Transfer Function

The transfer functions of the A/D Converter in 12-bit resolution are shown in Figure 22-3. The difference of the input voltages, (VINH – VINL), is compared to the reference, ((VR+) - (VR-)).

- The first code transition occurs when the input voltage is ((VR+) (VR-))/4096 or 1.0 LSb.
- The 0000 0000 0001 code is centered at VR- + (1.5 * ((VR+) (VR-))/4096).
- The '0010 0000 0000' code is centered at VREFL + (2048.5 * ((VR+) - (VR-))/4096).
- An input voltage less than VR- + (((VR-) – (VR-))/4096) converts as '0000 0000 0000'.
- An input voltage greater than (VR-) + (4095((VR+) – (VR-))/4096) converts as '1111 1111 1111'.

FIGURE 22-3: 12-BIT A/D TRANSFER FUNCTION

NOTES:

FIGURE 29-12: I²CTM BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

TABLE 29-31: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Мах	Units	Conditions	
IM30	Tsu:sta	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μS	Only relevant for	
	Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS	After this period, the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	—	μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	ns		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns]	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)		ns		

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to Section 17.3 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

FIGURE 29-21: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 1)

TABLE 29-39: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

АС СН	ARACTERI	STICS	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30	_	_	ns		
SP71	TscH	SCKx Input High Time	30	—	—	ns		
SP72	TscF	SCKx Input Fall Time ⁽²⁾	—	10	25	ns		
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	—	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	—	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns		
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	—	—	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns		
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—	—	ns		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.

FIGURE 29-22: A/D CONVERSION TIMING

2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
Clock Parameters											
AD50	Tad	A/D Clock Period	600	—	—	ns	Tcy = 75 ns, AD1CON3 in default state				
AD51	TRC	A/D Internal RC Oscillator Period	-	1.67	—	μs					
			Convers	ion Rate)						
AD55	TCONV	Conversion Time	_	12 14	_	Tad Tad	10-bit results 12-bit results				
AD56	FCNV	Throughput Rate			100	ksps					
AD57	TSAMP	Sample Time	_	1	_	Tad					
AD58	TACQ	Acquisition Time	750	—	—	ns	(Note 2)				
AD59	Tswc	Switching Time from Convert to Sample	-	-	(Note 3)						
AD60	TDIS	Discharge Time	12	_	—	TAD					
		(Clock Pa	rameter	s						
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad					

TABLE 29-41: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to Vss or Vss to VDD).

3: On the following cycle of the device clock.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	MIN	NOM	MAX			
Number of Pins	Ν	20				
Pitch	е	0.65 BSC				
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	Е	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint	L1	1.25 REF				
Lead Thickness	с	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	_	0.38		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2