

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka304-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

	F				FV								
			Pin Number	•				Pin Number	r				
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	I/O	Buffer	Description
RA0	2	2	27	19	21	2	2	27	19	21	I/O	ST	PORTA Pins
RA1	3	3	28	20	22	3	3	28	20	22	I/O	ST	
RA2	7	9	6	30	33	7	9	6	30	33	I/O	ST	
RA3	8	10	7	31	34	8	10	7	31	34	I/O	ST	
RA4	10	12	9	34	37	10	12	9	34	37	I/O	ST	
RA5	1	1	26	18	19	1	1	26	18	19	I/O	ST	
RA6	14	20	17	7	7	_	_	_	_	_	I/O	ST	
RA7	_	19	16	6	6	_	19	16	6	6	I/O	ST	
RA8	_	_	_	32	35	_	_	_	32	35	I/O	ST	
RA9	—	_	_	35	38	_	—	—	35	38	I/O	ST	
RA10	—	—	_	12	13	_	—	—	12	13	I/O	ST	
RA11	—	_	_	13	14	_	—	—	13	14	I/O	ST	
RB0	4	4	1	21	23	4	4	1	21	23	I/O	ST	PORTB Pins
RB1	5	5	2	22	24	5	5	2	22	24	I/O	ST	
RB2	6	6	3	23	25	6	6	3	23	25	I/O	ST	
RB3	—	7	4	24	26	_	7	4	24	26	I/O	ST	
RB4	9	11	8	33	36	9	11	8	33	36	I/O	ST	
RB5	—	14	11	41	45	_	14	11	41	45	I/O	ST	
RB6	—	15	12	42	46	—	15	12	42	46	I/O	ST	
RB7	11	16	13	43	47	11	16	13	43	47	I/O	ST	
RB8	12	17	14	44	48	12	17	14	44	48	I/O	ST	
RB9	13	18	15	1	1	13	18	15	1	1	I/O	ST	
RB10	—	21	18	8	9	—	21	18	8	9	I/O	ST	
RB11	_	22	19	9	10	_	22	19	9	10	I/O	ST	
RB12	15	23	20	10	11	15	23	20	10	11	I/O	ST	
RB13	16	24	21	11	12	16	24	21	11	12	I/O	ST	
RB14	17	25	22	14	15	17	25	22	14	15	I/O	ST	
RB15	18	26	23	15	16	18	26	23	15	16	I/O	ST	

TABLE 3-1:	CPU CORE REGISTERS

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register

4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.

Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing						
	will concatenate the SRL register to the						
	MSB of the PC prior to the push.						

The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6 in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

Note: A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

Table 4-27 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, the P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a data space word.

TABLE 4-27 :	PROGRAM SPACE ADDRESS CONSTRUCTION
---------------------	------------------------------------

	Access	Program Space Address						
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0		PC<22:1>	0			
(Code Execution)		0xx xxxx xxxx xxxx xxx0						
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>				
(Byte/Word Read/Write)		02	xxx xxxx	XXXX XXXX XXXX XXXX				
	Configuration	TBLPAG<7:0>		Data EA<15:0>				
		1:	XX XXXX XXXX XXXX XXXX			XXX		
Program Space Visibility	User	0	PSVPAG<7:	0> ⁽²⁾ Data EA<14:0> ⁽¹⁾				
(Block Remap/Read)		0	XXXX XXX	x xxx xxxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) in the PIC24FV32KA304 family.

REGISTER	0-11. IECU	. INTERROFT			JIJIER U		
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NVMIE	<u> </u>	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INTOIE
bit /							bit 0
Logondi							
R = Readah	le hit	W = Writable	hit	LI = Linimplem	pented hit rea	d as 'N'	
-n = Value a		'1' = Rit is set	bit	'0' = Bit is clea	ared	x = Bit is unkn	own
							own
bit 15	NVMIE: NVM	1 Interrupt Enab	ole bit				
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 14	Unimplemer	nted: Read as '	0'				
bit 13	AD1IE: A/D	Conversion Cor	nplete Interrup	t Enable bit			
	1 = Interrupt	request is enab	led				
L:1 40		request is not e		LI- L:1			
DIT 12			r interrupt Ena	DIE DIT			
	1 = Interrupt 0 = Interrupt	request is enac	nabled				
bit 11	U1RXIE: UA	RT1 Receiver li	nterrupt Enable	e bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	enabled				
bit 10	SPI1IE: SPI1	Transfer Com	olete Interrupt	Enable bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 9	SPF1IE: SPI	1 Fault Interrup	t Enable bit				
	1 = Interrupt	request is enab	led				
hit 8	T3IE Timer3	Interrunt Enab	le hit				
bit o	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 7	T2IE: Timer2	Interrupt Enab	le bit				
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 6	OC2IE: Outp	ut Compare Ch	annel 2 Interru	ipt Enable bit			
	1 = Interrupt	request is enac	led				
bit 5		Canture Chann	el 2 Interrunt F	nable bit			
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	nabled				
bit 4	Unimplemer	nted: Read as '	0'				
bit 3	T1IE: Timer1	Interrupt Enab	le bit				
	1 = Interrupt	request is enab	led				
	0 = Interrupt	request is not e	enabled				
bit 2	OC1IE: Outp	ut Compare Ch	annel 1 Interru	ipt Enable bit			
	1 = Interrupt	request is enab	led				
		request is not e	uapieu				

REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 8-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—			—			
bit 15							bit 8			
U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
	—	IC3IE	—	_		SPI2IE	SPF2IE			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						
bit 15-6	Unimplemen	ted: Read as '	D'							
bit 5	IC3IE: Input C	Capture Channe	el 3 Interrupt E	nable bit						
	1 = Interrupt r	request is enab	led							
	0 = Interrupt r	request is not e	nabled							
bit 4-2	Unimplemen	ted: Read as ') '							
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit									
	1 = Interrupt request is enabled									
	0 = Interrupt r	request is not e	nabled							
bit 0	SPF2IE: SPI2	2 Fault Interrup	t Enable bit							
	1 = Interrupt r	equest is enab	led							

0 = Interrupt request is not enabled

13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent,16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 or Timer4/5 operate in three modes:

- Two Independent 16-Bit Timers (Timer2 and Timer3) with all 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle mode
- Interrupt on a 32-Bit Period Register Match
- A/D Event Trigger

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D event trigger (this is implemented only with Timer3). The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. The T2CON,T3CON, T4CON and T5CON registers are provided in generic form in Register 13-1 and Register 13-2, respectively.

For 32-bit timer/counter operation, Timer2/Timer4 is the least significant word (lsw) and Timer3/Timer5 is the most significant word (msw) of the 32-bit timer.

Note:	For 32-bit operation, T3CON or T5CON							
	control bits are ignored. Only T2CON or							
	T4CON control bits are used for setup and							
	control. Timer2 or Timer4 clock and gate							
	inputs are utilized for the 32-bit timer							
	modules, but an interrupt is generated with							
	the Timer3 or Timer5 interrupt flags.							

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value, while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the Timerx Interrupt Priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

The timer value, at any point, is stored in the register pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE; use the Timerx Interrupt Priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

HS = Hardware Settable bit

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

R = Reada	able bit	W = Writable bit	it U = Unimplemented bit, read as '0'						
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown					
bit 15	FLTM): Fault Mode Select bit							
	1 = Fa	ault mode is maintained until the	e Fault source is removed and	the corresponding OCFLTx bit is					
	Cle ∩ − Es	eared in software	Eault source is removed and	a new PWM period starts					
hit 14	FI TOI	IT. Fault Out hit							
bit 14	1 = P\	WM output is driven high on a F	ault						
	0 = P\	NM output is driven low on a Fa	ault						
bit 13	FLTTR	IEN: Fault Output State Select	bit						
	1 = Pi	n is forced to an output on a Fa	ult condition						
	0 = Pi	n I/O condition is unaffected by	a Fault						
bit 12	OCINV	Contract Compare x Invert bit							
	1 = 0	Cx output is inverted							
bit 11	Unimp	plemented: Read as '0'							
bit 10-9	DCB<	1:0>: Output Compare x Pulse-	Width Least Significant bits ⁽³⁾						
	11 = D	elays OCx falling edge by 3/4 c	of the instruction cycle						
	10 = D	elays OCx falling edge by 1/2 c	of the instruction cycle						
	01 = D	elays OCx falling edge by 1/4 o	of the instruction cycle						
hit 8	00 - 0	Cascade Two Output Compare	Modules Enable bit (32 bit on	eration)					
DILO	$1 = C_{2}$	ascade module operation is ena	ibled						
	0 = Ca	ascade module operation is disa	abled						
bit 7	OCTR	IG: Output Compare x Sync/Triç	gger Select bit						
	1 = Tr	iggers OCx from source design	ated by the SYNCSELx bits						
	0 = Sy	nchronizes OCx with source de	esignated by the SYNCSELx bi	its					
bit 6	TRIGS	TAT: Timer Trigger Status bit							
	1 = III 0 = Ti	mer source has been triggered a	and is running red and is being beld clear						
bit 5	OCTR	IS: Output Compare x Output P	in Direction Select hit						
Sit 0	1 = 00	x nin is tri-stated							
	0 = Ou	itput Compare x peripheral is cc	onnected to the OCx pin						
Note 1:	Do not ucc	an output compare module es	its own trigger source, either h	weelecting this mode or another					
	equivalent	SYNCSELx setting.	no own ingger source, eillier b	y selecting this mode of another					
2:	Use these	inputs as trigger sources only a	nd never as Sync sources.						
3:	These bits (OCxCON	affect the rising edge when OC $1<2:0>$) = 001.	INV = 1. The bits have no effe	ct when the OCMx bits					

Legend:

17.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator (BRG) reload value, use Equation 17-1.

EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾

TABLE 17-1: I²C[™] CLOCK RATES⁽¹⁾

17.4 Slave Address Masking

The I2CxMSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is '0' or '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses: '0000000' and '00100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2C1CON<11>).

Note: As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required	_	I2CxBF	RG Value	Actual	
System FscL	FCY	(Decimal)	(Hexadecimal)	FSCL	
100 kHz	16 MHz	157	9D	100 kHz	
100 kHz	8 MHz	78	4E	100 kHz	
100 kHz	4 MHz	39	27	99 kHz	
400 kHz	16 MHz	37	25	404 kHz	
400 kHz	8 MHz	18	12	404 kHz	
400 kHz	4 MHz	9	9	385 kHz	
400 kHz	2 MHz	4	4	385 kHz	
1 MHz	16 MHz	13	D	1.026 MHz	
1 MHz	8 MHz	6	6	1.026 MHz	
1 MHz	4 MHz	3	3	0.909 MHz	

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

TABLE 17-2: I^2C^{TM} RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description						
0000 000	0	General Call Address ⁽²⁾						
0000 000	1	Start Byte						
0000 001	х	CBus Address						
0000 010	х	Reserved						
0000 011	х	Reserved						
0000 1xx	х	HS Mode Master Code						
1111 1xx	x	Reserved						
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾						

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: This feature is is only available for the 16x BRG mode (BRGH = 0).
 - 2: The bit availability depends on the pin availability.

REGISTER 18-3: UXTXREG: UARTX TRANSMIT REGISTER

U-x	U-x	U-x	U-x	U-x	U-x	U-x	W-x	
—	—	—	—	—	—	—	UTX8	
bit 15	-	-		-	•	-	bit 8	
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x	
UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-9 Unimplemented: Read as '0'

bit 8 UTX8: UARTx Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UTX<7:0>: UARTx Data of the Transmitted Character bits

REGISTER 18-4: UXRXREG: UARTX RECEIVE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	—	URX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| URX7 | URX6 | URX5 | URX4 | URX3 | URX2 | URX1 | URX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-9 **Unimplemented:** Read as '0'

bit 8 URX8: UARTx Data of the Received Character bit (in 9-bit mode)

bit 7-0 URX<7:0>: UARTx Data of the Received Character bits

22.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", Section 51. "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
 Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (Internal and External)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
 Amplifier
- Automated Threshold Scan and Compare
 Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU and a configurable results buffer. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 22-1.

FIGURE 22-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

		-									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PVCFG	1 PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	—					
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUFS ⁽¹) SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS				
bit 7							bit 0				
Legend:											
R = Read	able bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own				
bit 15-14	PVCFG<1:0 > 11 = 4 * Inter 10 = 2 * Inter 01 = Externa	•: Converter Po mal V _{BG} (²⁾ mal V _{BG} (³⁾ I VREF+	sitive Voltage	Reference Conf	iguration bits						
	00 = AV DD										
bit 13	NVCFG0: Co 1 = External	onverter Negativ VREF-	ve Voltage Rei	ference Configur	ation bits						
hit 12		fset Calibration	Mode Select	hit							
	1 = Inverting	1 = Inverting and non-inverting inputs of channel Sample-and-Hold are connected to AVss									
	0 = Inverting	and non-invert	ing inputs of c	hannel Sample-	and-Hold are c	onnected to not	rmal inputs				
bit 11	BUFREGEN:	A/D Buffer Re	gister Enable	bit							
	1 = Conversi	ion result is loa	ded into a buf	fer location deter	mined by the o	converted chann	nel				
	0 = A/D resu	It buffer is treat	ed as a FIFO								
bit 10	CSCNA: Sca	n Input Selectio	ons for CH0+	S/H Input for MU	IX A Setting bit						
	1 = Scans in 0 = Does not	puts t scan inputs									
bit 9-8	Unimplemen	ited: Read as '	0'								
bit 7	BUFS: Buffer	⁻ Fill Status bit ⁽¹)								
	1 = A/D is fill 0 = A/D is fill	ing the upper h	alf of the buffe	er; user should a er; user should a	ccess data in t ccess data in t	he lower half he upper half					
bit 6-2	SMPI<4:0>: \$	Sample Rate In	terrupt Select	bits							
	11111 = Inte 11110 = Inte	errupts at the co errupts at the co	ompletion of th ompletion of th	e conversion for e conversion for	⁻ each 32nd sa ⁻ each 31st sar	mple nple					
	•										
	• 00001 = Inte	errupts at the co	ompletion of th	e conversion for	every other sample	ample					
hit 1	BUFM: Buffe	r Fill Mode Sele	-ct hit(1)		cuon cumpic						
bit i	1 = Starts fill	ing the buffer a	it address. AD	1BUF0. on the t	first interrupt a	nd AD1BUF(n/2	2) on the next				
	interrupt 0 = Starts fil interrupts	(Split Buffer mo ling the buffer s (FIFO mode)	ode) at address,	ADCBUF0, and	l each sequer	ntial address o	n successive				
Note 1:	This is only applicused when BUFN	cable when the $I = 1$.	buffer is used	in FIFO mode (I	BUFREGEN =	0). In addition,	BUFS is only				
2:	The voltage reference setting will not be within the specification with VDD below 4.5V.										

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

3: The voltage reference setting will not be within the specification with VDD below 2.3V.

TABLE 22-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format Equivalent Decimal Value	/ 9	16-Bit Signed Fractional Format/ Equivalent Decimal Value						
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999					
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998					
•••										
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001					
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000					
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001					
•••										
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999					
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000					

FIGURE 22-5: A/D OUTPUT DATA FORMATS (10-BIT)

						d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
	I			I							I	I			
s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0
	0 \$0 d09 \$0	0 0 s0 s0 d09 d08 s0 d09	0 0 0 s0 s0 s0 d09 d08 d07 s0 d09 d08	0 0 0 0 s0 s0 s0 s0 d09 d08 d07 d06 s0 d09 d08 d07	0 0 0 0 0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 s0 d09 d08 d07 d06	0 0 0 0 0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 d04 s0 d09 d08 d07 d06 d05 d05	0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 s0 s0 s0 s0 s0 s0 s0 d09 d09 d08 d07 d06 d05 d04 d03 s0 d09 d08 d07 d06 d05 d04	d09 d08 0 0 0 0 0 d09 d08 s0 s0 s0 s0 s0 s0 s0 d09 d08 d09 d08 d07 d06 d05 d04 d03 d02 s0 d09 d08 d07 d06 d05 d04 d03	d09 d08 d07 0 0 0 0 0 d09 d08 d07 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d09 d08 d07 d06 d05 d04 d03 d02 d01 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01	d09 d08 d07 d06 0 0 0 0 0 d09 d08 d07 d06 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d09 d08 d07 d06 d05 d09 d08 d07 d06 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01	d09 d08 d07 d06 d05 0 0 0 0 0 d09 d08 d07 d06 d05 s0 s0 s0 s0 s0 s0 s0 d09 d08 d07 d06 d05 d09 d08 d07 d06 d05 s0 d09 d08 d07 d06 d05 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0 s0 d09 d08 d07 d06 d05 d04 d03 d02 d01 d00 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 22-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/16-Bit Signed Integer FormEquivalent Decimal ValueEquivalent Decimal Value									
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023						
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022						
	•••										
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1						
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0						
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1						
		•••									
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023						
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024						

REGISTER 2	26-4: FOSC	: OSCILLAT	OR CONFIGU	JRATION REC	SISTER		
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits
	 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit
	 1 = Secondary oscillator is configured for high-power operation 0 = Secondary oscillator is configured for low-power operation
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits
	 11 = Primary oscillator/external clock input frequency is greater than 8 MHz 10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz 01 = Primary oscillator/external clock input frequency is less than 100 kHz 00 = Reserved; do not use
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	 1 = CLKO output signal is active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMD<1:0> = 11 or 00) 0 = CLKO output is disabled
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	 11 = Primary Oscillator mode is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected

REGISTER 26-8: FDS: DEEP SLEEP CONFIGURATION REGISTER								
R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
DSWDTEN	DSBOREN	—	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	P = Programn	nable bit	U = Unimpler	nented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	DSWDTEN: De	eep Sleep Wat	chdog Timer Er	nable bit				
	1 = DSWDT is	enabled						
	0 = DSWDT is	disabled						
bit 6	DSBOREN: De	ep Sleep/Low-	Power BOR En	able bit				
	(does not affect	operation in n	on Deep Sleep	modes)				
	1 = Deep Sleep	b BOR is enabl	led in Deep Sle	ep				
	0 = Deep Sleep		ied in Deep Sie	eep				
DIT 5	Unimplemente	ed: Read as 10						
bit 4	DSWDTOSC: DSWDT Reference Clock Select bit							
	1 = DSWDT us	es LPRC as th	le reference clo	ock				
hit 2 0				UCK Dootooolo	Coloct bito			
DIL 3-0		v>: Deep Sleep	this creates on		Select Dits	f 1 ma		
	1111 - 1.2 117			approximate L		1 1 1115.		
	1111 = 1.2, 147 1110 = 1.536.8	,483,648 (25.7 70 912 (6 4 da	r days) nominal avs) nominal	1				
	1101 = 1:134,2	217,728 (38.5 h	nours) nominal					
	1100 = 1:33,55	54,432 (9.6 hou	urs) nominal					
	1011 = 1:8,388	3,608 (2.4 hour	s) nominal					
	1010 = 1:2,097	7,152 (36 minu	tes) nominal					
	1001 = 1:524,2	288 (9 minutes)) nominal					
	1000 = 1.131,0 0111 = 1.3276	372 (135 Seconds	a) nominal					
	0110 = 1:8.192	2 (8.5 seconds)) nominal					
	0101 = 1:2,048	3 (2.1 seconds)) nominal					
	0100 = 1:512 (528 ms) nomir	nal					
	0011 = 1:128 (132 ms) nomir	nal					
	0010 = 1:32 (3	3 ms) nominal						
	0001 = 1:8 (8.3)	s ms) nominal						
	0000 = 1.2 (2.5)	i ms) nominal						

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

FIGURE 30-33: TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE ($2.0V \le VDD \le 5.5V$)

31.0 PACKAGING INFORMATION

31.1 Package Marking Information

20-Lead PDIP (300 mil)

28-Lead SPDIP (.300")

Example

20-Lead SSOP (5.30 mm)

28-Lead SSOP (5.30 mm)

Example

Example

Legend:	XXX Y YY WW NNN (e3)	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	