

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	16KB (5.5K x 24)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fv16ka304t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	
		CTMUIE	_	_	_	_	HLVDIE	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
—		_	—	CRCIE	U2ERIE	U1ERIE	—	
bit 7							bit C	
Legend:								
R = Readab	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'		
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-14	Unimpleme	nted: Read as '0	3					
bit 13	CTMUIE: C	TMU Interrupt En	able bit					
		t request is enable						
L:400	•	t request is not er						
bit 12-9	•	nted: Read as '0						
bit 8		gh/Low-Voltage D t request is enable		t Enable bit				
		t request is enable						
bit 7-4	-	nted: Read as '0						
bit 3	-	C Generator Inter		it				
		t request is enable	•					
	0 = Interrupt	t request is not er	abled					
bit 2	U2ERIE: UA	ART2 Error Interru	ipt Enable bit					
		t request is enable						
	•	t request is not er						
		U1ERIE: UART1 Error Interrupt Enable bit						
bit 1			•					
bit 1	1 = Interrupt	t request is enable t request is not er	ed					

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0			
it 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	IC2IP2	IC2IP1	IC2IP0	_		_	_			
it 7							bit			
.egend:										
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	d as '0'				
n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
it 15	Unimplemer	nted: Read as ')'							
oit 14-12	-									
	T2IP<2:0>: Timer2 Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
		upt is Priority 1 upt source is dis	abled							
it 11	Unimplemer	nted: Read as ')'							
it 10-8	OC2IP<2:0>	: Output Compa	re Channel 2	Interrupt Priorit	ty bits					
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	• 001 – Interruptic Drierity 1									
	001 = Interrupt is Priority 1 000 = Interrupt source is disabled									
oit 7		nted: Read as '								
oit 6-4	-	Input Capture C		errupt Priority bit	ts					
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
		upt is Priority 1	abled							
it 3_0		-								
it 3-0		upt source is dis nted: Read as '								

REGISTER 8-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 8-32: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7						•	bit 0

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 6-4 ULPWUIP<2:0>: Ultra Low-Power Wake-up Interrupt Priority bits

- 111 = Interrupt is Priority 7 (highest priority interrupt)
- :

• 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		—	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			iown
bit 15-6 bit 5-0	Unimplemented: Read as '0' TUN<5:0>: FRC Oscillator Tuning bits ⁽¹⁾ 011111 = Maximum frequency deviation 011110 000001 000000 = Center frequency, oscillator is running at factory calibrated frequency 11111 100001 100000 = Minimum frequency deviation						

REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

REGISTER	(9-4: REFU	CON: REFE	KENCE USC		INTROL REG	DISTER	
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN	—	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
11.0				11.0	11.0		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 7					_		bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Reference	ence Oscillator e oscillator is ei e oscillator is di	nabled on REF				
bit 14	Unimplemen	ted: Read as ')'				
bit 13	ROSSLP: Re	ference Oscilla	tor Output Sto	p in Sleep bit			
		e oscillator cont e oscillator is di					
bit 12		erence Oscillato					
		oscillator is use		clock ⁽¹⁾ k; base clock re	eflects any cloc	k switching of t	he device
bit 11-8		Reference Os				it ownorming of t	
	1110 = Base 1101 = Base 1011 = Base 1010 = Base 1001 = Base 1000 = Base 0111 = Base 0111 = Base 0101 = Base 0101 = Base 0101 = Base 0011 = Base 0011 = Base	clock value div clock value div	ided by $16,384$ ided by $8,192$ ided by $4,096$ ided by $2,048$ ided by $1,024$ ided by 512 ided by 256 ided by 128 ided by 64 ided by 32 ided by 16 ided by 8 ided by 4				
hit 7-0	0000 = Base	tod: Pead as '	۰ ۲				

REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

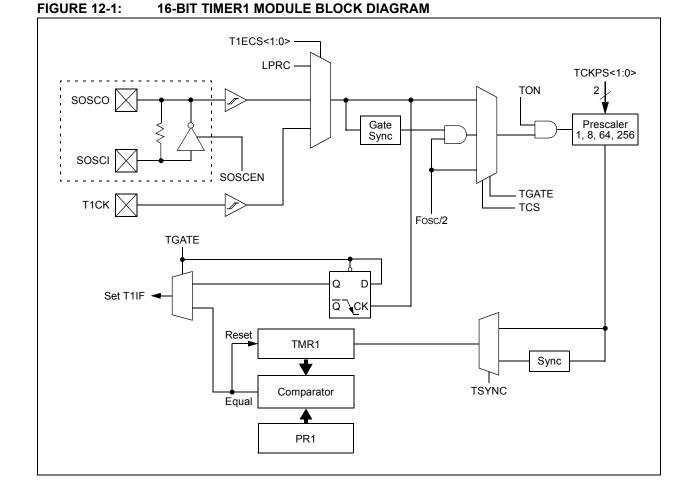
- bit 7-0 Unimplemented: Read as '0'
- **Note 1:** The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-Bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

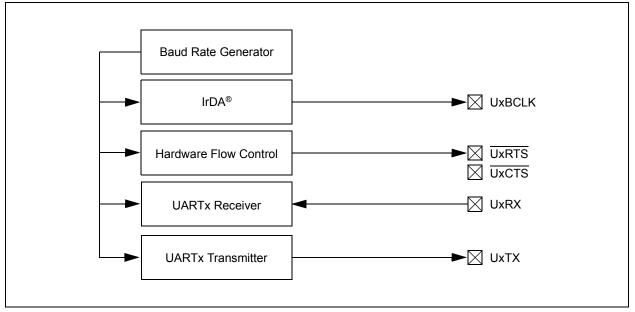
- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This output compare module⁽¹⁾
 - 11110 = **Reserved** 11101 = Reserved 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1
 - 01010 = Input Capture 5⁽²⁾
 - 01001 = Reserved
 - 01000 = Reserved
 - 00111 = Reserved
 - 00110 = Reserved
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare 2⁽¹⁾
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Do not use an output compare module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
 - 2: Use these inputs as trigger sources only and never as Sync sources.
 - 3: These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCMx bits (OCxCON1<2:0>) = 001.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features of
	this group of PIC24F devices. It is not
	intended to be a comprehensive reference
	source. For more information on the Univer-
	sal Asynchronous Receiver Transmitter,
	refer to the "PIC24F Family Reference
	Manual", Section 21. "UART" (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- · Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx is shown in Figure 18-1. The UARTx module consists of these important hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver
- Note: Throughout this section, references to register and bit names that may be associated with a specific USART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the USART Status register for either USART1 or USART2.

FIGURE 18-1: UARTX SIMPLIFIED BLOCK DIAGRAM

REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

ALTS: Alternate Input Sample Mode Select bit

bit 0

- 1 = Uses channel input selects for Sample A on the first sample and Sample B on the next sample
- 0 = Always uses channel input selects for Sample A
- **Note 1:** This is only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.
 - 2: The voltage reference setting will not be within the specification with VDD below 4.5V.
 - 3: The voltage reference setting will not be within the specification with VDD below 2.3V.

REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

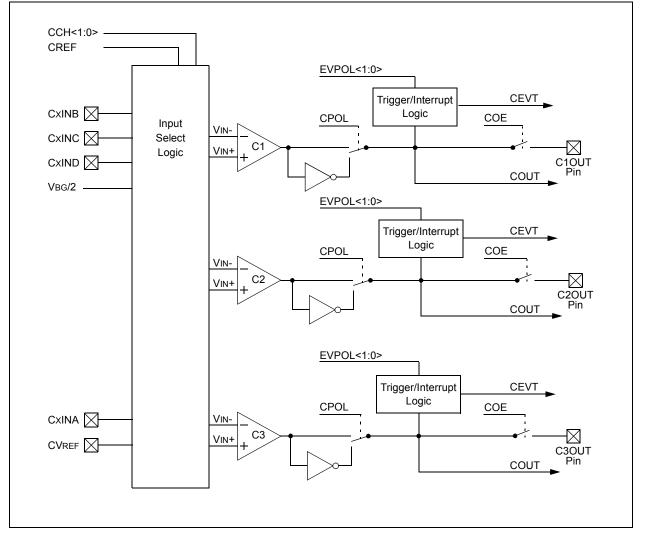
bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock 0 = Clock is derived from the system clock
bit 14	EXTSAM: Extended Sampling Time bit 1 = A/D is still sampling after SAMP = 0 0 = A/D is finished sampling
bit 13	Reserved: Maintain as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits 11111 = 31 TAD 00001 = 1 TAD 00000 = 0 TAD
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits 11111111-01000000 = Reserved 00111111 = 64 · TCY = TAD 00000001 = 2 · TCY = TAD 00000000 = TCY = TAD

TABLE 22-4 :	NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
	10-BIT FRACTIONAL FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Fractional Format Equivalent Decimal Value	•	16-Bit Signed Fractional Fo Equivalent Decimal Val			
+1023/1024	011 1111 1111	1111 1111 1100 0000	0.999	0111 1111 1110 0000	0.999		
+1022/1024	011 1111 1110	1111 1111 1000 0000	0.998	0111 1111 1000 0000	0.998		
	•••						
+1/1024	000 0000 0001	0000 0000 0100 0000	0.001	0000 0000 0010 0000	0.001		
0/1024	000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000		
-1/1024	101 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1110 0000	-0.001		
•••							
-1023/1024	100 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0010 0000	-0.999		
-1024/1024	100 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000		

23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).


The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.

A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

FIGURE 23-1: COMPARATOR x MODULE BLOCK DIAGRAM

25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Measurement Unit, refer to the "PIC24F Family Reference Manual", Section 53. "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen external edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edge levels or edge transitions
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of current source and trims the current.

25.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from several internal peripheral modules (OC1, Timer1, any input capture or comparator module) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

EQUATION 25-1:

$$I = C \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A Precision Resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 25-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

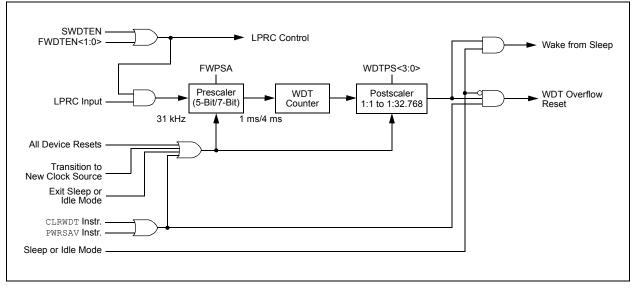
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FWDTEN	1 WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7	ł						bit
Legend:							
R = Reada	ble bit	P = Programm	nable bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 7,5	11 = WDT is e	I>: Watchdog Tir enabled in hardw controlled with th	vare				
	01 = WDT is e 00 = WDT is c	enabled only whi disabled in hardw	ile device is a vare; SWDTE	ctive; WDT is dis N bit is disabled		o, SWDTEN bi	t is disabled
bit 6	1 = Standard 0 = Windowe	dowed Watchdog WDT is selected d WDT is enable and software (eset	d; windowed V d; note that e	VDT is disabled executing a CLRW			
bit 4		F Prescaler bit scaler ratio of 1:1 scaler ratio of 1:3					
bit 3-0	WDTPS<3:0> 1111 = 1:32,7 1110 = 1:16,3 1101 = 1:8,19 1100 = 1:4,09 1011 = 1:2,04 1010 = 1:1,02 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4	884 92 96 48 24	er Postscale \$	Select bits			

If the WDT is enabled in hardware (FWDTEN<1:0> = 11), it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

26.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

26.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When both the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN<1:0> Configuration bits have been programmed to '10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings. When the FWTEN<1:0> bits are set to '01', the WDT is only enabled in Run and Idle modes, and is disabled in Sleep. Software control of the SWDTEN bit (RCON<5>) is disabled with this setting.

FIGURE 26-2: WDT BLOCK DIAGRAM

26.4 Deep Sleep Watchdog Timer (DSWDT)

In PIC24FV32KA304 family devices, in addition to the WDT module, a DSWDT module is present which runs while the device is in Deep Sleep, if enabled. It is driven by either the SOSC or LPRC oscillator. The clock source is selected by the Configuration bit, DSWDTOSC (FDS<4>).

The DSWDT can be configured to generate a time-out, at 2.1 ms to 25.7 days, by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (FDS<3:0>). When the DSWDT is enabled, the clock source is also enabled.

DSWDT is one of the sources that can wake-up the device from Deep Sleep mode.

26.5 Program Verification and Code Protection

For all devices in the PIC24FV32KA304 family, code protection for the boot segment is controlled by the Configuration bit, BSS0, and the general segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the boot segment and bit, GWRP, for the general segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

26.6 In-Circuit Serial Programming

PIC24FV32KA304 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.7 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

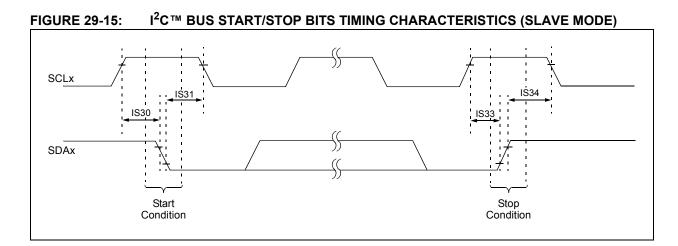

Operating Conditions: -40°C < TA < +125°C (unless otherwise stated)							
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments
DVR10	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V	
DVR11	Tbg	Band Gap Reference Start-up Time	—	1	—	ms	
DVR20	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V	-40°C < TA < +85°C
			3.0	3.19	3.6	V	-40°C < TA < +125°C
DVR21	Cefc	External Filter Capacitor Value	4.7	10	_	μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.
DVR30	Vlvr	Retention Regulator Output Voltage	_	2.6	_	V	

TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS				ard Ope	•	re -4	ons: 1.8V to 3.6V PIC24 2.0V to 5.5V PIC24 $0^{\circ}C \le TA \le +85^{\circ}C$ for Indus $0^{\circ}C \le TA \le +125^{\circ}C$ for Ext	IFV32KA3XX strial
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Comments	Conditions
DCT10	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<9:8> = 01	
DCT11	IOUT2	CTMU Current Source, 10x Range	_	5.5	—	μA	CTMUICON<9:8> = 10	2.5V < VDD < VDDMAX
DCT12	IOUT3	CTMU Current Source, 100x Range	-	55	—	μA	CTMUICON<9:8> = 11	2.5V < VDD < VDDIWAX
DCT13	Iout4	CTMU Current Source, 1000x Range	_	550	—	μA	CTMUICON<9:8> = 00 (Note 2)	
DCT20	VF	Temperature Diode Forward Voltage	—	.76	—	V		
DCT21	VΔ	Voltage Change per Degree Celsius	_	1.6	_	mV/°C		

Note 1: Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000). On PIC24F32KA parts, the current output is limited to the typical current value when IOUT4 is chosen.

2: Do not use this current range with a temperature sensing diode.

TABLE 29-34: I²C[™] BUS START/STOP BITS TIMING REQUIREMENTS (SLAVE MODE)

АС СНА	RACTERIS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$					
Param No.	Symbol	Charao	cteristic	Min	Max	Units	Conditions	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated	
		Setup Time	Setup Time	400 kHz mode	0.6	_	μS	Start condition
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31 THD:ST	THD:STA	D:STA Start Condition Hold Time	100 kHz mode	4.0		μs	After this period, the first	
			400 kHz mode	0.6	_	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μs		
		Setup Time	400 kHz mode	0.6	_	μs		
			1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600		ns		
			1 MHz mode ⁽¹⁾	250		ns		

Note 1: Maximum pin capacitance = 10 pF for all I^2C^{TM} pins (for 1 MHz mode only).

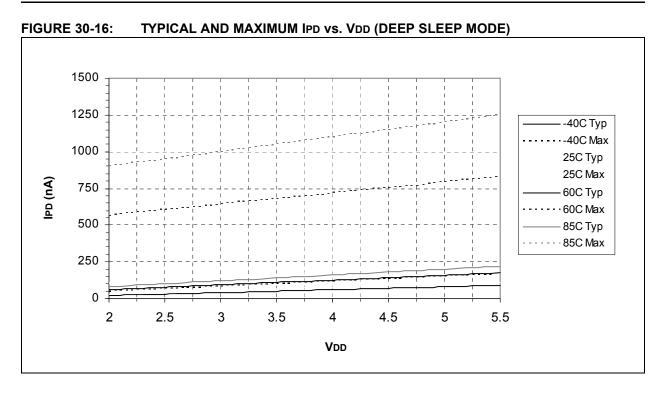
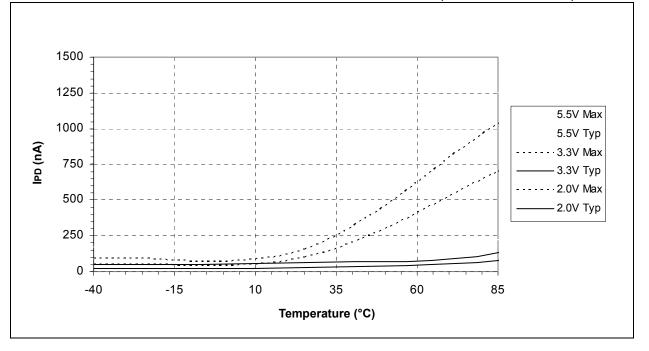
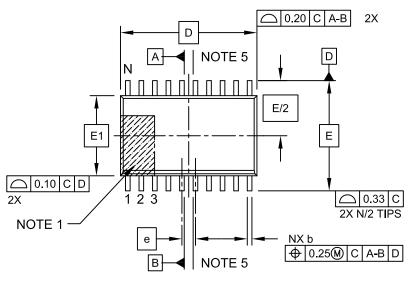
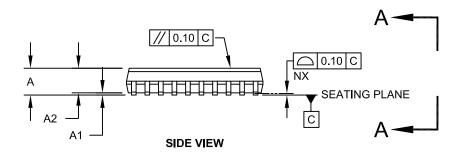
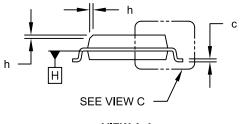




FIGURE 30-17: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)




20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

Timing Requirements	
A/D Conversion	
CLKO and I/O	
External Clock	
I ² C Bus Data (Master Mode)	284, 285
I ² C Bus Data (Slave Mode)	
I ² C Bus Start/Stop Bits (Slave Mode)	
Input Capture x	
Output Capture	
PLL Clock Specifications	
PWM	
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
Timer1/2/3/4/5 External Clock Input	
UARTx	

U

UART 177 Baud Rate Generator (BRG) 178 Break and Sync Transmit Sequence 179 IrDA Support 179 Operation of UxCTS and UxRTS Control Pins 179 Receiving in 8-Bit or 9-Bit Data Mode 179 Transmitting in 8-Bit Data Mode 179 Transmitting in 9-Bit Data Mode 179
--

W

Watchdog Timer	
Deep Sleep (DSWDT)	250
Watchdog Timer (WDT)	248
Windowed Operation	249
WWW Address	358
WWW, On-Line Support	9